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Virtual scenario-based testing has become an acceptable method for evaluating
safety effectiveness of advanced driver assistance systems (ADAS). Due to the
complexity of the ADAS operating environment, the scenarios that an ADAS could
face are almost infinite. Therefore, it is crucial to find critical scenarios to improve
the efficiency of testing without compromising credibility. One popular method is
to explore the parameterized scenario space using various intelligent search
methods. Selecting parameters to parameterize the scenario space is
particularly important to achieve good coverage and high efficiency. However,
an extensive collection of (relevant) influence parameters is missing, which allows
a thorough consideration when selecting parameters regarding specific scenarios.
In addition, the general importance definition for individual influence parameters
is not provided, regarding the potential influence of their variations on the safety
effectiveness of ADAS, which can also be used as a reference while selecting
parameters. Combining knowledge from different sources (the published
literature, standardized test scenarios, accident analysis, autonomous vehicle
disengagement, accident reports, and specific online surveys), this paper has
summarized, in total, 94 influence parameters, given the general definitions of
importance for 77 influence parameters based on cluster analysis algorithms. The
list of influence parameters provides researchers and system developers a
comprehensive basis for pre-selecting influence parameters for evaluating the
safety effectiveness of ADAS by virtual scenario-based testing and helps check
whether certain influence parameters can be a meaningful extension for the
evaluation.
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1 Introduction

Advanced driver assistance systems (ADAS) are designed besides other systems to make
driving safer and more comfortable. To achieve effective and reliable functionality, most of
the ADAS tend to become more complex systems that are sensitive to various parameters in
real-world traffic. Thus, conventional validation based on only test drives is no longer
realizable (Kalra and Paddock, 2016). Accordingly, scenario-based testing will be one feasible
solution (Nalic, 2020) and offers advantages like raising the acceptance of customers for
ADAS, reproducibility and extensible scenarios, and minimization of safety hazards during
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testing (TÜV SÜD, 2021). In addition, high-fidelity simulation-
based testing becomes a necessary step due to two main
disadvantages of real-world testing: the extremely lengthy testing
process and potential dangers (Sun et al., 2021). These facts
underline the need for virtual scenario-based testing in safety
certification and safety effectiveness evaluation of ADAS.

To comprehensively evaluate the potential of ADAS for accident
avoidance and collision mitigation, ADAS should be tested with the
entire scenario space and ideally parameterized with all influence
parameters. Influence parameters are defined as parameters that
describe a scenario and whose variation within that scenario could
potentially affect the safety effectiveness of ADAS. The parameters
can be clearly categorized using a model presented in the German
research project PEGASUS. The model was designed to describe
scenarios systematically with six independent layers, namely, the
road level, traffic infrastructure, temporal modification of the former
two layers, objects, environments, and digital information
(PEGASUS METHOD, 2019). Due to the complexity of the
scenarios and the generally huge number of superimposed
influence parameters, the number of scenarios to be considered is
virtually infinite.

Given the huge number of potential influence parameters, a
possible solution could be to consider a limited number of influence
parameters based on a pre-selection to develop test scenarios within
a limited scenario space. Zhou and Re (2017) used relative distance,
relative speed, and the relative moving direction between eGO and
target vehicles in the parameterization and generation of test
scenarios for an adaptive cruise control system. Ben Abdessalem
et al. (2016) applied a multi-objective search to derive the most
critical scenarios for a pedestrian detection vision-based system. Five
parameters considered in the multi-objective search were identified
through discussions with the domain expert, namely, the speed of
the vehicle and the pedestrian, and the position and orientation of
the pedestrian. In a research study by Chelbi et al. (2018), six
influence parameters, namely, the relative distance, relative speed,
temperature, humidity, weather event, and visibility, were included
in the generation model of test scenarios for an autonomous
emergency braking system. Similarly, values of eight
demonstrative influence parameters, which are related to the
kinematic status of eGO and target vehicles, were varied by
Kluck et al. (2019) to create test scenarios for virtual ADAS
verification and validation. Except for Chelbi et al. (2018), other
researchers have focused only on the parameters related to the
“objects” layer in the PEGASUS model.

Due to the strongly reduced number of influence parameters
considered so far, which parameters should be additionally
considered in the next step is the question. Extensive observation
of every possible influence parameter is necessary. Several
researchers have attempted to specify influence parameters across
different categories. Different categories of influence parameters
were defined and included in a scenario generation model called
MaTeLo, which generates a test case for ADAS based on the Markov
chain Monte Carlo method. The defined categories include weather
conditions, structure of the road and the environments, behavior of
the equipped vehicle, behavior of surrounding vehicles, pedestrians,
and obstacles and disturbance. For each category, several examples
of parameters were given (Raffaëlli et al., 2016). Gyllenhammar et al.
likewise gave several examples for different categories, such as

dynamic elements, connectivity, and other factors and scenarios
(Gyllenhammar et al., 2020). Categorizing influence parameters in
alignment with a clear scenario description structure, such as the
PEGASUS model, and providing a comprehensive collection of
parameters that fit into the defined categories can be an extensive
observation. The parameters were all treated equally in the
aforementioned research study, regardless of their potential to
affect the safety effectiveness of ADAS. When determining
parameters used to parameterize the scenario space, the general
importance definition of each influence parameter can be a useful
reference to combine with the consideration of the particular use
case (specific types of ADAS and scenarios).

Based on the best knowledge of the authors, there is no list
including overall potential influence parameters for ADAS safety
effectiveness evaluation with corresponding general importance
definitions available in the literature. Thus, an extensive
collection of work of influence parameters and furthermore an
importance definition for the parameters are necessary.

The purpose of this study is to provide information on a key
aspect of virtual scenario-based testing, namely, scenario generation,
by presenting a comprehensive list of influence parameters with
general importance definitions that can be used by researchers and
system developers. This list can be used in combination with a
consideration of specific use cases to systematically select influence
parameters for generating scenarios to evaluate the safety
effectiveness of ADAS in scenario-based testing.

2 Materials and methods

2.1 Steps followed to carry out the research

1) Multiple sources were used to identify influence parameters and
gather qualitative assessment information that measures the
impact of these parameters on ADAS safety effectiveness.

2) Cluster analysis was applied based on features quantified from the
qualitative assessment information collected to classify the identified
influence parameters into different levels of importance.

2.2 Collection of influence parameters and
corresponding qualitative assessment
information

For an extensive collection of influence parameters, the
following different sources were studied:

• Published literature
• Standardized tests
• Accident analysis
• Autonomous vehicle disengagement and accident reports
• Online surveys (expert knowledge)

The collection was carried out in two phases. First, a literature
review including the published literature, standardized tests,
accident analysis, autonomous vehicle disengagement, and
accident reports was carried out to identify influence parameters
and to obtain corresponding qualitative assessment information.
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After aggregation, the identified influence parameters were
summarized in a list and the qualitative assessments collected
from various sources were documented appropriately. Second,
the experts from relevant study fields were invited to participate
in an online survey to evaluate the importance of the previously
collected influence parameters regarding their impact on safety
effectiveness of ADAS and to complete the list of influence
parameters.

2.2.1 First phase: Literature review
The sources used in the collection of influence parameters and

the corresponding methods or criteria used to identify influence
parameters and extract qualitative assessment information are
described in this subsection.

2.2.1.1 Published literature
A three-step literature search methodology was employed to

identify relevant studies. The steps were as follows:

• Step 1: The search strings are defined as follows, where $AD,
$IP, $SG, $VV, and $ODD represent the synonyms of the
terms AD and ADAS, influence parameters, scenario
generation, verification and validation, and operational
design domain. The synonyms are listed in Table 1.

Search string � $ADAND $IPOR $SGOR $VVOR $ODD( ).

• Step 2: A literature search m was carried out on four electronic
databases, namely, Scopus, SAE Mobilus, IEEE Xplore Digital

Library, and Google Scholar, in order to include as many
relevant studies as possible in the research.

• Step 3: The literature collected in Step 2 was screened to filter
out studies that contain relevant information on the influence
parameters. The snowballing method was applied to the
filtered studies in order to identify any additional relevant
studies in conjunction with a filtering process.

Thirty-one documents (Buehler and Wegener, 2005; Schmidt
and Sax, 2009; Staender, 2010; Weitzel and Winner, 2013; Chen
et al., 2014; Weitzel, 2014; Kurt et al., 2015; Seiniger and Gail,
2015; Wittmann et al., 2015; Zhang et al., 2015; Ben Abdessalem
et al., 2016; Hasirlioglu et al., 2016; Raffaëlli et al., 2016; Doric,
2017; Hasirlioglu et al., 2017; Wittmann et al., 2017; Xia et al.,
2017; Zhao et al., 2017; Zhou and Re, 2017; Chelbi et al., 2018,;
Chelbi et al., 2019; Chen, 2018; Junietz et al., 2018; Kolk et al.,
2018; Sander and Lubbe, 2018; Xia et al., 2018; Antona-Makoshi
et al., 2019; Goodin et al., 2019; Kluck et al., 2019; Duan et al.,
2020; Koné et al., 2020) were identified. From these studies, the
influence parameters that meet one of the following criteria were
identified and a preliminary grade (qualitative assessment) was
assigned accordingly. The grades and corresponding criteria are
as follows:

• “Important”: The authors of the studies have identified the
parameters as important or critical for the safety effectiveness
of ADAS in their research or have used the parameters as a
variant in ADAS testing.

• “Limitedly important”: The authors considered the
parameters important under certain conditions. For
example, “Obvious conditions like friction coefficient are
only relevant in few scenarios with strong accelerations.”
(Wittmann et al., 2015).

• “Mentioned”: The authors have mentioned the parameters as
potential influence parameters for ADAS.

2.2.1.2 Standardized tests
To identify influence parameters from standardized tests, the

present test and rating protocols for ADAS from five standardized
tests were reviewed. These five standardized tests are Euro NCAP
(new car assessment program), U.S. NCAP, IIHS (Insurance
Institute for Highway Safety), China NCAP, and JNCAP and
cover four main automobile markets. The varied parameters
between designed test conditions in a test scenario were
identified as influence parameters and graded as important. For

TABLE 1 Coverage of the knowledge of the 25 surveyed experts in different study fields.

Synonym

$AD ADAS OR (driver AND (assistant systems OR assistance)) OR ((automated OR autonomous OR intelligent OR unmanned) AND (vehicle OR
driving OR car)) OR self-driving

$IP (influence OR impact) AND (parameter OR factor)

$SG Scenario AND (generation OR search OR definition OR creation)

$VV Verification and validation OR (safety performance AND (test OR assessment OR evaluation))

$ODD Operational design domain

TABLE 2 Coverage of the knowledge of the 25 surveyed experts in different
study fields.

Study field %

Car safety performance assessment 32

Accident analysis and accident reconstruction 44

Field operational test of ADAS or autonomous driving 12

Simulation of ADAS or autonomous driving 48

Research & development of ADAS or autonomous driving 48

Validation and verification of ADAS 4

Risk assessment (all vehicle types) 4

Safety and security 4
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example, according to Assessment Protocol–Vulnerable Road User
Protection by Euro NCAP (2019), day or night, the light condition,
speed of the eGO vehicle, size of the pedestrian, obstructed view, etc.,
are varied during the test. These factors were identified as influence
parameters and rated as important.

2.2.1.3 Accident analysis
The IGLAD codebook (IGLAD, 2018) is a data scheme designed

for a harmonized description of the accidents and is used to
document in-depth information on accident cases provided by
partners from nine countries in the database. In this codebook,
81 contributing factors, which have the main (most critical)
influence on the triggering of the accident, were documented as
the “main contributing factor” (IGLAD, 2018). Factors that are
associated with the influence parameters previously collected from
the literature and standardized tests are identified; for example,
speeding is associated with the longitudinal speed of the eGO
vehicle. The remaining factors were checked by the author if they
are assumed to have a potential influence on the safety effectiveness
of ADAS. These factors are eliminated as they are only relevant for
human drivers, such as “alcohol” and “overtaking on the wrong side
(undertaking)”.

2.2.1.4 Autonomous vehicle disengagement and accident
reports

California’s Autonomous Vehicle Tester Program has allowed
manufacturers to test their autonomous driving systems on public
roads since 2014. Manufacturers testing vehicles in this program are
required to report disengagement of the autonomous mode during
testing (either because of technology failure or situations requiring
the test driver/operator to take manual control of the vehicle to
operate safely) and any collision that resulted in property damage
and bodily injury within 10 days of the incident (California
Department of Motor Vehicles, 2022). In addition, the causes of
these disengagements and accidents are indicated. Favarò et al.
(2017), Favarò et al. (2018), and Boggs et al. (2020) have studied
these reports in detail and summarized the causes of the
disengagement and the collision. Autonomous driving features,
which correspond to SAE driving automation levels 3–5 (SAE
On-Road Automated Vehicle Standards Committee, 2014), can
be seen as an extension of ADAS features, which correspond to
SAE driving automation levels 0–2. Therefore, these causes of
disengagement and collision are also highly relevant to ADAS.
From these research studies, the causes of disengagement and
collision related to the external environment (including other
road users, traffic infrastructure, and weather) were identified as
influence parameters. The corresponding qualitative assessments
include the cause of disengagement and cause of accidents,
respectively. The other causes related to human factors (driver)
and system failure were excluded.

2.2.2 Second phase: Identifying the importance of
the influence parameters

In an online survey (created with Google Form (Google, 2021)),
25 experts evaluated the importance of the influence parameters
collected from four sources in the first phase and their potential
influence on safety effectiveness of ADAS. Invitations will be
extended to experts through the networks of EVU (European
Association for Accident Research and Analysis), P.E.A.R.S
consortium (Wimmer et al., 2019), Virtual Vehicle Research
Center, TU Graz, and TU Darmstadt. The invited experts will be
required to have a minimum of 3 years of experience in the
corresponding research discipline, as outlined in Table 2. The
qualitative assessments include “Important,” “Might be

FIGURE 1
Flow diagrams of application of clustering analysis.

FIGURE 2
Comparison between K-means (distance-based) and DBSCAN
(density-based). Reproduced from Comparing different clustering
algorithms on toy datasets (2022).
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important,” “Not important,” and “Not applicable (in the case of
missing knowledge of this parameter).” Additionally, the list of
influence parameters was expanded by experts based on their
experience. Table 2 shows the percentage of 25 participating
experts who have research experience in the given study fields.
The information was provided by the survey participants in a
multiple-choice question. The choice includes the first five study
fields listed in Table 2. The last three fields with only 4% coverage
(corresponding to one expert) were added by experts. Almost half of
the experts have experience in the study fields “Simulation” and
“Research & Development” of ADAS or automated driving, which
are relevant to the research topic of this paper.

2.3 Classification of influence parameters
using cluster analysis

To generally classify the collected influence parameters into
different importance levels by holistically considering the qualitative
assessment information collected from different sources, a type of
machine learning method called cluster analysis (Everitt, 2011) was
applied. The influence parameters added by the experts in the online
survey were excluded as they are not assessed by all experts. Cluster
analysis is a group of methods used to distinguish a set of objects into
several groups with similar characteristics (Everitt, 2011). It is an
unsupervised learning method that needs neither predefinitions of
the classes nor labeled training data for training the clustering
model. Thus, cluster analysis is suitable to classify the collected
influence parameters into different classes. The classification process
includes two stages (as shown in Figure 1): feature extraction
(quantization of collected qualitative assessment information) and
application of the clustering algorithms (including selection of
clustering algorithms, determination of weights and key
parameters, comparison of clustering results, and selection of the
optimal result for classification).

2.3.1 Feature extraction
The feature denotes a measurement of the importance of an

influence parameter based on qualitative assessment information
from a specific source and will be used as the predictors (Mathworks,
2021) in the cluster analysis. For each influence parameter, the
qualitative assessment information collected from each source will
be quantized as features corresponding to that source. To avoid
distortion caused by different ranges of values, the extracted features
are normalized (Lakshmanan, 2019). The extraction/quantization
method used for each source is described as follows:

• Published literature: For a given influence parameter, an
“important” or “limited important” assessment from the
literature is assigned 3 points and “mentioned” 1 point. To
rate the influence parameters as important or use them as
varied parameters for test scenario generation, significantly
higher justification efforts are required compared to
mentioning them as potentially important. Therefore, to
place more additional value on the “important” or “limited
important” assessments, 3 points were given. The points are
added and divided by the highest score of all parameters to be
normalized to [0.000, 1.000].

• Standardized tests: The frequency that the influence parameter
occurs in the five standardized tests will be extracted as the
feature, which ranges in [0.000, 1.000]. For example, if the size
of target objects will be varied in two tests (Euro NCAP and
IIHS) out of the five tests, then the value is 0.400.

• Accident analysis: The feature is valued as either 1 or 0, which
is a dummy variable (Eckstein et al., 1994), depending on if the
influence parameter is documented in the IGLAD codebook as
a main contributing factor.

• Autonomous vehicle disengagement and accident reports:
Two features were extracted representing the cause of
disengagement and the cause of accidents. Both features are
valued using dummy variables (1 or 0), depending on if the
influence parameter is the cause of the disengagement/
accident.

• Online surveys: “Important” evaluation is counted as 3 points,
“might be important” as 1 point, “Not applicable” as 0 points,
and “not important” as −3 points. To give more weight to a
clear evaluation (“important” and “not important”), which
requires more reasoning efforts, than to an ambiguous
evaluation (“might be important”), 3 points and −3 points
were counted for “important” and “not important,”
respectively. The points are added and divided by the
theoretical maximum total of points (75 points) to be
scaled down to [−1.000, 1.000] (a minimal value
of −1 occurs when all 25 experts evaluate the influence
parameter as “not important” [25 (the number of experts)
multiplied by −3 points and divided by 75)].

Features extracted from the published literature, standardized
tests, and online survey are given by a ratio scale, and a higher value
means more important. Features extracted from accident analysis
and autonomous vehicle disengagement and accident reports are
represented by dummy variables (1 or 0). A Boolean value of 1 (true)
represents more important, while 0 (false) represents less important.

TABLE 3 Evaluation and weight definition of features corresponding to different sources.

Literature Standardized test Accident
analysis

Cause of
disengagement

Cause of the
accident

Online
survey

Comprehensive No No No Yes Yes Yes

Highly relevant Yes Yes No Yes Yes Yes

Weight 2/3 2/3 1/3 1 1 1
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2.3.2 Application of cluster analysis
2.3.2.1 Used clustering algorithms

Considering both the assessment dimensions summarized by
Wegmann et al. (2021) and our use case, the following assessment
dimensions were considered to select appropriate clustering
algorithms:

• Type of the dataset: In our use case, a mixed data structure is
faced. The features corresponding to the source literature,
standardized test, and online survey are numerical data, while
those corresponding to source accident analysis and
disengagement and accident reports are categorical data
(dummy variables). The clustering algorithms applied
should be applicable for datasets with a mixed data
structure. According to our survey, the most common
clustering algorithms applicable to mixed data structures
are K-prototype (Huang, 1998) and algorithms based on
Gower’s distance (Gower, 1971).

• Shape of clusters: The goal is to classify influence parameters
into different importance levels, which, in principle, is a
distance-based clustering problem rather than a density-
based clustering problem. Figure 2 shows the biggest
difference between results achieved by applying a typical
distance-based algorithm—K-means (Hartigan and Wong,
1979) and a typical density-based algorithm DBSCAN
(density-based spatial clustering of applications with noise)
(Ester et al., 1996). Two different colors (blue and orange)
represent two clusters of objects separated by the clustering
algorithm. K-means separates the objects by regions in the
coordinate system, which means features of objects within the
same cluster are all relatively similar, while DBSCAN separates
the objects by shapes, which means that two objects with large
differences in features can still be grouped into one cluster.
Therefore, density-based clustering algorithms are not suitable
for our application.

• Sensibility to the scale of features: Advantages of the definition
of weights for features regarding their relevance and quality
are shown in Chowdhury (2021). The relevance to the
topic—safety effectiveness of ADAS and comprehensiveness
of sources used in 2.1—also varies. Thus, the weights should
also be dedicatedly defined for features corresponding to
different sources. The weight can be interpreted as feature
re-scaling factors (Chowdhury, 2021). The used algorithms
must be sensitive to the scale of features, which means a
distribution-based clustering method like the Gaussian mixed
model (Sarkar et al., 2020) is not appropriate.

• Implementation: The algorithms used in this study must be
implemented in existing Python packages. Specifically, the

Python package used must natively support the definition of
feature weights and the utilization of precomputed Gower’s
distance. If the package does not support these features, the
required extension efforts must be reasonable.

Based on the assessment, the following clustering algorithms are
determined for application.

• Ward’s hierarchical clustering (Murtagh and Legendre, 2014)
based on Gower’s distance (Gower, 1971)

• K-prototypes (Huang, 1998)

2.3.2.2 Weight definition
As specified in section 2.2.2.1, it is necessary to define weights

dedicatedly for different features. To determine the weights of
features, two criteria (comprehensiveness and relevance) are used
to evaluate the sources, from which features are extracted. The
evaluations and determined weights are summarized in Table 3.
Comprehensiveness assesses whether the sources cover all possible
aspects related to safety effectiveness of ADAS so that influence
parameters of certain aspects are not missed and qualitative
assessments obtained are not biased. The literature research was
carried out as extensively as possible. Nevertheless, completeness
cannot be guaranteed. As for standardized tests, limited by the
controllability of parameters like weather and light conditions, not
every influence parameter is reflected in a standardized test, which
leads to poor comprehensiveness. In accident analysis, main
contributing factors in the IGLAD codebook are mostly
summarized from accidents related to human-driven cars. Some
factors that have an impact on ADAS are not summarized. These
three sources are not comprehensive. The expert knowledge included
in the online survey covers a wide range of relevant study fields. The
influence parameter list evaluated by experts is a summarization of
information from multiple sources. Disengagement and accident
reports summarize the causes based on testing of autonomous
vehicles on public roads, in which vehicles are exposed to real-
world scenarios consisting of all possible influence parameters.
These sources are comprehensive. Relevance measures the
relevance of the information from the sources for the safety
effectiveness of ADAS. In other words, the subject of study must
be an ADAS or a subject that is functionally similar, such as an
autonomous vehicle. Accident analysis is more relevant to human
drivers than to ADAS, resulting in low relevance, while topics from
other sources are highly relevant to the ADAS safety effectiveness.
Features from sources (disengagement and accident reports, and
online survey) that are both comprehensive and highly relevant
were assigned the highest weight of 1. Features from sources (the
literature and standardized test) that are highly relevant but not
comprehensive were given the second highest weight of 2/3. The
weight of the feature from the source (accident analysis) that is neither
highly relevant nor comprehensive was defined as 1/3.

2.3.2.3 Key parameter definition—Number of clusters
Both methods selected in section 2.2.2.1 require defining a key

parameter at implementation—the number of clusters. This key
parameter determines the number of clusters to which the influence
parameters can be assigned. There were already three different
qualitative assessments in both the online survey and literature

TABLE 4 Average silhouette width when using different methods and the
number of clusters.

Average silhouette
width

Number of clusters

3 4 5 6

Method K-prototypes 0.642 0.42 0.443 0.502

Ward 0.677 0.673 0.666 0.507
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research; a cluster number less than 3 would not be able to classify
the parameters properly. In addition, a cluster number of more than
6 would make it difficult to give the clusters a proper importance
definition. The number of clusters was varied from 3 to 6, and the
optimal value was chosen based on the assessment method
introduced in Section 2.2.2.5.

2.3.2.4 Implementation process
The key steps to implementWard’s hierarchical clustering based

on Gower’s distance are as follows:

1) Calculate Gower’s distance using the Python package Gower
(Yan, 2019) based on extracted features with weights defined in
section 2.2.2.2.

2) Apply Ward’s hierarchical clustering in the Python package SciPy
(SciPy, 2022) using the precomputed Gower’s distance as the input.

The key steps to implement K-prototypes are as follows:

1) Extend original K-prototypes algorithms implemented in the
original Python package KModes (Nelis J de Vos, 2022) to
support the weight definition for features;

2) Apply the extended K-prototypes using the extracted features as
the input.

2.3.2.5 Assessment of the clustering quality
To determine the best classification from the results obtained by

combining different clustering methods and key parameter values,
objective and subjective evaluations are combined. Subjective
evaluation means that the results are examined by the authors to
exclude abnormal and controversial results. The average silhouette
width (ASW) was used to assess the quality of clustering objectively
(Rousseeuw, 1987). Wegmann et al. (2021) denoted that the ASW
works best for distance-based clustering. ASW ranges from −1 to 1.
According to Sander and Lubbe (2018), ASW in different ranges can
be interpreted as follows:

• [−1.000, 0.250]: No substantial structure was found.
• [0.251, 0.500]: A weak structure was found that could be
artificial.

• [0.501, 0.700]: A reasonable structure was found.
• [0.701, 1.000]: A strong structure was found.

3 Results

In this section, the clustering results of the identified influence
parameters were compared and examined to determine the best
classification of the influence parameters. Then, the list of influence
parameters including the identified influence parameters and the
importance level of the parameters according to the best
classification result is shown.

3.1 Result of clustering

As shown in Table 4, the best results (highest ASW) of both
clustering methods were achieved when the number of clusters is 3.
This suggests that it is reasonable to divide the influence parameters
into three clusters. The ASW values of both methods with a defined
cluster number of 3 (K-prototypes: 0.642, Ward: 0.677) also show
that a reasonable structure was found according to the
interpretations in section 2.2.2.5. The only difference between the
results lies in three influence parameters (listed in Table 5), which
are classified in the most important group by K-prototypes but in the
less important group byWard’s hierarchical clustering. According to
the features of the three parameters shown in Table 5, they are not
supposed to be less important since features corresponding to
standardized tests and online surveys are very high for all three
parameters. These three parameters are not covered in the AV
disengagement and accident reports. K-prototypes based on the
method presented by Huang (1998) can adjust the weight of the cost
associated with categorical features relative to the weight of the cost

TABLE 5 Influence parameters classified differently by K-prototype and Ward’s hierarchical clustering (K-prototype: most important; Ward: less important).

Influence parameter Literature Accident
analysis

Standardized
test

AV*
disengagement

AV*
accident

Online
survey

Longitudinal speed (eGO vehicle) 0.742 1 1.000 0 0 0.972

Initial position and alignment (eGO
vehicle)

0.097 0 1.000 0 0 0.893

Visual obstruction 0.323 1 0.600 0 0 0.893

*AV stands for autonomous vehicle

TABLE 6 Statistical comparison between clusters with different importance levels.

Literature Online survey Standardized test AV* disengagement AV* accident Accident analysis

Most important 0.367 0.865 0.875 62.5 62.5 37.5

Important 0.176 0.566 0.018 100.0 0.0 22.7

Less important 0.106 0.461 0.034 0.0 0.0 8.5

*AV stands for autonomous vehicle
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TABLE 7 Influence parameter list with categorization and classification.

Layer Class Influence parameter Sub-category

Layer 1—Road level Important Friction Surface

Road surface condition

Less important Curvature Road geometry

Change of the curvature

Longitudinal slope

Change of the slope

Topology (layout) Topology

Road width Road structure

Lane width

Number of lanes

Structural separation (downtown)

Local change of the friction coefficient Surface

Heavy shadow

Frequent changes in the appearance of a road

Not classified Intersection and the type of intersection

Merging lanes: junctions and crossings

Bank angle in a banked turn

Roadside (shoulder) and cross slope

Layer 2—Traffic infrastructure Important Lane line clarity Marking

Lane line integrity

Structured or unstructured roads

Traffic light Traffic sign

Less important General marking Marking

Lane line type

Lane line number

Lane line color

Speed limitation Traffic sign

Stop sign

Give way sign

Traffic sign visibility

Traffic sign position

Other traffic sign

Layer 4—Objects Most important Visual obstruction Stationary objects

Longitudinal speed eGO vehicle

Initial position and alignment

Relative longitudinal distance with respect to the eGO car Target moveable objects

Lateral offset with respect to the eGO car

Relative speed with respect to the eGO car

(Continued on following page)
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TABLE 7 (Continued) Influence parameter list with categorization and classification.

Layer Class Influence parameter Sub-category

Relative moving direction with respect to the eGO car

Acceleration

Important Obstacles on the road Stationary objects

Type Target moveable objects

Size

Type Other moveable objects

Size

Relative speed with respect to the eGO car

Relative longitudinal distance with respect to eGO car

Lateral offset with respect to the eGO car

Relative moving direction with respect to the eGO car

Acceleration

Less important Roadside objects Stationary objects

Size

Position

Type eGO vehicle

Lateral speed

Departure direction

Initial departure angle

Acceleration

Turning radius

Not classified Type of the stationary object Stationary objects

Obstacle shape

Is the object over-ridable or crushable?

Toys and sports equipment (segway, skateboard etc.) Moveable objects

Objects lost from other vehicles

Objects on the road transported by wind (bag etc.)

eGO/target yaw rate and the course angle

Did the object follow the rules or regular behavior?

Reflexion properties with respect to different sensors

Color of objects

Layer 5—Environment Important Rain Weather

Fog

Snow/ice

Visibility

Sun

Sand, salt, or dust in the air

Less important Cloudy Weather

(Continued on following page)
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associated with numerical features. The costs associated with
categorical features were lowered during clustering. This resulted
in the different clustering result of the three parameters listed in
Table 5. The clustering result obtained by applying K-prototypes
with a cluster number of three was accepted.

According to the result of clustering, the influence parameters
were divided into three different importance levels, namely, most
important, important, and less important. These importance levels
are relative concepts, and less important does not mean
unimportant. The means of numerical features extracted from
the literature, online survey, and the percentage of a value of 1
(true) of categorical features corresponding to autonomous vehicle
disengagement and accident reports and accident analysis are shown
in Table 6 for clusters with different importance levels. The
difference in means and percentages between clusters with
different importance levels proves the plausibility of the
classification.

3.2 Influence parameter list

In total, 94 influence parameters were collected and are listed
in Table 7. To be consistent with other researchers on the topic of
“scenario description,” the six-layer model presented in the
German research project PEGASUS (PEGASUS METHOD,
2019) was used. The influence parameters were assigned to
these layers (column “Layer” in Table 7) except for layer

3—temporal modification. Layer 3 describes only the temporal
change of influence parameters included in layers 1 and 2. The
column “Sub-cat” indicates a subcategory to which the parameter
belongs, to allow deeper categorization and definition that are
more precise. A total of 77 influence parameters were identified or
summarized from the published literature, IGLAD codebook, and
five standardized tests. In total, 17 parameters were supplemented
by experts through the online surveys and are tagged as “not
classified” in the column “Class.” The column “Class” implies the
importance of influence parameters for ADAS safety effectiveness
evaluation based on the clustering result accepted in section 3.1.
There are, in total, four different definitions in column “Class”:
“Most important,” “Important,” “Less important,” and “not
classified.” In total, 77 of the 94 influence parameters were
divided into the first three classes. In particular, eight
parameters in the “most important” class and 22 parameters in
the “important” class are of particular interest. The 17 parameters
in the “not classified” class should also be noted as they were
added by survey experts, indicating that they were kept in mind
by the experts. It should be noted that the importance definition
given for the influence parameters is a general definition where
different ADAS are treated as a whole. In particular use cases, the
characteristics of specific ADAS types (e.g., systems based on
different sensors and systems designed for different purposes,
etc.) and scenarios (e.g. highway scenarios, urban scenarios, etc.)
should be considered in combination with the general importance
definition.

TABLE 7 (Continued) Influence parameter list with categorization and classification.

Layer Class Influence parameter Sub-category

Temperature

Wind

Humidity

Streetlight Lighting

Position of the un and light

Brightness

Daytime

Light change

Site (urban, highway etc.) Site

Traffic flow density Traffic

Speed

Congestion

False-positive disturbance Other disturbance

Other radars

Infrared sources

Not classified Rain droplet size

Snow intensity

Layer 6—Digital information GPS signal (e.g., tunnel)
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4 Conclusion

4.1 Key findings

By combining information from different sources including the
published literature, accident analysis knowledge, standardized tests,
autonomous vehicle disengagement, and accident reports and expert
knowledge from online surveys, an extensive list of 94 influence
parameters has been collected and structured according to a six-
layer scenario description model defined by PEGASUS (PEGASUS
METHOD, 2019). In addition to the 17 influence parameters added
by experts through the online survey, 77 of the 94 influence
parameters were generally classified into three different levels of
importance (most important, important, and less important) using
K-prototype clustering based on weighted features extracted from
various sources mentioned previously. Among them, the eight most
important influence parameters (ego vehicle: longitudinal speed,
initial position, and alignment; target moveable objects: relative
longitudinal distance with respect to the eGO car, lateral offset
with respect to the eGO car, relative speed with respect to the eGO
car, relative moving direction with respect to the eGO car, and
acceleration; and stationary objects: visual obstruction) and
22 important influence parameters (listed in Table 7) are
especially worthy of attention. The list of influence parameters
allows researchers and system developers to select influence
parameters for the generation of scenarios in virtual scenario-
based testing from a comprehensive point of view.

4.2 Limitations and outlooks

There are three main directions to improve the result of this
paper.

• This paper focuses on ADAS features rather than autonomous
driving features as ADAS features have a significantly higher
market penetration than autonomous driving features.
Adequate information on ADAS features can be obtained
from all presented sources and will be analyzed
comprehensively, e.g., standardized tests are currently only
developed and performed for ADAS features. Autonomous
driving features are expected to play a bigger role in the future
of transportation. A similar methodology can be applied
specially to autonomous driving features, which are likely
to be more complex in terms of application scenarios,
available functionality, and system architecture.

• The ADAS features are constantly being improved and
expanded. The influence parameters should also be further
supplemented and updated to match the development trend of
ADAS for the completeness of the list of influence parameters.
It should also be considered and discussed whether driver
behavior should be included in the description of the scenarios
and whether driver-related parameters should be included in
the list of influencing parameters.

• In this paper, importance levels of influence parameters are
determined by analyzing information synthesized from
various sources in a general context. To obtain more
specific and validated definitions of the importance level,

the influence parameters can be examined for specific types
of ADAS in specific types of scenarios using simulation in
which the influence of the variation of influence parameters on
the safety effectiveness of ADAS can be quantitatively
observed and evaluated. It is important to note that the
effects of variations of influence parameters should be
accurately reflected in the used simulators.
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