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Urban freight distribution with
electric vehicles: comparing some
solution procedures

Antonio Polimeni*, Alessia Donato and Orlando M. Belcore

Department of Engineering, University of Messina, Messina, Italy

The Vehicle Routing Problem (VRP) is a well-known discrete optimization
problem that has an impact on theoretical and practical applications. In this
paper, a freight distribution model that includes a charging system located at the
depot, making it feasible for real world-implementation, is proposed. Two
different solution methods are proposed and compared: a genetic algorithm
(GA) and a population-based simulated annealing (PBSA) with the number of
moves increasing during the iterations. Among the variety of algorithm used to
solve the VRP, population-based search methods are the most useful, due to the
ability to update the memory at each iteration. To demonstrate the practical
aspects of the proposed solution a case study is solved using travel time on a real
network to evaluate the potentiality for a real-world application.
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1 Introduction

In order to counteract the effect of the global warming, the United Nations has
established the Sustainable Development Goals (SDGs). Specifically, a systemic effort
has been addressed to the greenhouse gas (GHG) emissions, whose main goals consists
in reducing the emission level to a zero net by the 2050.

The transport sector is one of the heavy demands for energy consumption; it requires a
large amount of natural resources that traditionally come from non-renewable sources. For
such reason, traditional vehicles (e.g., cars, and commercial vehicles) largely contribute to
greenhouse emissions and air pollution, thus affecting both the environment and the health.
In an attempt to reduce these impacts, several scholars and public administration
encouraged new polices and solutions to favor the modal shift for both commuters
(Comi and Polimeni, 2024; Nigro et al.,, 2024) and freight (Comi et al., 2024; Comi and
Russo, 2022; Russo and Comi, 2023).

The introduction for digitalization and information communication technology (ICT)
enabled the possibility to integrate the classical delivery problems thorough a new dynamic
paradigm (Comi and Russo, 2022) and to introduce novel solutions towards a sustainable
urban logistic (Knapskog and Browne, 2022). Of course the problem requires adequate
models and methods (Cattaruzza et al.,, 2017; Crainic et al., 2023). Among the wide range of
opportunity offered by innovation technology, the electric autonomous delivery robots
represent a promising alternative in last-mile delivery (Arntz et al., 2023; Khoufi et al., 2019;
Thibbotuwawa et al., 2020). Also, cooperative solutions, such as the integration between
traditional vehicles and drones, have been evaluated in order to perform last-mile delivery
to customers (Kyriakakis et al., 2023; Marinelli et al., 2018; Ren et al.,, 2023; Sacramento

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/ffutr.2024.1491799/full
https://www.frontiersin.org/articles/10.3389/ffutr.2024.1491799/full
https://www.frontiersin.org/articles/10.3389/ffutr.2024.1491799/full
https://crossmark.crossref.org/dialog/?doi=10.3389/ffutr.2024.1491799&domain=pdf&date_stamp=2024-10-18
mailto:antonio.polimeni1@unime.it
mailto:antonio.polimeni1@unime.it
https://doi.org/10.3389/ffutr.2024.1491799
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://doi.org/10.3389/ffutr.2024.1491799

Polimeni et al.

etal., 2019; Xiao et al., 2024). Although there are notable advantages
in terms of efficiency and environmental sustainability compared to
the performance offered by fossil fuel fleets, coordination between
the two vectors still represents an open problem (Macrina
et al., 2020).

The studies that dealt with the transition from fossil fuel-
powered vehicles to electric vehicles (EVs) highlighted, first, the
possibility of significantly reducing the current dependence on non-
renewable energy sources (Jones et al., 2021; Napoli et al., 2021). As a
matter of fact, in general, the EV's are responsible for the emission of
fewer greenhouse gases (compared to traditional vehicles), especially
in those cases where charging energy comes from renewable sources
(such as solar or wind power).

In this paper, according to environmental sustainability
issues, a freight distribution model based on the use of EVs,
with charging system located at the depot, is proposed. The
delivery plan represents the most critical phase in delivery
operations; thus, customer visit scheduling is at the core of
planning activities to minimize travel times, travel costs, and
environmental impacts of freight delivery. This problem is well-
known in literature as vehicle routing problem (VRP). Since its
first formulation (truck dispatching problem, Dantzig and
Ramser, 1959) this topic has been enriched with various
formulations and solution procedures. In terms of
formulation, a big efforts has been underpinned by focusing
on the objective functions and problem constraints (e.g., Toth
and Vigo, 2002). Concerning the objective function, the
mathematical expression contains the components to be
optimized (the travel time, the cost, and so on) and the
decision variable(s). Regarding the constraints, alongside the
classical ones (e.g., on variables, on size/capacity of the
vehicle, on the route length), it is also relevant to mention
other more specific formulations such as the VRP with time
window (VRPTW, e.g., Bréysy et al., 2004) or the vehicle routing
problem with delivery and backhaul options (VRPDB, e.g., Ko¢
and Laporte, 2018). Concerning the solution procedures, as first,
it is possible to share between the exacts and heuristics ones. An
exact procedure provides an optimal solution of the problem, but
often with a high computational effort and an unacceptable
computation time, therefore the possibility to recur to an
exact procedure is deeply connected the problem dimensions.
However, over the years, thanks to the new powerful computer
computing capacity, the analysts have extended the exact
procedures to larger case studies. Likewise, the computational
efforts pushed the development for the heuristic procedures,
ranging from constructive algorithms (e.g., Clark and Wright
algorithm) to more sophisticated ones (e.g., tabu search,
simulated annealing, swarm optimization, and genetic
algorithm). In this sense, formalizing a problem requires a
careful analysis between solution accuracy and computational
times (processing time) needed to obtain it. Within the set of
heuristic procedures, a particular class is constituted by the
metaheuristics, approximated procedures designed both for
discrete and continuous variables (Dreo et al., 2006). Among

these metaheuristics:

o Tabu search (Glover and Laguna, 1997) is an adaptive
procedure; it is based on local search procedures that
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implement principles to avoid falling into local

optimal solutions;

Simulated annealing is a procedure based on the analogy with
the annealing of a material, it can be seen as a sequence of
Metropolis algorithms (van Laarhoven and Aarts, 1987;
Metropolis et al., 1953) in correspondence of different
values of a control parameter; its evolution is the quantum
annealing algorithm (Syrichas and Crispin, 2017);

« Ant colony is a bio-inspired algorithm based on the analogy
with the movements of ants in food search (Dorigo and
Gambardella, 1997)
resolve the VRP;
Genetic Algorithm (Goldberg, 1989) a bio-inspired algorithm

that was successfully applied to

based on the processes that drive the evolution of
biological forms.

The model presented in this work is part of a more general
framework, conceived as a two-level service: the first level is the
urban freight delivery as usual; the second level consists of a service
procedure to provide installation services or collect packaging.
Solving this joint problem brings benefits both to the company
(which can thus separate the delivery of the installation, thus being
able to better employ the operators) and to the consumers (who, for
example, no longer have the problem of getting rid of bulky
packaging). In both cases, the problem can be formalized as a
vehicle routing problem. In particular, in this work, a VRP with
soft time windows (VRPSTW, Balakrishnan, 1993; Taillard et al.,
1997) is formulated. Thus, each customer is associated with a time
window, and the formulation allows a penalty into the vehicle cost
function when the time window is not violated. In such a way, taking
into account the delivery window, the formulation is not just a one-
size-fits-all solution, and it makes the solving solution adaptable to
different delivery scenarios, making it applicable in the field of urban
freight delivery. Particularly, in the calculation of the objective
function, the travel time, the service time (e.g., the time to carry
out the parking, to make the delivery and/or provide the
installation), and the penalty time (which is greater than zero if
the freight vehicle arrives at the user before/after the time window
opens/closes) are considered. This study also considers a constraint
linked to battery capacity. In fact, the vehicles that make deliveries
are fully electric, and it is assumed that each route can be operated
without recharging the vehicle and that each vehicle starts from the
depot with a full battery charge.

Therefore, this work offers some insights into the use of GA and
a particular type/class of population-based SA (named PBSA) to
solve the problem. A version of GA and PBSA, where a certain
percentage of the initial population is generated by the Clarke and
Wright (CW) algorithm, is proposed, and different combinations of
algorithms parameters are tested. So, this paper is focused on testing
these procedures, and provides a case study/toy model by
considering only the first level of the framework. The twofold
objective to test a procedure that allows finding a good solution
(even if it may not be the optimal one) and that allows for
thus
performance and contributing to sustainable development.

minimizing energy consumption, improving  vehicle
The paper is structured as follows: Section 2 reports a concise
literature review; Section 3 contains the formulation of the problem,

while Section 4 relies on algorithms; Section 5 reports the results of a
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case study with the associated discussion; and, finally, Section 6
draws conclusions.

2 Literature review

In the last 60 years, many variants of the VRP have been formulated
and different procedures have been designed to solve them (Laporte,
2009). The success of this research topic also depends on the fact that it
deals with the real and ever-present problem of urban goods
distribution. Over the years, variants have been created not only to
consider specific constraints (e.g., time windows) of the problem, but
also to integrate new technologies (electric vehicles, drones).

In the context of the use of electric vehicles, in literature are
provided formulations ad approaches to consider the peculiarity of
the problem (Froger et al., 2019). Schneider et al. (2014) introduced
the electric vehicle routing problem (EVRP) with time windows
developing a heuristic approach to solve it. This problem can be
extended by considering a fleet of heterogeneous electric vehicles,
varying the capacity and the range (Hiermann et al., 2016). In more
detailed models, energy consumption is a function of vehicle load
(Lin et al., 2016; Goeke and Schneider, 2015). An aspect of the EVRP
is the limited range of the vehicles respect to the traditional fueled
vehicles. This implies that the vehicle may be charged during service,
and the recharge can be full or partial (Desaulniers et al., 2016;
Erdeli¢ et al,, 2019; Felipe et al., 2014; Keskin and Catay, 2016).
Other solutions explored in literature, alternative to recharge, are the
battery swapping (Qian et al., 2024; Ren et al., 2023; Verma, 2018)
and the use of the range as a constraint (Napoli et al., 2021). The
current literature on EVRP and its variants is explored in depth by
Kucukoglu et al. (2021).

In the context of the city logistics, the problem variants are
formulated to consider specific aspects of the urban freight
distribution. As an example, more cities impose restriction in
accessing some areas (e.g., historical centers), in this case a
suitable formulation of the problem is the VRP with Access Time
Windows (Grosso et al., 2018; Zhou et al., 2024). Another problem
formulation arise from the use of one (or more) urban distribution
center(s) (Browne et al., 2005). Some authors formulated this
problem considering two aspects: the location of the distribution
center (Munoz Villamizar et al., 2014) and the optimization of the
routes (Cepolina and Farina, 2016; Musolino et al., 2019). In general,
in this case, the vehicles are often eco-friendly vehicles with
restrictive constraints on capacity and range (Diaz-Ramirez et al.,
2023). A further aspect to consider in urban areas is that the travel
time is not constant during the day, in this case the formulation of
the problem takes into consideration this aspect (Ando and
Taniguchi, 2006; Musolino et al, 2018). A recent challenge in
VRP formulation is the use of unmanned vehicles in performing
the service. Such vehicles can be ground robot (Chen et al., 2021;
Chirala et al., 2023) or aerial drones (Huang et al., 2022; Kyriakakis
et al, 2022). The use of unmanned vehicles imposes further
constraints respect to the classical VRP. As an example, aerial
drones can deliver the parcels up to a certain weight, there are
limits due to the technology (e.g., the weight of the batteries), their
(often limited) range depends on the load (this also applies to
ground robots). Besides, aerial drones can be affected by weather,
ground robots by congestion (Khoufi et al,, 2019).
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The solution procedures used to solve the VRP (and its variants)
range from exact to heuristic algorithms. The following review skips
the topic of exact algorithms and focuses only on heuristics and
metaheuristics (without the presumption of being exhaustive).

Concerning constructive procedures, a first heuristic that can be
cited is the Clarke and Wright (CW) algorithm, a procedure
designed to produce a solution that maximizes a variable called
saving: The aim is to put customers in the solution to maximize the
‘saved’ cost due to the aggregation of customers. Proposed by Clarke
and Wright (1964), this algorithm was improved by introducing a
parametric approach (Gaskell, 1967; Yellow, 1970) and is often used
in combination with other procedures. As an example, Caccetta et al.
(2013) hybridized the algorithm with a domain reduction procedure,
demonstrating that the hybrid procedure significantly improves the
results obtained. Robbins and Turner (1979) combined the CW
algorithm with a 2-opt procedure: the objective is to update the
solution provided by CW (the CW procedure individuates the
solution rigidly, without further updates). Other examples of
constructive heuristics are the sweep algorithm (Gillett and
Miller, 1974) and the petal algorithm (Foster and Ryan, 1976;
Renaud et al., 1996).

Regarding the improvement proposed in the domain of heuristic
procedures, local search (intended as an approach that can explore
the search space starting from an initial solution and trying to
improve it) and its variations are often used to solve the VRP (e.g.,
Erdogan, 2017). Mladenovi¢ and Hansen (1997) introduced the
concept of variable local search, in this case the idea is to change the
neighborhood during the search operations. Toth and Tramontani
(2008) proposed a local search algorithm in which the neighborhood
of the solution is explored using an integer linear programming
procedure. Branddo (2020) defined an iterated local search
procedure capable of remembering previous moves, memory use
allows for more efficient exploration of the solution space and can
prevent falling into local optima. Ropke and Pisinger (2006) and
(2019)
neighborhood search heuristic that uses some methods for

Pisinger and Ropke proposed an adaptive large
removing/inserting customers in the solution until a stopping
criterion is met. This procedure can be used to solve different
variants of the VRP (Pisinger and Ropke, 2007).

The Tabu Search (TS) (Glover, 1989) is an iterative algorithm
with memory that allows us to improve an initial solution by
applying a certain number of moves that cause local changes in
the current solution (Cordeau and Laporte, 2005; Brandao, 2009).
Cordeau et al. (1997) and Cordeau et al. (2001) proposed a TS
algorithm capable of solving the VRP and some variants, the aim
being to have a simple procedure that reduces the number of
parameters to consider. Jia et al. (2013) proposed an improved
form of TS by adding some local search strategies and a mutation
operator. A further possible improvement of the TS consisted in the
introduction of a parallel approach, which allows one to
simultaneously consider more than one neighborhood of the
solution (Badeau et al., 1997; Caricato et al., 2003; Cordeau and
Maischberger, 2012; Garcia et al., 1994).

Ant Colony Optimization (ACO) simulates the movements of a
set of artificial ants; each ant is independent from the others and
exchanges information using a trail of pheromones. The generic ant
chooses which node to reach next, depending on the amount of

pheromones. The solution is thus built incrementally, each time
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adding an element to a partial solution. Donati et al. (2008) proposed
a parallel approach in which two colonies of ants operate in parallel,
optimizing two different aspects of the problem. Yu et al. (2009)
introduced a mutation operator in construction to move users from
one solution to another.

Simulated Annealing (SA) was originally proposed by van
Laarhoven and Aarts (1987), the aim is to minimize a function
that makes changes to an initial solution (the results of the
algorithm are based on a set of operators used to modify the
solutions). A new solution is accepted as the current solution with
a certain probability (derived from the Boltzmann distribution):
this implies that it is possible to choose a worse solution than the
best one found (this mechanism allows us to better explore the
space of solutions). Some authors (e.g., Braysy et al., 2008) used a
deterministic approach, with the aim of speeding up the procedure
by eliminating randomity due to the probabilistic choice. Osman
(1993) proposed a SA procedure in which the generation of new
solutions is based on the swap/shift of users from one route to
another. Yu et al. (2009) proposed an SA with a random choice of
operators used in the search for solutions, a better solution than the
current is automatically chosen as the current solution, and a worse
one is chosen with a probability obtained from a Boltzmann
distribution (that is, the solution is chosen if the probability is
higher than a threshold value). However, simulated annealing (SA)
is a solo-search algorithm, and the results found by SA depend on
the selection of the starting point and the decisions to move to the
new solution or not SA makes. To overcome the drawbacks of
being trapped in local minima and taking a long computational
time to find a reasonable solution, Askarzadeh et al. (2016)
proposed a population-based simulated annealing algorithm
(PBSA), in which each solution memorizes its best experience
and stores it in the population memory. Additionally, Shaabani &
Kamalabadi (2016) used a PBSA algorithm compared to genetic
algorithms and simulated annealing, which shows the superiority
of the PBSA algorithm.

The Genetic Algorithm (GA) simulates, in a simplified manner,
the evolution of life forms employing three main operators:
selection, crossover, and mutation (Goldberg, 1989). Thus, the
basis of the GA is the idea of evolving a population of solutions
until a stopping test (for example, the number of iterations) has been
satisfied. This algorithm, given its flexibility, is suitable for solving
the VRP and different implementations (in terms of operators) have
been proposed so far. As an example, Baker and Ayechew (2003)
proposed a basic genetic approach demonstrating that GA is
competitive (in terms of computation time and solution quality)
with other solution procedures. Alba and Dorronsoro (2006)
developed a cellular GA (a form of genetic algorithm in which
the solutions are placed on a grid and each of them can interact only
with those in his neighborhood) to solve the VRP. Yusuf et al. (2014)
tested the use of a rank-based operator for selection and a different
crossover operator to solve VRP. Nazif and Lee (2012) implemented
an improved crossover operator capable of generating two children
at the same time. Berger and Barkaoui (2003) proposed a hybrid
form of GA to solve the VRP, the basic idea is to develop two
populations simultaneously (swap of solutions from one population
to another is possible) to minimize the total distance traveled. Ho
etal. (Ho et al., 2008) also proposed a hybrid form of the algorithm,
combining GA with some heuristics to improve convergence. Vidal
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et al. (2012) hybridized GA with the introduction of the education
operator: it is a form of mutation that uses local search to improve
the solution. Ochelska-Mierzejewska et al. (2021) performed
experiments to determine the best combination of genetic
operators to solve the VRP. The recent lines of research tend to
improve the solutions and find better individuals combining the
genetic algorithms with deterministic or heuristic methods or
combining the work of the genetic algorithm with other
metaheuristics, such as Deterministic Annealing or Tabu Search.
For example, Xu et al. (2011) proposed an improved GA to solve the
classical VRP, incorporating SA into GA. Zhu et al. (2021) proposed
an improved neighbor routing initialization method for the adaptive
elitist genetic algorithm. Mrad et al. (2021), instead, proposed a two-
step procedure that uses GA to find the assignment of companies to
depots and CW algorithm to determine the routes from each depot
to customers.

3 Model

Let G (N, A) be a directed graph, where N =0, 1,. . .n, is the set of
vertexand A = {(i,j): i #j; i, j € N} the set of edges (an edge represents
the path connecting two vertex). At each edge (i, j), there is an
associated travel time ;. The set N contains the customers and the
depot d (labeled vertex 0). At
associated (Figure 1):

each vertex there are

e a service time (s;),

« a quantity to deliver (g;),
o a time window ([a;b;]),
« a penalty time (p,).

A fleet V of vehicles, with homogeneous capacity Q" is involved
in the process. The problem consists of designing a set of vehicle
routes where each costumer is reached only once by a single vehicle.
A soft constrained time windows are assumed, and a vehicle pays a
penalty p; for late/early arrival at vertex i.

The formulation is provided in Equation 1, where it is defined as
a minimization problem, the objective being to minimize the sum of
the time components introduced above:

FoY 3 S( e n) % 0

ieN jeN veV
subject to:
Y D=1 VieNgij#d )
veV jeN
Y Y=Vl j#d 3)
veV jeN
2 2 XK=Vl j#d @
veV jeN
Zqu~xfj§QV YveVii#j (5)
ieN jeN
ZZhij-x}’stv VveViitj (6)
ieN jeN
Y Yt +si+p!) x) <D WveVii#j 7)

ieN jeN
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FIGURE 1
A simplified representation of the graph.
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where:

e Nis a set including the customers and the depot;

o Vis the set of vehicles;

o Vs the travel time from customer i to customer j;

o s"; is the service time at customer i;

o p'; is the penalty time at customer i;

* x;j, is the problem variable, equal to 1 if the vehicles v moves
from i to j, 0 otherwise;

e g, is the demand at customer i;

o Q" is the vehicle capacity;

o h,-j is the travel distance from customer i to customer j;

o R"is the range of the vehicle v;

e D" is a threshold value for the time of a solution.

Equation (1) defines the objective function, whose purpose is to
minimize the cost of all routes. Constraint Equation 2 requires that a user
must be reached by only one vehicle. Constraint Equation 3 imposes that
all vehicles start from the depot, while constraint Equation 4 imposes that
all vehicles return to the depot. Constraint Equation 5 is on the vehicle
capacity and indicates the total quantity delivered is less than the vehicle
capacity. Constraint Equation 6 indicates that the maximum length of a
route is less than the vehicle range, while constraint Equation 7 indicated
the maximum duration of a route. Constraint Equation 8 is on the
departure time from the depot and indicates that all vehicles can start the
service after a certain time. Constraint Equation 9 refers the penalty
associated to a vehicle for an early or late by arrival to the user location.
Finally, constraint Equation 10 defines the domain of decision variables.

4 Methodology

The optimization procedure uses two different algorithms: a
genetic algorithm (GA) and a population-based simulated annealing
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(PBSA), both methods based on the creation of an adaptive
population. This characteristic is essential to maintain the best
solutions of the previous population along with the subsequent
generations. In general, a SA algorithm, if not based on population,
is not useful to the scope of the procedure because of it does not
update the memory with the best experiences and simply returns the
best fitness value (of different solutions) based on the randomly
selected initial solution.

The route first cluster second (Beasley, 1983) principle is adopted to
determine the vehicle route: as starting solution the classical is adopted by
relaxing all the constraints of the problem. This solution can be generated
randomly or optimized with standard (heuristic or metaheuristic)
procedures such as Clark and Wright savings or tabu search.

The various routes are then obtained by breaking the entire
solution into “unique” routes to satisfy the constraint conditions for
each of them. Furtherly, the solution must necessarily be decoded
after the operators who create the new populations work because of
the modifications on the positions of consumers to find better
solutions; the values of capacity, distance, and time also change
and, therefore, must be recreated groups of consumers that respect
the constraints.

In addition, in order to check the quality of the obtained
solutions, a tool from literature, based on ALNS algorithm, is
used to solve the problem (Erdogan, 2017). To apply this tool, it
was necessary to relax one of the problem constraints. Two test
applications will be presented in the following: first, comparing the
results from the ALNS, GA and PBSA (this also allowed to calibrate
the parameters of the algorithms) and a second assuming that
constraints have been restored (in this case it is not possible to
compare the results with ALNS).

4.1 Algorithms

In the following, the procedures implemented to solve the
problem are presented in their general structure.

4.1.1 Genetic algorithm

The GAs search for the minimum of an objective function
(Equation 1), thus representing the total delivery time. The
algorithm starts with a population of solutions and then, through
the selection, mutation, and crossover operators, improves the
solutions while keeping the memory of the analyzed search space.
The algorithm runs until a stopping test (for example, the maximum
number of iterations) has been satisfied. Figure 2 shows the main steps
and the workflow of the algorithm. After initializing the algorithm with
the definition of the parameters and stopping criteria, the second step
consist in generating the population (each solution is coded), in (Step 3)
the population is decoded with respect to the constraints, and the fitness
value is calculated (Step 4) for each solution. Selection (Step 5) allows us
to individuate the elements in the population to be subjected to
crossover and mutation. Specifically, the algorithm:

« selects the parents in relation on their fitness value,

o produces children from the parents,

« replaces the current population with the children to create the
next-generation.
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Step 1. Define the GA parameters:

nPop (population size),

maxgen, maxstall (stopping criteria),

selection function,

Ppe (crossover rate),

pm (mutation rate).

Step 2. Create an initial population of size nPop.

Step 3. Decode every member of the population, splitting the initial solution into routes respecting
the constraints.

Step 4. Find the fitness function value of every member of the population as a transformation
of the total travelled time.

Step 5. Select solution from population and perform crossover and mutation depending on their
probabilities.

Step 6. If the stopping criterion (stall generation limit or the maximum generation number) is
met, then the algorithm stops and returns the best solution (with the best fitness function value),

else return to step 2 and create a new generation.

FIGURE 2
Steps of genetic algorithms.

Finally (Step 6) a test on stall generation limit (a number of
generations during which there was no improvement in the objective
function) and as a control criterium maximum generation number is
performed to stop (or not) the procedure.

4.1.2 Population-based simulated annealing

The PBSA also searches for the minimum of the fitness
function. The algorithm starts with an initial population of
solutions and then, through the swap, reversion, and insertion
operators, modify the solutions by updating the memory of the
analyzed search space. For each member of the population, a certain
number of moves (neighbors) are tested, where these moves usually
result in minimal alterations of the last state to progressively
PBSA
maintaining (through the process) also the worst solutions, with

improve the solution through iterations. allows
probabilities p depending on the temperature T in the current
iteration and on the rate AE of the difference between the fitness
value of eligible members of the new population with respect to
each initial population member (p = exp (-AE/T)). This mechanism
allows us to better explore the space of solutions. The temperature
decreases during the process according to a temperature reduction
rate a. The selection method is based on the roulette wheel; in it, the
area of the wheel corresponding to a solution is proportional to the
probability p. Figure 3 shows the steps followed by the algorithm
and the related workflow.

At Step 1 the parameters of the algorithm are defined, while at
Step 2 the population is generated. Each solution in population (Step
3) is decoded and the related fitness value is calculated. In Step 4 the
memory is set with the best solution. In Step 5 new solution
candidates are generated by means of swap, reversion, and
inversion operators (see Section 4.2.2 for details). Each new
solution is decoded, the fitness is calculated (Step 6), the eligible
members are compared with the other members of the population
(Step 7) and some new solutions are accepted (Step 8). The best
solution is updated (Step 9), and the temperature decreases (Step
10). Finally, (Step 11), a test is performed to stop the procedure
based on the maximum number of iterations.
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4.2 Algorithm operators

Solving the VRP by GA or SA does not represent a novelty itself;
the novelty consists of how the algorithm operators are used. As
stated in the literature review (see also Section 2), previous works
differ in how the operators are defined and employed: there are
always the operators of selection, crossover, and mutation (in GA)
and of insertion, reversion, and swap (in SA), but it is different how
such operators are conceived and applied. As an example, the
selection could be a roulette wheel or a universal stochastic
sampling; the crossover could be a random change of elements
or a procedure aimed at preserving segments in the solution,
whereas the mutation could be a simple swap of two customers
or an optimal swap, and so on. In the following subsections, the
operators applied in the present paper are reported.

4.2.1 Selection, crossover and mutation in GA

The method of selection of the population for the next-
generation is a stochastic uniform sampling, and each parent
corresponds to a stretch of a line of length proportional to its
scaled value. The scaled value of each solution is based on its rank,
i.e, on the position of the fitness value of the solution in the
ascendingly sorted fitness values. A solution with rank r has a
scaled value equal to 1/4/r. So, the scaled value of the best
solution (that with the lowest fitness value) is 1, the scaled value
of the next most fit solution is 1/~/2, and so on. The algorithm moves
in equal-sized steps (starting from an offset, that is, a random
number smaller than the step size) and selects a parent based on
the section it stops on.

The crossover operator uses two parents to obtain two children
(Figure 4). The order crossover operator is tested; a stretch of the
first parent is copied to the child, and the remaining values are
placed in the child according to the order by which they appear in
the second parent (Puljic and Manger, 2013).

The mutation function simply mutually exchanges the two
customers of the two randomly selected points ¢; and ¢,
(see Figure 5).
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Step 1. Define the parameters

nPop (population size),

nMove (number of neighbors for each member of the population),

it ey (Maximum number of iterations),

T, (initial temperature),

o (temperature reduction rate),

PswapPrevers Dinser (probabilities of the swap, reversion and insertion operators).

Step 2. Create an initial population of size nPop.

Step 3. Decode every member of the population, splitting the initial solution into routes respecting the
constraints and find the fitness function value of every member of the population as a transformation of
the total travelled time.

Step 4. Set the memory with the best solution.

Step 5. Generate nMove new candidates near-by each solution. Create neighbors with swap, reversion and
inversion operators and roulette wheel selection method.

Step 6. Decode every solution and evaluate the fitness values.

Step 7. Compare eligible members of new population with each member of the initial population.

Step 8. Accept the new solutions with a best fitness value and accept the worst solutions with probability p
= exp(-AE/T).

Step 9. Update the memory with thebest solution ever found.

Step 10. Decrease the temperature by the factor a.

Step 11. If the maximum number of iterations is reached, the algorithm stops and returns the best solution,
otherwise the algorithm returns to step 5 and goes to the next generation.

FIGURE 3
Steps of PBSA procedure.

Parent 1
Parent 2 5@ 2 10@CG)
0 % = 3 t 3 i
) 4 ¥ ¥ ¥ v VY
Child 1 2O@ @D
FIGURE 4

Crossover operator.

4.2.2 Swap, reversion, insertion operators in PBSA

The swap operator works like the mutation in genetic
algorithms (Figure 5).

The reversion operator creates the child by randomly selecting 2 cut
points ¢; and ¢, within the customers constituting the parent and
reversing the order of customers between these two points (Figure 6).

The insertion operator (Figure 7), instead, moves the consumer
of the point ¢; and inserts it before the point ¢, (¢; and ¢,
randomly selected).

5 Application
5.1 Test problem

The case study consists of a set of 75 customers randomly
located in Rome (Italy), that need to be served by freight vehicles
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departing from the depot and returning to the depot (Figure 8). Each
consumer i is associated with a quantity g; of goods and a delivery
time window [a; b;]. The cost matrix contains the average travel time
between all pairs (user-depot). Considering the symbology
introduced in Section 3, this matrix has a number of elements
equal to [N |x [N |.

A small capable of, easily, moving within the city was considered
to perform the delivery operations during the test. Besides, it is
assumed that the vehicle characteristics are as follows:

o The vehicle range is of 120 km,
o The maximum delivery time is of 420 min,
 The vehicle load capacity is 150 kg.

Both methods search the best solution starting from the initial

population. Thus, the first step is the generation of an initial population:
in this work, a method based on the Clarke and Wright algorithm and
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Mutation operator.
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Reversion operator.
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Insertion operator.

random generation is used. Then, the solution is decoded to find a set of
routes that respect the specific constraints of the problem.

Several analyses were conducted, aimed at establishing which
combination of parameters has the most effect in obtaining a
better result.

To test the proposed algorithms, the following tests have
been performed:

o PBSA: through varying the number of moves (from 8 to 100),
the population size (from 2 to 16), and testing different
combinations of the parameters;

« GA: through varying the population size (from 30 to 500), the
crossover rate (from 0.5 to 0.8), and the mutation rate
(from 0.2 to 0.5).

Figure 9 shows the results of the PBSA analyzes, with an
increase in the number of moves from 20 to 60 or 100 at
iteration 100. The incidence of population size is also shown.
At iteration 100 the increased number of moves determines a
rapid change in the descending curve of the fitness value,
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passing from an almost stationary situation (perhaps a local
optimum) to a new descending trend. Moreover, it is found that
only the two analyses with population and moves 8 x 60 and
16 x 100 manage to obtain a cost value quite below 2,100.

Figure 10 shows the descending curves of the fitness value
obtained with the GA, varying the population size. The crossover
and mutation rates are fixed as 0.8 and 0.2 respectively. These
two rates were considered the best based on previous
calibration tests.

In Table 1, the best solutions are reported and compared to the
Adaptive Large Neighborhood Search (ALNS) implemented by
Erdogan (2017). In this test, to make the procedures comparable,
the constraint formalized with Equation (7) on the start time of the
service is only considered as equality.

GA is set up has follows:

« Population size: 500 elements,
e Crossover rate: 0.80,
« Mutation rate: 0.20.

SA is set up has follows:

« Population size: 16 elements,

« Number of moves: 100,

o Swap, reversion and insertion rate: 0.2, 0.5, 0.3,
o Initial temperature: 30°C,

o Temperature reduction rate: 0.99.

The solution provided by SA (with population 16 and moves
100) is the best. Instead, our algorithm based on GA reached a
solution of 2,150 min, worst of the tool provided by (Erdogan, 2017).

It is noted that, if for low population size the GA reaches a better
solution with respect to a PBSA, when the population (and moves)
increase, the PBSA achieve better results.

The literature on the use of population-based algorithms
highlights that increasing certain parameters of algorithms
should help improve the solution, with an associated increase
in computation time. However, after several calibration proofs,
it emerged that while increasing the number of moves in the
PBSA determines a substantial improvement of the solution,
increasing the population both in the PBSA and GA does not
determine the same expected effect. Therefore, a fundamental
characteristic of the PBSA algorithm is a big number of moves.
In conclusion, these considerations are aligned with Shaabani
and Kamalabadi (2016), which finds a better result of PBSAs
compared to GAs and with Askarzadeh et al. (2016) on the
possibility of getting stuck in local optima when using genetic
algorithms.

Since the aim is to maintain an acceptable computational
effort together with the precision of the result, the proposed
procedure for the PBSA is based on two steps, with an increase
of the number of moves after certain conditions are reached
(for instance, a certain fixed number of iterations or a stall in
the improvement of the solution after a fixed number of
iterations).

Figures 11, 12 show the routes obtained by the ALNS and PBSA
procedures, that are in both cases five.
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FIGURE 8

Distribution of the customers across the study area (Source: own elaboration from Garmin, Tomtom Canvas).

5.2 Further improvements

In this section, constraint Equation 8 is considered as inequality:
this allows every vehicle to adapt the starting time of the route by
eliminating first consumer waiting time (if possible).

Table 2 reports the best solution found by the CW method, the
PBSA algorithm and the GA, also showing the composition of the
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FIGURE 9
Comparison of PBSAs best fitness value with different
parameters.
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routes and, for each route, the travel times, the distances, and the
demands. The parameters are those that, in the test from Section 5.1,
provided the best results.

GA is set up has follows:

« Population size: 500 elements,
o Crossover rate: 0.80,
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FIGURE 10
Comparison of GA best fitness value with different

population size.
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TABLE 1 Best results with different optimization methods.

10.3389/ffutr.2024.1491799

Algorithm Id Routes Distance [km]  Time [minutes]  Capacity [kg]
ALNS (Erdogan, 2017) 1 [03 1827227375 344557 55 36 61 29 60 2 0] 64.42 417 5891
2 [04271 21251450 39 11 64 20 62 70 32 8 41 0] 54,25 403 67.33
3 [01615546 68 17 51 72 1 35 74 26 43 4 0] 51.55 350 82.94
4 [0546940 1049 38 30 6 66 13 19 63 9 24 0] 60.19 407 75.00
5 [058655253597 285637 23 47 31 67 12 48 44 33 0] 59.15 420 64.07
Total 289.56 1997 348.25
PBSA 1 [0716950 14252117 51 68 41 8 24 60 33 0] 83.38 397 80.56
2 [042543587 34351 7253596574 26 4 43 0] 95.93 416 76.92
3 [046 552285673 755557 45 36 23 61 47 31 12 48 0] 75.34 417 67.68
4 [01537 2227183929 67 11 64 20 62 70 40 32 44 2 0] 70.36 410 60.99
5 [016109 13 19 66 30 6 49 38 63 0] 84.17 317 62.10
Total 409.18 1957 348.25
GA 1| [0527446 17 68 25 21 71 69 44 60 24 8 41 2 0] 75.35 398 74.34
2 [05531850 1427 22 37 28 56 75 73 7 72 33 0] 83.08 380 56.63
3 [05434258109 6630649 38 13 19 63 0] 86.06 391 75.55
4 016 15 40 39 20 70 32 29 48 62 12 67 11 64 0] 56.42 369 51.05
5 [05145 34 55 57 36 23 61 47 31 0] 96.69 387 53.55
6 | [06526434593510] 53.60 225 37.13
Total 451.20 2150 348.25
ALNS solution
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FIGURE 11

Solution of the ALNS procedure (time 1997 min). (Source: own elaboration from Garmin, Tomtom Canvas).
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FIGURE 12
Solution of the PBSA procedure (time 1957 min) (Source: own elaboration from Garmin, Tomtom Canvas).

TABLE 2 Best results with different optimization methods.

Algorithm Id Routes Time [minutes] Capacity [kgl
CwW 1 [0 241 824446069 71 21 25 68 17 51 46 52 5 53 59 0] 71.83 414 95.63
2 [0721357 346319139 3849 306 66 0] 106.88 398 79.80
3 [0 10 32 70 40 62 39 48 29 20 12 67 11 64 31 47 0] 68.33 411 53.33
4 [0 61 23 36 57 55 45 75 73 56 28 37 22 27 14 50 18 0] 71.01 417 74.14
5 [0 3354 342 16 15 58 65 74 26 43 4 0] 39.75 262 45.35
Total 357.80 1902 348.25
PBSA 1 [0 41 8243371 21 25 68 17 51 46 5 52 53 351 72 0] 72.85 404 96.24
2 [0 597 343722236147 3167 11 64 12 20 62 39 29 48 0] 69.15 403 51.63
3 [0 44 32 70 40 10 49 38 66 30 6 9 13 19 63 0] 67.62 366 78.75
4 [0 45 57 55 36 75 73 28 56 27 50 14 18 69 60 54 42 3 0] 75.40 413 94.31
5 [0216 1558 65 74 26 43 4 0] 27.86 179 27.32
Total 312.88 1765 348.25
GA 1 [0 241824446069 71 21 25 68 17 51 46 5 52 53 59 0] 70.62 411 95.63
2 [0721 357 34 61 47 31 11 64 67 12 20 29 39 48 0] 75.38 407 58.95
3 [0 62 3270 40 10 6 30 49 38 66 9 13 19 63 0] 71.43 377 75.08
4 [0 45 55 57 36 23 75 73 28 56 37 22 27 50 14 18 33 0] 79.65 380 73.88
5 [0 54 42 3 16 15 58 65 74 26 43 4 0] 31.97 238 44.71
Total 329.05 1813 348.25
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FIGURE 13
Solution of the PBSA procedure (time 1765 min). (Source: own elaboration from Garmin, Tomtom Canvas).
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FIGURE 14
Solution of the GA procedure (time 1813 min). (Source: own elaboration from Garmin, Tomtom Canvas).
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o Mutation rate: 0.20,
¢« Maximum iterations: 300.

PBSA is set up has follows:

o Population size: 16 elements,

« Number of moves: 100,

o Swap, reversion and insertion rate: 0.2, 0.5, 0.3,
« Initial temperature: 30°C,

o Temperature reduction rate:0.99,

o Maximum iterations: 300.

Resuming from Table 2 it’s possible to highlight how travel time
severely affects the solution more than maximum length thus
indicating that the battery capacity for the electric vehicle is
sufficient for the whole tour and no additional charging
operation are necessary.

Figures 13, 14 shows the routes obtained by the PBSA and GA
procedures.

6 Conclusion

Freight delivery in urban areas is at the core of the political
agenda of many countries and municipalities, and new
technologies offer more appealing solutions to develop novels
and more sustainable strategies. Thus, urban freight distribution
is undertaking the path to a radical transition, thus switching
from traditional vehicles with internal combustion engines to
electric vehicles (this also to accomplish the Sustainable
Development Goals defined by the United Nations). These
electric vehicles have limited range, and it is therefore
essential to optimize their routes to minimize time and energy
consumption.

A general algorithm considering the problem of vehicle routing
with electric vehicles (EVRP) has been proposed to support the
transition to zero emissions vehicles in urban freight distribution
and explore the possibility enabled by these means of transport. This
paper has tested two procedures (GA and PBSA) to solve, in an
urban context, a VRPSTW with EVs with the aim to minimize the
total time with a constraint on the tour distance, due to the restricted
battery capacity of electric vehicles; the objective function is based
on some time components (travel time, delivery time and a possible
penalty). Both the procedures are population-based, which allowed
one to update more than one solution over the iterations. The
procedures are tested on a small problem, compared with each other
and with a literature procedure. It is underlined that both procedures
manage to find the solutions due to the ability to maintain and/or
modify the best solutions of each iteration in the following iterations.
For both GA and PBSA, the route-first cluster-second principle is
used, and a decoding procedure (with respect the problem
constraints) is implemented to obtain the routes for each vehicle
With the aim of reducing the number of iterations, good-quality
solutions are introduced in the population by using the
CW algorithm.
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To test the proposed procedures, two cases on the same test
problem are considered. In the first case, a procedure from the
literature is used to solve the problem. However, to do this, it was
necessary to relax one of the constraints of the problem. This allowed us
to obtain: an initial evaluation of the performance of the procedures,
and a calibration of the GA and PBSA parameters to obtain good results
in acceptable times. In the second case, the problem (without any
relaxation) is solved with the parameters determined previously. From
this test, the PBSA demonstrated the best performances, but further
analyses are required (as an example, improving the GA operators).

The obtained output show that when solving a problem by
relaxing the constrained starting time, the total time and the total
trip length are reduced, even if the number of vehicles used is the
same. Thus, also reflecting the possibility to reduce the
environmental costs associated with deliveries. Nevertheless,
more specific analyses and further developments that concern
(e.g.
operators) and the exploring the micro-hub cooperation services

improving the proposed procedures developing new

are necessary.
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