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Finding the shortest path in a network is a classical problem, and a variety of
search strategies have been proposed to solve it. In this paper, we review
traditional approaches for finding shortest paths, namely, uninformed search,
informed search and incremental search. The above traditional algorithms have
been put to successful use for fixed networks with static link costs. However, in
many practical contexts, such as transportation networks, the link costs can vary
over time. We investigate the applicability of the aforementioned benchmark
search strategies in a simulated transportation network where link costs (travel
times) are dynamically estimated with vehicle mean speeds. As a comparison, we
present performance metrics for a reinforcement learning based routing
algorithm, which can interact with the network and learn the changing link
costs through experience. Our results suggest that reinforcement learning
algorithm computes optimal paths dynamically.
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1 Introduction

Autonomous transportation is expected to become a prevalent means of public
transportation in the near future (Hancock et al., 2019). Such a transportation system
demands that algorithms for estimating shortest paths be well-adapted to the continuously
changing nature of the traffic network. In a stochastically evolving traffic network, the link
costs (vehicular travel times in this study) can dynamically change and are constantly
influenced by a range of traffic factors such as traffic congestion, road work, and bad
weather, among others. As a result, an autonomous transit system fundamentally depends
on the availability of a real-time routing system capable of estimating the shortest path not
only before the trip, but also of adaptive rerouting in response to fluctuating link costs.

Over the past decades, the shortest path problem has been extensively investigated with
applications ranging from computer networks to transportation networks and many
approaches have been explored to examine the effectiveness of search strategies. In this
respect, some of the traditional search strategies include uninformed search, informed
search, and incremental search (Madkour et al., 2017; Katre and Thakare, 2017; Surekha
and Santosh, 2016; Magzhan and Jani, 2013; Zhan and Noon, 1998; Zhan, 1997; Fua and
Rilett, 2006; Sunita Kumawat and Kumar, 2021; Pallottino and Scutella, 1998; Huang et al.,
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2007; Madkour et al., 2017; Katre and Thakare, 2017; Surekha and
Santosh, 2016; Magzhan and Jani, 2013; Zhan and Noon, 1998;
Zhan, 1997; Fua and Rilett, 2006; Sunita Kumawat and Kumar, 2021;
Pallottino and Scutella, 1998; Huang et al., 2007). The above
strategies have been shown to be very successful for problem
scenarios involving fixed networks with static link costs over
time. However, they present several limitations in terms of four
criteria that we discuss later in this paper, especially when the traffic
network is dynamically changing or has missing information.
Another class of search strategies, namely, reinforcement learning
(RL) based search, can adapt to changing link costs. RL based
methods have been primarily applied in computer networks, and
their potential for transportation networks has started to get
attention only recently. Applications of reinforcement learning
have been reviewed comprehensively in review papers (Farazi
et al., 2021), and the most relevant studies are for vehicle routing
optimization, known in other terms as traveling salesman problems,
yet these studies lack the research on reinforcement learning for
finding the shortest path. Therefore, a comparison between
traditional and RL-based methods for computing optimal
shortest paths should be conducted.

In particular, the method that we develop is based on Q-learning
(Sutton and Barto, 2018). For the task of path optimization,
Q-learning has been used for communication networks (Boyan
and Littman, 1994). There has been use of Q-learning for mobile
communication in Vehicular Ad hoc networks (VANETS) wherein
a moving vehicle is considered as a mobile node in a wireless
network (Li et al., 2014)1. For transportation networks, there is
significant body of work onQ-learning based intelligent traffic signal
control (Chin et al., 2012; Ducrocq and Farhi, 2023; Moreno-Malo
et al., 2024; Chin et al., 2012; Ducrocq and Farhi, 2023; Moreno-
Malo et al., 2024). Moreover, Q-learning has been employed for
reducing traffic congestion (Swapno et al., 2024). There is one work
related to loop-breaking in route-planning through Q-learning in
vehicular networks (Meerhof, 2021). As such the potential of
Q-learning to perform path optimization in dynamically
changing vehicular/transportation networks remains
underexplored.The main contributions of this paper are
summarized as below:

• We investigate the performance of traditional shortest path
algorithms (such as Dijkstra and A*) in simulated
transportation network where link costs are dynamically
estimated and highly correlated based on the current
traffic condition.

• We investigate the use of the reinforcement search strategy,
namely, Q-routing (Boyan and Littman, 1994) in the same
transportation network and compare its performance to that
of other search strategies.

In this paper, a transportation network is simulated using
VISSIM traffic microsimulation environment (Fellendorf and

Vortisch, 2020). Traffic obstructions are introduced into the
network to induce fluctuations in vehicle volumes and speeds.
These vehicle speeds are converted into link costs and are used
as weights for shortest path algorithms.

2 Related work

The problem of shortest path estimation, which has been widely
researched, is a principal and classical challenge in transportation
and computer networks. All shortest path algorithms investigated in
this paper will treat a transportation network as a directed graph
with travel time as non-negative link cost. Shortest path algorithms
can be evaluated based on the following four criteria:

• Completeness: determines whether or not the algorithm is
guaranteed to find the solution to the problem, if one exists.

• Optimality: evaluates whether the solution provided by the
algorithm is the best.

• Time complexity: evaluates how long the algorithm takes to
solve the problem. Usually, it is expressed in the big O notation
representing the order of growth in computational time as the
number of inputs grows.

• Space complexity: evaluates how much memory space the
algorithm consumed to reach the final solution.

2.1 Search strategies

Traditional AI literature (Russell and Norvig, 2003)
distinguishes three types of search strategies:

• Uninformed search i.e., the algorithm employs no method for
estimating how close the search process is to a destination.

• Informed search i.e., the algorithm employs heuristics to direct
the search to its destination.

• Incremental search i.e., the algorithm reuses information from
previous searches to find updated shortest path solutions
faster, thus, eliminating the need to search for the shortest
path from scratch.

In addition to the above, RL has also been used for estimating
shortest paths by exploring a transportation network wherein the
travel times experienced while executing a path are considered as
negative rewards.

2.1.1 Uninformed search
Uninformed search strategies refer to a group of search

techniques wherein the algorithm has no access to any
information regarding how far the goal state is, though the
algorithm can check if the current state is a goal state or not. It
is also known as blind search. Table 1 summarizes the current
uninformed search techniques (Russell and Norvig, 2003), including
breadth-first search, depth-first search, depth-limited search,
iterative deepening search, uniform cost search, bidirectional
search, Dijkstra (Dijkstra, 1959), and their performance criteria.
Among uninformed search methods, the Dijkstra algorithm is
considered as benchmark both in terms of time and space

1 The use of the descriptor ‘Vehicular’ in VANETS should not be confused to

imply as if they represent transportation or vehicular traffic networks.

VANETS are mobile communication networks.
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complexity since its complexity does not depend either on the
branching factor or the depth of the solution, but only depends
on the number of nodes in the network.

2.1.2 Informed (heuristic) search
The primary benefit of heuristic-based strategies is that the search

space can be narrowed down. Many shortest path algorithms with a
reduced search space have been proposed, such as best-first search
(Pearl, 1984), greedy best-first search, hill climbing search, andA* (Hart
et al., 1968) as shown in Table 1. These types of searchmethods attempt
to narrow down the search space by utilizing various sources of
additional information. Also, the A* algorithm is complete and
optimal only if its heuristic function is admissible and monotonic,
and many modern algorithms such as D* lite (Koenig and Likhachev,
2002) and LPA* (Koenig and Likhachev, 2001) are based on A*.
Therefore, the A* algorithm stands out in the class of informed
search because of its completeness and optimality.

2.1.3 Incremental search
Incremental search strategies are applicable for networks in

which only a small number of link costs are likely to change at a
time. Since these changes affect only a part of the graph,

recomputing shortest paths for the entire graph is not necessary.
Instead, it is possible to update paths corresponding to only a subset
of the graph. As a result, such methods are used to solve dynamic
shortest path problems, which require determining shortest paths
repeatedly as the topology of a graph or its link costs only change
partially. A representative incremental search algorithm is the
Ramalingam and Reps’ algorithm (Ramalingam and Reps, 1996b)
(RR), also known as the DynamicSWSF-FP algorithm. However, if
all the link costs in the graph change, incremental search algorithms
are unable to capitalize on previous search results.

2.1.3.1 DynamicSWSF-FP Algorithm
In dynamic transportation networks, often, only a portion of

links change in terms of cost between updates. Starting costs for
some of the nodes remain unchanged and thus do not need to be
recalculated. As such, recomputing all the optimal routes could be
wasteful since some of the previous search results can be reused.
Incremental search methods, such as the RR algorithm, reuse
information from previous searches to find the shortest paths for
a series of similar path-planning problems, which is faster than
solving each path-planning problem from the scratch. A key aspect
about reusing previous search results is determining which costs

TABLE 1 Uninformed search, informed search (Russell and Norvig, 2003) and incremental search.

Completeness Optimality Time complexity Space complexity

Uninformed Search

Breadth-first Yes Yes O(bd) O(bd)

Depth-first Yes No O(bm) O(bm)

Depth-limited No No O(bl) O(bl)

Iterative Deepening Yes Yes O(bd) O(bd)

Uniform cost Yes Yes O(bl+[C/e]) O(bl+[C/e])

Bidirectional Yes Yes O(bd/2) O(bd/2)

Dijkstra Yes Yes O(n2) O(n2)

Informed Search

Best-first No No O(bm) O(bm)

Greedy best-first No No O(bm) O(bm)

A* Yesa Yesa O(bd) O(bd)

Hill Climbing No No O(∞) O(b)

Incremental Search

DynamicSWSF-FP Ramalingam and Reps, (1996a) Yes Yes O(‖δ‖.(log‖δ‖ +Mδ)) O(‖δ‖
b is branching factor, d is depth of the solution, m is maximum depth of tree, l is depth limit of tree, C is cost of optimal solution, ‖δ‖ is a measure related to “the size of the change in the input and

output”,Mδ is a bound on the time required to compute the function associated with any vertex in Changed U Succ(Changed) (Ramalingam and Reps, 1996a), e is each step closer to goal node

and n is number of nodes.
aif heuristic function is admissible and monotonic.

TABLE 2 Reinforcement Learning search.

RL search Completeness Optimality Time complexity Space complexity

Q-routing Yes Yes O(Tpnb) O(n2)
T is the number of training loops, b is the branching factor and n is number of nodes.
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have been affected by the cost update operation and must be
recalculated. The RR algorithm employs two estimates: one that
corresponds directly to starting distance in Dijkstra’s algorithm and
another one is a right-hand-side value (rhs) for checking the local
consistency to prevent path recalculation (Ramalingam and
Reps, 1996b).

2.1.4 Reinforcement learning search
The field of RL has grown significantly over the past decades,

with applications ranging from robotics (Polydoros and Nalpantidis,
2017), communications (Luong et al., 2019) to gaming AI (Vinyals
et al., 2019). Among RL algorithms, Q-routing is a method that was
proposed primarily for communication networks but can also be
used in transportation systems (Boyan and Littman, 1994).
Q-routing is based on Q-learning (Sutton and Barto, 2018) and
does not need to know the link costs to start off, and can learn
optimal paths over time through experience. In particular, for every
node x in the graph, a 2D Q-table, Qx(d, y), is maintained that
contains the cost of transitioning from x to node y (where y is one of
the neighbors of node x, i.e., y ∈ N (x)), if the final destination is
node d. During a training episode, at each step, the next move is
chosen based on the current values in the Q-table, the move is
executed, and the actual time experienced while executing the move
is stored. Based on this experience, a Bellman update of the Q-values
is performed as follows:

Qx d, y*( ) � Qx d, y*( )
+ η min

z∈N y*( ) Qy* d, z( ) + t⎛⎝ ⎞⎠ − Qx d, y*( )⎛⎝ ⎞⎠ (1)

where y* is the next move chosen based on current Q-values, i.e.,

y* � argmin
y∈N x( )

Qx d, y( ) (2)

In Equation 1, z belong to the list of the adjacent nodes of y*, η is
the step-size, and the t is the time experienced estimated to go from
x to y* which serves as a surrogate for the link cost (reward). In
other words, if Q-values are consistent, then Qx(d, y*), where y* is
computed using Equation 1, should be equal to the time estimated
from x to y* plus the cost associated with the best move thereafter,
and the update is proportional to the difference from this
desired value.

As shown in Table 2, Q-routing requires less run-time
complexity as it is executed more often. During training mode or
offline mode, it takes O(Tpnb) complexity to run the Q-routing
algorithm, where T is the number of training loops, n is the number
of nodes and b is branching factor. But, time complexity is reduced
to O(1) during online mode.

3 Traffic network simulation

3.1 Traffic network description

A simple transportation network in the form of square grids is
used in this study as shown in Figure 1A. The network has 25 nodes
and 80 links (each 2-lane and directed).

We have chosen to simulate a modestly sized network because of
the following reasons. Dynamic rerouting of vehicles is highly
influenced by accurate link travel cost estimations, which depend on
interactions between vehicles. As such, microscopic traffic simulation is
critical for capturing localized congestion effects. Smaller “toy
networks” are commonly used for developing and validating
methodologies [e.g. (Wang et al., 2022; Rampf et al., 2023; Bhavsar
et al., 2014; Koh et al., 2020; Wang et al., 2022; Rampf et al., 2023;
Bhavsar et al., 2014; Koh et al., 2020)]. Notably, variants of the
Q-routing algorithm, such as the one developed in this study, are
extensively utilized in large-scale communication networks [e.g.
(Mammeri, 2019; Alam and Moh, 2022; Al-Rawi et al., 2015;
Mammeri, 2019; Alam and Moh, 2022; Al-Rawi et al., 2015)] and
have demonstrated robust performance. Given that transportation
networks are typically much smaller and less complex than
communication networks, at this time we will be validating the
methods on smaller networks and explore larger scales in later studies.

In the 25-node network simulated in the current study, the
length of each link is 2,500 m. To better capture heterogeneous flow
conditions along these relatively long links, we split them into
segments. Based on sensitivity analysis, we determined that a
segment length of 25 m provides a reliable representation of link
travel times. Further reducing the segment length does not
significantly improve accuracy, and hence, links are divided into
100 equal-length segments. While our study uses equal-length
segments for simplicity and consistency, we employed a general
formula for computing weighted average speeds to account for
potential scenarios where varying segment lengths might be
necessary. For example, unequal segment lengths could be useful
to represent varying geometries, such as curves or bottlenecks, along
a link. However, in this study, such complexities were not required,

FIGURE 1
Details of the toy network used in the study. (A) Network shown
in the form 5 x 5 square grids. (B, C): Signal heads and feasible
movements at each intersection.
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and our approach ensures both computational efficiency and
practical applicability.

The network is composed of nine signalized intersections. The
signal heads and feasible movements at each intersection are shown in
Figures 1B, C. Right turningmovements are permitted on red. Through
and left turning movements are simultaneously allowed (but controlled
by the traffic signal). The node annotations and coordinates are shown
in Figure 2. The four signal heads at an intersection are sequentially
operated with a cycle length of 240 s (57s green + 3s amber per signal
head). All the nine traffic signals are synchronized.

The demand for travel arises at twomain origin intersections,O1-O2

andO3-O4, which are located at nodes one and 5. Twomain destination
intersections, D1-D2 and D3-D4, which are located at nodes 25 and
21 are considered. Coordinates for every intersection of origin and
destination can be viewed in Figure 2. The magnitude of travel demand
between OD pairs i, j (Demandi,j ∀ i, j such that i ≠ j) is taken
as 500 vehicles per hour. Such a large value of travel demand is
considered to ensure a build-up of queue/congestion in the network.
BesidesmainODpairs that have large travel demand, other randomOD
pairs are also used to run and evaluate different shortest path algorithms.

The aforementioned network is modeled in PTV VISSIM, which
is a microscopic traffic simulator. As the size of a network increases,
it becomes very tedious to determine and assign routes (sequence of
links) for vehicles between several origin-destination pairs. Also, a
predetermined route assignment in a simulation study does not
reflect the route choices made by drivers in the real world (Fellendorf
and Vortisch, 2020). Hence, the route choices are dynamically made
in this study. The ability of VISSIM to compute dynamic stochastic
user equilibrium is exploited to determine the routes dynamically. A
comprehensive representation of route choice is thus possible. The
vehicle composition of 90% cars and 10% heavy vehicles is used.
Other parameters for the network simulation are as follows. The
desired speed distribution used is shown in Figure 3. For the driving
behavior model, the Wiedemann-74 car-following model is
employed as it is considered suitable in urban environment. The
default Car-following parameters used are:

• Average standstill distance: 2 m
• Additive part of safety distance: 2
• Multiplicative part of safety distance: three

VISSIM also has a feature termed “reduced speed areas”, which
is used to create temporary or localized congestion (e.g., a traffic
incident). Three links are randomly chosen to introduce congestion
as shown in Table 3. A simulation step size of 0.1s and a simulation
period of 2 h are adopted. After every 100 simulation steps, the state
of every vehicle in the network is sampled (and stored for further
analysis) by using VISSIM COM. The state of a vehicle includes the
link on which a vehicle is located, position on that link, lane
occupancy, instantaneous speed, acceleration, and vehicle type.

The desired speed distribution within the congestion zone is as
shown in Figure 4.

3.2 Ground-truth link costs from simulation

To reliably measure ground-truth dynamic links costs we need
to keep track of the spatial and temporal variation of link costs
(travel times). The state of all the vehicles in the network is extracted
from VISSIM after every 100 simulation steps. Every link between
nodes i and j is considered to be composed of n segments (need not
be of equal length) as shown in Figure 5. The length of the k-th
segment of link ij is lk,i,j and total length of the link is Lij.

The space mean speed of the segment k at a time step t(SMStk,ij)
can be computed from the extracted states. The cost of traveling on
link ij at a time step t is then computed as in Equation 3:

Ct
ij � ∑wk,ij × SMStk,ij ∀ij,t

∀k

(3)

where, wk,ij � lk,ij
Lij

is the weight for segment k. Desired speed is
considered as the space mean speed of a segment not hosting
any vehicle.

FIGURE 2
Node numbers and coordinates.

FIGURE 3
Speed distribution.
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4 Algorithm performance

4.1 Algorithm selection

From the related literature, it is clear that Dijkstra and A* are the
benchmark candidates and representative algorithms for uninformed
and informed search respectively in terms of performance criteria. In
communication networks, algorithms such as distance vector routing
(Hedrick, 1988) have been employed. Such algorithms rely on
continuous signal transmission between nodes to update travel time,
thus they are deemed inapplicable in our transportation network where
travel time is estimated at each time step based on the number of

physically present vehicles. Moreover, link costs in our simulated
networks depend on the number of vehicles and their speeds. As
the number of vehicles entering a link changes, and vehicle speeds vary,
link costs dynamically change at every query time for all links. As a
result, the RR algorithms and similar incremental algorithms such as
Lifelong planning A* (Koenig and Likhachev, 2001) and D* Lite
(Koenig and Likhachev, 2002) based on it cannot benefit from
incremental search because the estimate changes dynamically, and
thus, local consistency will never be met. Therefore, we chose some
of the basic algorithms that best represent their classes, namely, Dijkstra
for uninformed search, A* for informed search, and Q-routing for
reinforcement learning, and compare their performances in our case
study network.

Figures 6–8 show the pseudocode for each algorithm. R1.5 The
heuristic function that we use in the A* algorithm is the Manhattan
distance function that estimates how close the current node is to the
destination based on the nodes’ coordinates. Manhattan distance has
been used because it is better represents a real-world scenario with
grid-networks.

4.2 Algorithm performance

4.2.1 Static network
We first test the Dijkstra and A* algorithms on our simulated

transportation network when there is no vehicle. The purpose of this
test is to check the performance of the heuristic function in A*.
When there is no traffic in the network, the link costs are the link
lengths and the network is static. Figure 9 shows the identical
performance of A* and the Dijkstra algorithm in terms of the
quantile-quantile (Q-Q) plot between the optimal route costs of
the two algorithms for the following list of 10 OD pairs: (1,25),
(5,21), (10,16), (6,24), (22,4), (4,16), (18,5), (12,20), (17,5)
and (22,9).

4.2.2 Dynamic network
When traffic is introduced into the simulated network, the

network becomes dynamic and link costs are estimated using
methods described in Section 3.2. Dijkstra, A* and Q-routing are
tested in this dynamic network. Q-routing parameters are found to

TABLE 3 Congested links.

Link Length of congestion
zone (m)

Desired speed
(km/h)

26 500 20

10 200 12

34 300 12

FIGURE 4
Speed distribution within the congestion zone.

FIGURE 5
Segmentation of a link ij

FIGURE 6
Dijkstra’s algorithm.
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be optimal with a learning rate of 0.29 and 200 iterations. Figure 10
shows a graph with route cost for OD =(1,20) for each learning rate.
Route cost starts to be minimal for a learning rate of 29 × 10−2.

In the dynamic simulated network, A*, Dijkstra, and Q-routing
are invoked every 10 s of simulation with all OD pairs, and a few OD

pairs are selected for illustrating and comparing route costs.
Figure 11,13,12,14 show the cost in terms of sum of the travel
times for minimum cost routes for OD = (1, 25), (5, 21), (4, 16) and
(6,14). It can be seen that the data points for Q-routing overlap with
those for Dijkstra. Moreover, Supplementary Appendix A illustrates
the Q-Q plots between route costs between A*, Q-routing, and
Dijkstra for 10 OD pairs: (1,25), (5,21), (10,16), (6,24), (22,4), (4,16),
(18,5), (12,20), (17,5), (22,9).

FIGURE 7
Q-routing algorithm.

FIGURE 8
A* algorithm.

FIGURE 9
Q-Q plot between the optimal route costs for A* and Dijkstra
over 10 OD pairs.

FIGURE 10
Route cost and learning rate for Q-routing.

FIGURE 11
Minimum cost route for OD = (1,25) with Q-routing, Dijkstra
(orange ‘+’), and A* (green‘x’).
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Based on Figures 11–14, it is clear that the A* algorithm
produces non-optimal shortest routes, resulting in larger route
costs as compared to those achieved by Dijkstra and Q-routing.
This is because the heuristic function for A*, used in this simulated
network no longer remains admissible as the link costs become
dynamic. At any node during the A* run-time, the heuristic function
always overestimates the route cost to the destination.

On the other hand, Q-routing delivers comparable route costs
to Dijkstra during the entire simulation of the network. Following

points should be considered while interpreting the plots in
Supplementary Appendix Figures A1–A10 of Supplementary
Appendix A. In a perfect information setting wherein the true
link costs are accessible to the algorithm, it is well known that the
Dijkstra algorithm gives the optimal shortest path between any
two nodes of a network (Cormen et al., 2022). That is, Dijkstra
gives the best-case cost when correct link costs are known. The
costs corresponding to the Dijkstra algorithm shown in the plots
of Supplementary Appendix Figures A1–A10 are those when
Dijkstra was run as if the true costs were known. Although the
true costs are not known in a realistic setting, the x-axis
coordinates in the aforementioned Q-Q plots represent the
theoretical upper bound of the performance for respective OD
pairs. Along the y-axis we plot the costs produced by the
Q-learning algorithm, wherein Q-learning is performing
routing without knowing the costs. Thus, if in the Q-Q plot,
the scatter is around the 45° line, it goes on to showing that the
Q-learning algorithm, under an imperfect information setting,
tends to perform close to an algorithm which gives the theoretical
upper bound under perfect information setting. This is our main
result, i.e., Q-learning tends to give near optimal result. Further,
Supplementary Appendix B visualizes the agreement and
differences in shortest routes estimated by Q-routing, Dijkstra
and A* for OD =(1,25) pair.

5 Conclusion

In this paper, we have reviewed traditional shortest path finding
algorithms, and have investigated RL-based search strategy,
Q-routing, in a simulated transportation network. We have
presented a comparison of Q-routing algorithms with the
performance of two benchmark algorithms, namely, Dijkstra and
A* in the network with dynamic link costs.

FIGURE 12
Minimum cost route for OD = 5,21 with Q-routing, Dijkstra
(orange ‘+’), and A*(green‘x’).

FIGURE 13
Minimum cost route for OD = 4,16 with Q-routing, Dijkstra
(orange ‘+’), and A*(green ‘x’).

FIGURE 14
Minimum cost route for OD = 6,24 with Q-routing, Dijkstra
(orange ‘+’), and A*(green ‘x’).
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We have demonstrated the feasibility of Q-routing in a network
with dynamically changing link-costs. We have shown that Q-routing
estimates the cost route as minimal as Dijkstra’s and can be considered
as an alternative optimal algorithm for finding the shortest path. Despite
the time involved while learning the link-costs, during offline execution
phase, Q-routing, however, may be executed with run-time complexity
as equal as Dijkstra’s during online phase or subsequent runs. Also,
Q-routing offersmore options to expand the number of features used in
estimating shortest path with a deep neural network to model an
approximation of minimal travel time based on the number of selected
features. On the other hand, with the dynamic link costs, the heuristic
function of A* becomes less effective, producing suboptimal results. In a
broader network scenario, a neural network can allow to learn statistics
from from multiple network features such as the number of vehicles
that enter the segment, segment length, number of lanes, current time of
the day, and current weather conditions on the road. The cost function
of the deep RLmodel might be a weighted combination of the output of
the neural network and objective rewards (travel time, distance,
operation cost, etc.), and the output of the model is still a policy to
make the shortest path decision.

In this study, a number of factors may have limited the range of
experimentation, i.e., whether it is possible to construct an A*
guiding heuristic function based on estimated travel time, or it is
challenging to simulate a city-scaled transportation networks for a
more realistic case study. Also, not all algorithms reviewed in this
paper are programmed since it is tedious to implement same-class
algorithms that are computationally more expensive.

For future work, deep Q-learning (VanHasselt et al., 2016) using
a variety of architectures such as Graph Convolutional Networks
(Zhang et al., 2019) and Graph Attention Networks (Veličković
et al., 2018), can be integrated into the reinforcement learning based
Q-routing to estimate shortest paths directly from network features
such as traffic counts and link characteristics, rather than using a
tabular-based estimation of minimal cost route and the link costs
estimated from space-mean speeds as demonstrated in this paper.
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