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Emergency medical services (EMS) are a crucial component of urban safety and
responsiveness, and optimizing their operations aligns with the broader goals of
creating safe, resilient cities. This study focuses on improving the EMS dispatching
process by leveraging urban mobility data collected by connected vehicles and
simulation. EMS dispatching is inherently sequential and dynamic, where each
decision impacts future resource availability. Traditional greedy approaches, which
dispatch the nearest available unit without considering supply-demand dynamics
in the surrounding area, can lead to suboptimal outcomes. This study introduces a
penalty metric that quantifies supply-demand levels within each ambulance’s
catchment zone—defined by isochrones that delineate the area the ambulance
can reach within an allowable time—prior to dispatch. This metric forms the
foundation of a dynamic penalty-based dispatching strategy that penalizes
dispatches from high-demand, low-coverage areas for low-priority calls,
ultimately conserving resources for high-priority emergencies. The heuristic
method was tested simulating EMS operations in Manhattan, New York.
Simulation results showed that 90% of episodes with the heuristic policy had a
mean response timeof less than 6min for high-priority calls, compared to only 75%
with the conventional greedy approach. This paper presents a proof-of-concept
study that introduces a novel ambulance dispatching policy and contributes to the
optimization of emergency response systems in urban environments. Additionally,
this study demonstrates how smart technologies and large-scale mobility data can
enhance decision-making support tools, improving EMS efficiency and resource
utilization and aligning with sustainability goals.
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1 Introduction

Emergency medical services (EMS) are a critical component of urban safety and
responsiveness. Optimizing their operations to ensure efficient responses and smart
resource utilization for high-priority emergencies supports the broader goals of creating
safe, sustainable, and resilient cities. In the realm of emergency management and service
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delivery, the concept of dispatching plays a pivotal role in ensuring
the timely and effective allocation of resources to needs. In
sustainable cities, efficient dispatching and matching optimizes
resource use, reduces carbon emission, and ensures the
community safety and healthcare by timely responding to the
emergencies (Yoon and Albert, 2021; Li et al., 2024b; Meshkani
and Farooq, 2022; Li W. et al., 2024; Rautenstrauss et al., 2023;
Jagtenberg et al., 2017; Olivier et al., 2022). Dispatching, at its core,
involves the process of efficiently sending out personnel or vehicles
in response to specific requests or incidents, such as emergency calls,
delivery orders, or transportation requests. The decision-making
process involved in dispatching is inherently sequential and
dynamic. Each dispatching decision not only addresses an
immediate need but also influences subsequent decisions and the
availability of resources in the future. This interconnectedness
underscores the necessity of adopting a strategic approach to
decision-making, where the implications of each action are
carefully considered in light of their impact on the system’s state
and in turn the system’s ability to respond in a timely manner to
upcoming tasks. The importance of timely response becomes even
more critical in the context of emergency medical services (EMS).
Here, the primary goal extends beyond efficiency and resource
utilization to encompass the health and survival of patients. An
optimal EMS dispatching policy aims to minimize response times
and ensures that the right resources are available at the right time,
thereby significantly improving patient care outcomes and the
overall effectiveness of the emergency response system.

The most common and practical dispatching rule follows a
greedy policy that dispatches the closest appropriate idle service to
the request. However, studies on dispatching, such as those
conducted on ride-hailing platforms, have shown that this greedy
policy tends to be myopic and suboptimal (Yan et al., 2020; Özkan
and Ward, 2020; Qin et al., 2020). Therefore, a forward-looking
policy that considers the longer-term impact of the current
matching decisions is likely to perform better than the greedy
policy, since the current dispatch decision affects the availability
and distribution of the resources in the future (Özkan and
Ward, 2020).

In the ride-hailing platform the optimization objective of the
system encompasses maximizing the drivers income and
minimizing the passengers pick up time. In the case of
dispatching electrified vehicles to mitigate the carbon emissions,
charging and battery swapping demands (Sayarshad et al., 2020;
Sheng et al., 2023), as well as range limit (Li X. et al., 2024) are also
incorporated into the efficient dispatching objective. In general, the
forward looking policy in ride-hailing platform differs from the
emergency unit dispatching in which the main contributing factor to
the optimization objective is either minimizing the incident
response time or possibly more importantly minimizing the
fraction of late responses for severe incidents. On the other hand,
in the ride-hailing system, the policy aims to balance passenger pick-
up time and drivers’ earnings through future matches which
typically differs from the foremost objective of an emergency
response system.

From the perspective of ambulance dispatching, sending the
appropriate closest idle unit without carefully analyzing the supply
and demand level in the unit’s catchment area may be a suboptimal
decision. To explain further, consider a scenario where for the

received call, multiple ambulances can reach the incident location
within a certain acceptable time. Among those, the closest one may
be covering an area with a higher rate of incident calls, increasing the
likelihood that this unit will be needed shortly for a high-priority call
thereafter. Moreover, this unit’s catchment region may have overall
a limited coverage in terms of available units nearby. Therefore, it
might not be a good decision to deploy this ambulance for the less
severe incident call based solely on its shortest travel time to the
incident location. Instead, it could be more effective to utilize slightly
farther unit in moderate situations if the call priority is perceived as
low, reserving the closest ambulance for potential high-priority calls
in near-future. Therefore, sending a nearby ambulance to attend to a
lower priority patient could potentially result in those ambulances
being unavailable for future urgent calls in the vicinity (Sudtachat
et al., 2014).

This study aims to develop a newmetric that quantifies the supply
and demand level of each emergency unit’s catchment zone. When
combined with travel time metric, this approach enables more
informed dispatch decisions, thereby improving response times for
both the current and future emergencies. This proactive approach
ensures better availability of ambulances for subsequent high-priority
calls. Our approach involves constructing an end-to-end discrete
event simulation model designed to replicate the dynamics of EMS
operations under various dispatching policies. The temporal
dependency of the dispatching decisions suggests modeling the
response process as a Markov decision process (MDP), which
effectively models the sequential decision-making that aims to
optimize a long-term objective (Xu et al., 2018). Thus, a
reinforcement learning (RL) agent is trained within a small scale
synthesized simulation environment seeking the potential optimal
policy to demonstrate the myopic nature of the greedy policy. Next, a
heuristic-based dispatching policy using the proposed metric is
designed to approximate the optimal policy and its effectiveness is
evaluated for large-scale synthesized simulation environment. The
need for this model arises from the complexity and scale of real-world
scenarios, which often exceed the processing capabilities required to
train an optimal RL agent. By simplifying the decision-making
process, the heuristic model enhances scalability and practicality
for a large-scale applications, providing a more feasible approach
to managing the dynamic demands of such environments. Therefore,
the primary contribution of this paper is the introduction of a novel
decision-making criterion for emergency unit dispatching that strikes
a balance between practicality and optimality. Unlike the simple but
myopic greedy policy, the proposed heuristic-based approach offers a
scalable solution that effectively addresses the complexity of real-
world medical emergency scenarios. In contrast to the
computationally intensive process of training a reinforcement
learning agent or the complex dispatching algorithms used in ride-
hailing services, this heuristic model offers an enhanced yet practical
alternative for large-scale applications, meeting the EMS need for tools
that are both transparent and computationally accessible. In contrast
to MDP-based and deep reinforcement learning approaches, our
method avoids the need to train large policy tables or deep neural
networks for policy approximation, and it does not involve solving
complex value functions or performing computationally intensive
iterative updates at runtime. Instead, it relies on an interpretable
penalty metric that can be evaluated in real time with minimal
computational overhead.
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2 Related work

Optimizing EMS emergency response involves addressing
multiple operational dimensions, such as the strategic
positioning of ambulances, dynamic strategies for their
relocation or redeployment, and the development of optimal
dispatching policies. Key studies in these areas include works
on ambulance positioning (Bertsimas and Ng, 2019; Lanzarone
et al., 2018; Comi et al., 2018), dynamic redeployment (Maxwell
et al., 2010; Sudtachat et al., 2016), and dispatching policies
(Haghani et al., 2004; Schmid, 2012; Jagtenberg et al., 2017;
Yoon and Albert, 2021). Although dynamic relocation is a
major focus in most research, its implementation becomes
increasingly complex and potentially confusing as the number
of units and the complexity of the environment grow (Haghani
et al., 2004; Andersson and Värbrand, 2007). Consequently, some
studies concentrate on refining dispatching policies. The
discussion around the use of a greedy dispatching policy—the
approach of sending the appropriate closest idle unit to address a
request—has been ongoing in both ride-hailing order dispatching
and EMS unit dispatching. References such as Qin et al. (2020)
and Azagirre et al. (2024) for ride-hailing and a range of studies
for EMS such as Carter et al. (1972), Andersson and Värbrand
(2007), Lee (2011), Jagtenberg et al. (2017), and Carvalho et al.
(2020) have highlighted that despite its practicality and
simplicity, the greedy policy can be myopic. While it might
offer a straightforward solution, especially in the context of
EMS where rapid response is critical, this policy does not
necessarily ensure long-term system-level optimality.

An alternative strategy involves choosing an ambulance for
dispatch based on the shortest travel time with less reduction in
the system’s readiness to handle subsequent emergency calls.
Andersson and Värbrand (2007), Lee (2017), and Carvalho et al.
(2020) explore various models to quantify and optimize this
readiness through so-called preparedness metric. Andersson
and Värbrand (2007) introduced a measure of preparedness as
an indicator of the EMS system’s capability to respond to both
current and future calls. They developed a mathematical model
for assessing zone-level preparedness, which calculates the sum
of each ambulance’s contribution to the preparedness of its
subzone. This contribution is weighted by the inverse of the
ambulance’s travel time to the subzone and further adjusted by
the call rate or population of the subzone. Lee (2017) proposed a
model that calculates preparedness factoring in that ambulance
engaged with a call. Then, preparedness is inversely proportional
to the sum of the shortest reach time of each subzone by an
available ambulance, adjusted by the call rate of that subzone.
The dispatch decision prioritizes the ambulance whose
deployment maximizes the ratio of weighted preparedness to
its travel time to the subzone. Carvalho et al. (2020) expanded on
this metric by integrating a temporal aspect, allowing both the
call rate and travel times to vary over time. An alternative
approach involves dispatching an ambulance that offers the
least marginal coverage to the region, as discussed by
Jagtenberg et al. (2017). They calculate the marginal coverage
for each idle ambulance through the dynamic Maximum
Expected Covering Location Problem (MEXCLP), a method
also explored by Daskin (1983) and Jagtenberg et al. (2015).

In the field of ambulance location, coverage is defined as the
measure indicating the proportion of calls an ambulance can
respond to within a specific response time threshold, and
covering models aim to optimally position ambulances to
maintain the system’s coverage level. Yoon and Albert (2021)
applied this concept of coverage in their dynamic dispatching
policy by incorporating the probability that a call of a particular
type can be reached by a certain unit type within the response
time threshold into the reward function of MDP model. This
probability is calculated using the coverage function, specifically
the Maximal Covering Location Problem with Probabilistic
Response Time (MCLP + PR), as detailed by Erkut et al. (2009).

Common approaches for deriving optimal dispatching policies
include using Markov Decision Process (MDP) simulations (McLay
and Mayorga, 2013; Jagtenberg et al., 2015; Yoon and Albert, 2021),
constrained MDP employed by Albert (2023) to account for a
priority list in obtaining more intuitive optimal restricted
dispatching policies, employing reinforcement learning techniques
(Liu et al., 2020; Hua and Zaman, 2022), applying approximate
dynamic programming (Albert, 2023; Schmid, 2012) and heuristics-
based policies proposed by several studies, including Bandara et al.
(2014), Yoon and Albert (2021), and Jagtenberg et al. (2015). Table 1
classifies the reviewed dispatch policies based on the policy
derivation approach.

Several studies, including those by McLay and Mayorga
(2013), Bandara et al. (2014), Sudtachat et al. (2014), Yoon
and Albert (2021), and Albert (2023) take into account the
call priority, distinguishing between high and low severity
levels in their modeling. Additionally, these studies consider
the type of ambulance dispatched—either Basic Life Support
(BLS) or Advanced Life Support (ALS)—based on the severity
of the call, as discussed by Yoon and Albert (2021) and Sudtachat
et al. (2014). Call priority which is perceived upon call arrival is
typically classified to different levels based on call severity or risk
(McLay and Mayorga, 2013; Bandara et al., 2014; Sudtachat et al.,
2014; Yoon and Albert, 2021) from most severe to the least severe
incidents. Recently, Rautenstrauss et al. (2023) modeled
dispatching accounting for the ambulance split using
Hypercube queuing model. Ambulance split which means
designating ambulances to certain patient categories such as
suspected or known cases is shown to be practical to restrict
the risk of infection of EMS response personnel during a
pandemic (Chow-In Ko et al., 2004; Rautenstrauss et al.,
2023). Many dispatch policies offer a prioritized list of
ambulances for incident response. However, due to the
dynamic nature of the environment—such as fluctuating
availability and locations of idle ambulances—relying
exclusively on these predefined lists can be inadequate. As
environmental conditions change, dispatch strategies must
adapt in real-time to ensure efficient response times. Rather
than using a static priority list, this study introduces a real-
time decision making criterion with a closed-form mathematical
expression to respond based on dynamic state of the system as
incident calls come in. This new criterion incorporates the
varying levels of ambulance coverage and the demand
conditions within each candidate ambulance’s catchment area,
ensuring that resource allocation dynamically adapts to changes
in the environment.
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3 Methodology

This section outlines the modeling framework for the proposed
ambulance dispatch policy. We begin by deriving a mathematical
formulation for the penalty metric, which quantifies ambulance
supply relative to emergency call demand within each unit’s
catchment zone. This metric captures spatial variability in both
demand and resource availability, offering a more informed basis for
dispatch decisions beyond the conventional nearest-unit (greedy)
policy. To illustrate the myopic nature of the nearest-unit approach,
we formulate the dispatching problem as a Markov Decision Process
(MDP), embedding the penalty metric into the reward function to
enable reinforcement learning-based policy development in a
synthetic environment. We then introduce a heuristic-based
dispatching strategy that leverages the penalty metric as a feasible
alternative to RL-based optimization in the large city-scale
simulation. Finally, we present the Discrete Event Simulation
(DES) framework used to model EMS system dynamics, evaluate
the proposed policies under realistic operational scenarios, and
assess their effectiveness in improving dispatch outcomes.

3.1 Proposed penalty metric

We aim to explore the potential sub-optimality of a greedy
policy that involves dispatching the closest idle emergency unit by
conceptualizing an example scenario. Consider a simplified
example depicted in Figure 1a. Suppose, the red star marks the
location of a patient, while the positions of three nearby idle
ambulances, U1, U2, and U3, are marked by blue, green, and
purple points, respectively. Ambulances are positioned at
increasing distances from the patient, therefore assuming traffic
speed is uniform, travel times are TU1 <TU2 <TU3. The isochrone
centered at the patient’s location and depicted by a red circle masks
the ambulances, here U1 and U2, that can reach the patient in less
than certain time τ. This toy example assumes uniform traffic and
accessibility, so the isochrones are represented as circles. In the real
world, however, an isochrone may take on an irregular and
dynamic shape due to the layout of the transportation network
that impose different accessibility to different locations and the
variability of traffic conditions. According to the greedy policy,
ambulance U1 is initially selected for dispatch to the incident

TABLE 1 Summary of ambulance dispatching policies.

Authors
(year)

Dispatch policy Key contribution Implementation details

Andersson and
Värbrand (2007)

Dispatch based on the shortest travel time
with less reduction in the system’s readiness to
handle subsequent emergency calls

Quantifies readiness through preparedness
metric

Zone-level preparedness, equals the sum of each
ambulance’s contribution to the preparedness of its
subzone, weighted by the inverse of the ambulance’s
travel time and further adjusted by the call rate or
population of the subzone.

Lee (2017) Preparedness is inversely proportional to the sum of
the shortest reach time of each subzone by an
available ambulance, adjusted by the call rate of that
subzone, dispatching the ambulance whose
deployment maximizes the ratio of weighted
preparedness to its travel time to the subzone.

Carvalho et al.
(2020)

Expanded on this metric by integrating a temporal
aspect, allowing both the call rate and travel times to
vary over time.

Jagtenberg et al.
(2017)

Dispatching an ambulance that offers the least
marginal coverage to the region

Shows greedy policy is myopic and incorporates
coverage in decision-making.

Marginal coverage for each idle ambulance is
calculated through the dynamic Maximum Expected
Covering Location Problem (MEXCLP).

Yoon and Albert
(2021)

Markov Decision Process (MDP) Incorporates the probability that a call of a
particular type can be reached by a certain unit
type within the response time threshold into the
reward function of MDP model.

Probability is calculated using the coverage function
of the Maximal Covering Location Problem with
Probabilistic Response Time (MCLP + PR).

Albert (2023) Constraint MDP Accounts for a priority list in obtaining more
intuitive optimal restricted dispatching policies.

Formulated as a mixed integer programming model.

Liu et al. (2020) Reinfrocement learning Trains deep reinforcement learning. Multi-Agent Q-Network with Experience
Replay(MAQR).

Hua and Zaman
(2022)

Proposes an alternative MDP formulation for
the problem using post-decision states.

Temporal-difference reinforcement learning policy.

Proposed approach Dynamic penalty-based dispatching strategy
that penalizes dispatches from high-demand,
low-coverage areas for low-priority calls.

Introduces a penalty metric that quantifies
supply-demand levels within each ambulance’s
catchment zone.

A closed-form mathematical expression for the
penalty metric, proportional to the ratio of
emergency medical demand to ambulance coverage,
is evaluated for each ambulance’s catchment zone.
Catchments are defined using isochrones,
delineating the regions an ambulance can reach
within an allowable response time.
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location. However, an analysis of the demand and the coverage
within the catchment zone of each candidate ambulance suggests
that dispatching ambulance U2 would be more effective. The
rationale for this decision is as follows. In Figure 1b, the
catchment zone of U1 is represented by a dashed blue circle,
with sub-zones within this area delineated by dashed blue
rectangles. The purpose of this partitioning is to have a more
detailed understanding of the spatial variations in demand and
coverage at the U1’s catchment area. First, the coverage level of the
catchment is assessed. Figure 1c illustrates the isochrone of a
subzone—dashed red circle centered at the subzone’s center,
marked by unfilled red star. By compromising on granularity
and assuming that an incident occurs within a given sub-zone,
the isochrone can be used to assess how many available
ambulances can reach the incident in less than τ time unit.
This measurement represents the coverage of that sub-zone. If
we iterate by drawing isochrones for all sub-zones and count the
idle ambulances, and generally find fewer idle ambulances
available to respond to incident calls within any sub-zone of an
ambulance’s catchment area, this indicates lower ambulance
coverage within U1’s catchment area. Similarly, the ambulance
demand within this catchment area can be assessed by iterating
through the subzones and evaluating their incident rates. This step
does not require calculating the sub-zone’s isochrone; instead, the
demand is simply measured by the aggregated call rates of each
sub-zone. We assume that U1 is located in a region with higher
demand for emergency medical services. While this is a
hypothetical assumption here, in a real-world scenario, demand
could be estimated using historical data. Now, consider ambulance
U2, which is located in an area with a lower incident rate. Even
though another ambulance, U3, is present within U2’s catchment

zone, as shown by the dashed green circle in Figure 1d, this
arrangement ensures that if U2 is occupied, U3 can still respond
to part of the incidents in U2’s area within the maximum allowed
response time. Therefore, by applying the same analysis to every
candidate ambulance (in this case, two ambulances), it becomes
evident that dispatching U2 is likely a better choice than U1 when
considering the response times for both the current and
subsequent calls.

Ultimately, to account for such scenarios, a new penalty metric is
designed, proportional to the demand-to-coverage ratio, which
captures the demand and coverage levels within each candidate
ambulance’s catchment area. This metric is then used as a penalty on
the ambulance to guide the dispatching choice effectively. The
mathematical model of the proposed penalty metric is detailed in
Equations 1–3.

P Ui ∈ ~U xinc, t, τ( ), t; τ( ) � ∑
Zj∈ZUi t,τ( )

π Zj( )
| ~U Zj, t, τ( )|, (1)

ZUi t, τ( ) � Zj | T xUi t( ), Zj( )< τ{ }, (2)
~U x, t, τ( ) � Ui | χ Ui, t( ) � 1, T xUi t( ), x( )< τ{ }, (3)

where P(.) is the penalty on ambulance Ui, i � 1, . . . , n that
belongs to the set of candidate ambulances at time t denoted by
~U(t, xinc, τ) in which xinc denotes incident location. Candidate
ambulances are ambulances that are available, i.e., their status
function denoted by χ(Ui, t) is equal to 1 (equal to 0 otherwise)
and their travel time to incident location at time t calculated by
travel time function T(xUi(t), xinc) takes less than time threshold τ

which is interchangeably referred to as isochrone parameter
throughout the paper. xUi(t) denotes ambulance Ui’s location at

FIGURE 1
Conceptual framework for penalty calculation based on the analysis of demand and coveragewithin ambulance 1’s catchment zone. (a) Blue, green,
and purple points mark three ambulances’ locations. Red filled star marks patient location. Red circle is the isochrone centered at the patient’s location to
mask the ambulances that can reach the patient in less than a certain time τ. (b) The Blue dashed circle shows the ambulance 1 (U1) catchment area and
dashed blue lines divide each zone into sub-zones. (c) Unfilled red stars denote the center of the sub-zone, and dashed red circle represents its
corresponding isochrone used to count idle ambulances that can reach each sub-zone center within time τ. (d) Calculated penalties for candidate
ambulances based on the quantified supply and demand in their respective catchment zones, highlighted in blue for U1 and green for U2. (A similar
procedure is applied to calculate the penalty for ambulance U2.).
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time t. ZUi(τ, t) is the set of subzones Zj, j � 1, . . . , m which fall
within the catchment of ambulance Ui at time t. If ambulance Ui is
moving, its location and consequently the set of subzones within its
catchment changes over time. m denotes the total number of
subzones in the region of study. The term π(.) denotes the
incident probability of the subzone Zj within the ambulance’s
catchment. The incident probabilities can be derived from the
historical or estimated incident counts for each subzone.
| ~U(Zj, t, τ)| denotes the coverage of the subzone Zj at time t
and basically counts the number of available ambulances that can
reach the sub-zone in less than τ time units. Since coverage can drop
to zero when ambulances are moving around, the mechanism
coverage � max(ϵ, | ~U(Zj, t, τ)|) is adopted to prevent division by
zero in penalty calculation where ϵ is a small number representing
the near-zero coverage.

3.2 MDP model description

The EMS systems are typically organized around a central
control hub that oversees decision-making and operational
activities. The primary goal is to ensure rapid response to calls
while also optimizing resources to enhance long-term response
efficiency. Consequently, using a Markov Decision Process (MDP)
framework is effective for modeling the decision processes in the
EMS response system, as it focuses on optimizing long-term
outcomes. In this study, we train a centralized reinforcement
learning (RL) agent, specifically a Q-learning agent, to develop
a potential optimal dispatching policy. Q-learning is a model-free
RL algorithm that learns the value of taking specific actions in
given states to maximize cumulative rewards. This RL agent
observes the state of the environment, analyzes requests, and
makes dispatching decisions that transition the environment to
a new state and receives rewards. Under certain conditions such as
enough exploration of every discrete state-action pair, Q-learning
is guaranteed to converge to the optimal policy (Watkins and
Dayan, 1992). Specifically, Q-learning converges to the optimal
action-value function if all state-action pairs are visited infinitely
often and the learning rate decays appropriately over time.
Typically, EMS optimization models aim to reduce the average
response time or the fraction of late responses. Hence, the reward
function can incorporate either the immediate response time or an
indicator of whether the response time exceeds a specified
acceptable threshold.

Next, we detail the component of MDPmodeling utilized for the
optimization of the unit dispatching policy including the state
representation, action space, and the reward function.

The state of the environment at any time step t, s(t), is
characterized by the location of the patient or incident, x(t)

inc

(x(t)
inc � 0 if no incident call at time t), the location of the

ambulances, {xUi(t)}ni�1, and the availability of the ambulances,
{χ(Ui, t)}ni�1, where n is the total number of ambulances, as
shown by Equation 4.

s t( ) � x t( )
inc, xUi t( ){ }ni�1, χ Ui, t( ){ }ni�1( ). (4)

The action at time t is defined as the choice of an available
ambulance to be dispatched to the patient, thus the action space

is a(t) ∈ {0, 1, . . . , n}. The action is selected from the pool of idle
ambulances, effectively excluding those that are not available.
The justification of masking out the invalid actions and
sampling from the set of valid actions is studied by Huang
and Ontañón (2020). The a(t) � 0 signifies either the absence of
an idle ambulance or if there is no incident call. The reward
denoted by rt is calculated based on two components when an
idle ambulance is available: the first component is the travel
time from the ambulance’s current location to the patient’s
location denoted by T(xUa(t) (t), x(t)

inc), and the second term,
P(Ua(t) , t), is the penalty on ambulance Ua(t) calculated by
Equation 1. Given the different scales of the travel time and
the penalty, the coefficient β is introduced in the reward
function to balance these terms. If an incident call is received
but no idle ambulance is available, the system assigns a
relatively large negative value as the reward here denoted as
M. This approach aims to discourage situations where demands
cannot be met due to the lack of available resources. Conversely,
if no incident call is received, the reward is set to zero, indicating
a neutral outcome where no action is required. This reward
structure is designed to optimize the dispatching process,
prioritizing the availability of ambulances for emergency calls
while minimizing instances of unmet demand. The reward
function is presented in Equation 5.

rt+1 a t( )( ) �
T xU

a t( ) t( ), x t( )
inc( ) + βP Ua t( ) , t( ) if x t( )

inc ≠ 0 ∧ a t( ) ≠ 0

M if x t( )
inc ≠ 0 ∧ a t( ) � 0

0 if x t( )
inc � 0 ∧ a t( ) � 0

⎧⎪⎪⎨
⎪⎪⎩

(5)
For simplification, we assume that the system operates within

a stationary environment, meaning the rate of emergency call
arrivals remains constant over time. Consequently, the Markov
Decision Process (MDP) used in this study is formulated for an
infinite time horizon, and continuous time is discretized into
small intervals, specifically, one time unit in our case. Therefore,
state transitions can occur at each time unit. For example, if
action a(t�1) is taken in response to an incident call at location
x(t)
inc, it will alter the state, st such that the χ(U1, t) � 1 and xU1(t) �

j to χ(U1, t + 1) � 0 and xU1(t + 1) � j′, where j and j′ indicate
the current and the new location of ambulance U1 after one time
unit while en route to destination, respectively. The terminal state
is the end of each episode within this framework. With the
concepts of state, action, reward, and terminal states clearly
defined, this learning process relies on the Bellman equation,
as presented in Equation 6, to iteratively improve the policy
towards optimality.

Q s, a( ) � Q s, a( ) + α r + γmaxa′Q s′, a′( ) − Q s, a( )[ ] (6)
where Q(s, a) is the current estimate of the Q-value for state s and
action a. s′ and a′ represent the next state and the action with
maximum value at state s′, respectively. α is the learning rate, which
determines to what extent the newly acquired information will
override the old information. The discount factor γ ranges
between 0 and 1 and determines the importance of future
rewards relative to immediate rewards. A smaller γ places more
emphasis on current rewards, while a larger γ places greater
emphasis on future rewards.
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3.3 Heuristic-based dispatching policy

Q-learning can converge to the optimal policy (Watkins and
Dayan, 1992), making it effective for demonstrating the potential
sub-optimality of the greedy policy in smaller-scale problems.
However, it is not suitable for larger scales due to the complexity
and computational demands of real-world scenarios. This
complexity often surpasses the processing capabilities required to
train an optimal RL agent. Therefore, a heuristic model with new
decision making criterion is designed to simplify the decision-
making process and enhance the scalability and practicality for
large-scale applications while managing the dynamic demands of
such environments. In this new criterion, the decision on which
ambulance to dispatch is based on a compromise between
minimizing travel time and choosing the ambulance with the
lowest penalty as shown in Equation 7.

argminUi
T xUi t( ), xinc( ) + βP Ui, t( )( ) (7)

where T(xUi(t), xinc) is the estimated travel time from ambulance
current location to the incident location, P(Ui, t) is the penalty on
ambulance, and β is the hyperparameter that needs to be calibrated
for each experiment. In this paper, the optimal value for β is
identified through simulation-based optimization technique by
performing grid search over a range of values, running the

simulation, evaluating the performance of each combination
using cross-validation, and eventually selecting the values that
returns the lowest response time. However, the simulation can be
integrated with an optimization algorithms such as genetic
algorithm, and Bayesian optimization to find the optimal value
for β. The state-of-the-art optimization algorithms is
comprehensively reviewed by Amaran et al. (2016). Under
extreme conditions, such as major public events, natural
disasters, or pandemics, the spatial distribution of emergency
calls and available resources may diverge significantly from
historical patterns. In such scenarios, the simulation-based
procedure for identifying the optimal β can be re-executed with
updated input parameters, allowing the policy to be re-tuned to
reflect the evolving system dynamics and remain adaptive to current
operational conditions.

3.4 Discrete event simulation

In order to validate the effectiveness of the proposed penalty
metric in guiding the ambulance dispatch policy toward the optimal
policy, an end-to-end discrete event simulation (DES) model is built
to synthetically model the operation of EMS response system. DES
allows decision-makers to experiment with changes in system

FIGURE 2
Snapshots of (a) time instances, and (b) location instances of the ambulance in discrete event simulation.
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configurations, resource allocations, or operational policies to
observe potential impacts on system performance without
disrupting the real system (Golazad et al., 2024). The typical
workflow of a DES model starts with the initialization of the
system state, followed by the sequential processing of events, and
the consequent updating of the system state after each event. The
simulation runs until a specified end condition is met. In the discrete
event simulation model, an incident generator simulates the
emergency calls across various locations using a Poisson
distribution, with the rate of incidents varying spatially. Such
spatial variation can arise due to varying regional vulnerability
influenced by factors such as non-uniform population densities,
demographic distributions, or disparities in urban infrastructure
across different areas (Bittencourt et al., 2024). Following the arrival
of an incident call, a corresponding patient object is created within
the simulation. This object stores essential details about the patient,
such as their location, the time of the call, the time when an
emergency unit is assigned, the time the ambulance arrives at the
patient’s location, and, if necessary, information pertaining to
hospital care and other related aspects. Additionally, an
ambulance object is created for each ambulance, encapsulating
features such as its base location, current location (which is
updated at each simulation time step while the ambulance is in
motion), and timestamps for key discrete events. These events
include the trip’s start time when the ambulance is assigned to a
call, as well as the times the ambulance arrives at and departs from
both the scene and the hospital. The simulation model incorporates
a road network graph constructor that replicates the geographical
layout of the road network and locations within the simulation
environment. Using this road network graph, the travel time model
identifies the shortest path between two coordinates and estimates
the corresponding travel time. At each decision point for ambulance
selection, the penalty module is invoked to calculate penalties for
idle ambulances within the reach of the incident, as determined by
the isochrones. These penalties are based on the current state of the
environment and the characteristics of each ambulance’s catchment
area. The penalty module utilizes the constructed road network
graph to define both the ambulances’ catchment zones and the
incident’s reach zone by generating the isochrones. The sequence of
time points and ambulance location updates in the discrete event
simulation is schematically illustrated in the Figures 2a,b,
respectively. Figure 2a outlines the chronological progress of
events, showcasing the flow from incident call arrival through
ambulance dispatch, patient care, and if necessary, hospital
transfer. It also highlights the cycle through which an ambulance
becomes idle and ready for a new dispatch. This availability occurs
immediately after finishing on-scene care at the patient’s location or
following the completion of a hospital transfer, enabling the
ambulance to be dispatched again even while it is en route back
to its base station. The proposed heuristic-based dispatching strategy
is presented in Algorithm 1 and Algorithm 2.

Input:

• resource locations (hospitals, ambulance stations)

• incident rate and spatial incident distribution

• service times (on-scene and at-hospital

average duration)

•hospital transport ratio (hospratio)
•isochrone time threshold (τ)
•simulation duration (T)
•number of episodes (N)

Output: response times by priority per episode

for e = 1 to N do

Reset environment

patientQueue ← emptyQueue()

for t = 0 to T step Δt do

Generate Incident: patient ←
generateIncident(incident rate, spatial incident

distribution)

if patient exists then

if idleAmbulanceAvailable() then

if isHighPriority(patient) then

ambulance ← selectAmbulanceGreedy(patient)

else

ambulance ← selectAmbulanceHeuristic

(patient, τ)

end if

else

addPatientToQueue(patientQueue, patient)

end if

end if

while idleAmbulanceAvailable() AND not

isEmpty(patientQueue) do

nextPatient ← getNextPatient(patientQueue)

ambulance ← selectAmbulanceGreedy()

dispatchAmbulance*(ambulance, nextPatient, on-

scene duration, at-hospital duration, hospratio)

end while

if ambulance exists then

dispatchAmbulance*(ambulance, patient, on-scene

duration, at-hospital duration, hospratio)

end if

end for

end for

* dispatchAmbulance module executes the sequence of

discrete events outlined in Figure 2a incorporating

other modules such as travelTimeEstimate,

pathGeneration, hospitalSelection.

Algorithm 1 Dispatching with Heuristic Policy.

Input:

• patient

• isochrone time threshold (τ)
Output: Selected ambulance for dispatch

ambulanceSubset ← selectAmbulancesWithinThreshold

(τ, patient)

for ambulance in ambulanceSubset do

penalty ← 0

travelTime← estimateTravelTime(ambulance, patient)

regions ← getRegionsInAmbulanceCatchment

(ambulance, τ)

for region in regions do
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probability ← getIncidentProbability(region)

count ← getAmbulanceCountWithinThreshold

(region, τ)

penalty ← penalty + (probability/count)

end for

end for

ambulanceChoice ← argmin(travelTime + β * penalty)

Return ambulanceChoice

Algorithm 2. SelectAmbulanceHeuristic.

4 Simulations and results

In the following sections, two synthetic environments of
different scales and configurations are designed. In the small-
scale environment, three policies—greedy, Q-learning, and
heuristic—are compared, while in the large-scale setting, the
greedy and heuristic policies are evaluated. Finally, the proposed
heuristic-based policy is applied to simulate the emergency response
system inManhattan, New York, and is compared against the greedy
policy. The comparison metrics include the distribution of episode
mean response times and the fraction of responses in each episode
that exceed a specified threshold. This threshold, typically set by
regional EMS regulatory agencies, determines whether a response is
classified as late or on-time.

4.1 Simulation 1: small scale setting

The small-scale setup is strategically chosen to manage the
complexity of the state-action space, which facilitates the
exploration of optimal strategies through a Q-learning
algorithm. In a controlled setting, this approach increases the
likelihood of converging to an optimal policy. The simulation
setup, depicted in Figure 3a, consists of a 3 × 4 rectangular region
containing 12 sub-regions, with each edge measuring 1 unit of

distance. Ambulance speed is assumed to be constant at 60 unit
distance per hour and the isochrone parameter τ is set to 2 min.
This environment includes three ambulances and a single hospital
shown by Figure 3a. Figure 3b shows the distribution of the
ambulance coverage across subzones based on the coverage
definition in Equation 1 in environmental reset. In cases that
coverage drops to zero, coverage is set to max(0.05, coverage) to
avoid division by zero in penalty calculation in Equation 1. The
spatial distribution of incidents in this toy problem is modeled
using a sparse random function and refined with a Gaussian filter
to create a realistic scenario where certain areas have higher
incident rates. Based on the assumed incident distribution and
the ambulance base locations, the penalty values on ambulances
while are idle at their station, are calculated and shown in
Figure 3a. Incidents are generated according to a Poisson
distribution with an average rate across the entire region of one
incident every 15 min. The on-scene and hospital durations are
each modeled using exponential distribution with a mean of
10 min. It is also assumed that all patients require hospital
transport, with 30% of them classified as high-priority calls.
The simulation is conducted over 200 episodes, with each
episode running for a duration of 5,000 min.

4.1.1 Simulation 1: penalty coefficient selection
The optimal value for the penalty coefficient, β, is

determined by conducting several experiments with varying
the β values. For each β, the empirical cumulative distribution
functions (ECDFs) of the episode mean response times are
compared against those of the greedy policy, as shown in
Figure 4a. The β that yields the largest positive divergence
from the ECDF of the greedy policy for high priority calls is
selected. This divergence is quantified by calculating the area
between the two distributions using the integral
∫(FHeuristic(x) − FGreedy(x))dx. The parameter β is varied
within the range of 1–20, with the final value set to 4, as this
value demonstrated superior performance for both high-priority
and low-priority calls, as shown in Figure 4b.

FIGURE 3
The locations of hospitals and ambulance bases in the Simulation 1 environment with (a) normalized incident rate distribution in the background.
The values represent the ambulance penalties, calculated based on the environment reset. (b) Coverage map calculated with isochrone parameter τ =
2 min at the environment reset. This is the coverage based on which penalties are calculated (denominator in Equation 1).
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4.1.2 Simulation 1: response time analysis
Figure 5 represents the flow map of responses which visualizes

ambulance dispatching pattern for each dispatching policy. Each

arrow represents a dispatch event, with the direction pointing from
the dispatched ambulance’s location to the responded incident
location. The thickness and color of the arrows indicate the

FIGURE 4
(a) Empirical cumulative distribution of episodemeans for heuristic policy conducted with varying penalty coefficients (β) and the greedy policy, and
(b) area between ECDFs of episode mean response times of heuristic policy conducted with varying penalty coefficients (β) and the greedy policy in
simulation 1 (200 episodes for each experiment).

FIGURE 5
Response patterns for three policies in Simulation 1: (a) greedy, (b) Q-learning, and (c) heuristic (penalty-based). Based on the response pattern
under the heuristic policy shown in (c), it is evident that the blue ambulance (located at point 5 with lowest penalty) is also responding to incidents at the
eastern locations (points 5->6->7->8), a pattern weakly observed under the greedy policy as seen in (a).
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frequency and volume of dispatches to various incident locations,
providing a clear overview of response patterns and the distribution
of ambulance activity across different areas. The contrast between
the patterns underscores the differences in ambulance selection
between the heuristic, Q-learning, and greedy policies. As shown
in Figure 3a, the blue ambulance (located at first column second
row) has the lowest penalty value, while the white ambulance
(located at second column third row) has the highest. This
indicates that the white ambulance is more likely to be busy due
to the high incident rate and consequently high demand in the east
and southeast parts of the study area. In the pattern resulting from
the penalty-based policy shown by Figure 5c, it is observed that the
blue ambulance is contributing to the east point incidents (5->6->7-
>8), a pattern weakly seen in the greedy policy (Figure 5a). Similarly,

in the Q-learning policy, the orange ambulance, which has a lower
penalty than the white ambulance, is more engaged with incidents
on the east side compared to the greedy policy. Moreover, in Figures
5b,c which correspond to QL and heuristic policies, respectively, the
northern links (e.g., 2->6) appear relatively weaker compared to the
greedy policy pattern shown in Figure 5a. This indicates that the
white ambulance is dispatched less frequently to incidents in the
northern directions due to higher penalty value. Notably, the
heuristic policy penalizes dispatching of high penalty ambulances
for only low-priority calls, while for high-priority calls, the
simulation adheres to the greedy choice (see the detailed penalty-
based dispatching policy in Algorithm 1 and Algorithm 2). This
behavior of deploying ambulances from low-demand and properly
covered regions for low-priority calls is enabled by the penalty

FIGURE 6
Empirical cumulative distribution of (a) episodemeans and (b) episode fractions of response times greater than time threshold (=4min) in simulation
1 (200 episodes). The leftmost, middle, and rightmost ECDFs correspond to combined, high priority, and low priority calls, respectively. Both the greedy
and optimal Q-learning policies demonstrate improvements in response times.
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definition concept. Such behavior results in saving the response time
for high-priority calls, as illustrated by the empirical cumulative
distribution functions (ECDF) of episode mean response times in
Figure 6a. Since these ECDFs are associated with the mean response
times at each episode, to better evaluate the responses within each
episode, the fraction of responses that exceed a time threshold (In
this case, 4 min) is also obtained, and their ECDFs are depicted in
Figure 6b. The comparison of the distributions reveals that
responses to high-priority calls are improved when using both
Q-learning and penalty-based policies. For instance, the greedy
policy keeps the fraction of response times exceeding the 4 min
threshold under 25% in only 65% of the episodes. In contrast,
Q-learning or penalty-based policies achieve this in 80% of the
episodes. In other words, Q-learning or penalty-based policies
perform better than the greedy policy in keeping the response
times below 4 min in a larger percentage of episodes.

4.2 Simulation 2: large scale setting

In this section, the experiment region is expanded to test and
evaluate the new policy against the greedy policy within a larger-
scale setup. Due to relatively large state-action space and lower
chance of converging to the global optimal policy, the Q-learning
algorithm is not applied in this scenario. Expanding the
environment size would proportionally increase the state-action
space, significantly elevating the computational demands for
training a Q-learning agent. The experimental setup, depicted in
Figure 7a, consists of a 16 × 16 square region containing 256 sub-
regions, with each edge measuring 1 unit of distance. Ambulance
speed is assumed to be constant at 60 units of distance per hour and
the isochrone parameter τ is set to 6 min. Figure 7b shows the
distribution of coverage across subzones based on the definition in
Equation 1 in environment reset. In cases that coverage drops to

zero, coverage is set to max(0.05, coverage) to avoid division by zero
in penalty calculation in Equation 1. This setup includes five
ambulances and two hospitals shown at Figure 7a. The spatial
distribution of incidents within this region is similarly modeled
using a sparse random function and refined with a Gaussian filter. In
this simulation, the incidents are generated with a Poisson
distribution with an average rate across the entire region of one
incident every 20 min. The on-scene and hospital durations are each
modeled using exponential distribution with a mean of 10 min. It is
also assumed that 80% of patients require hospital transport, with
30% of these cases classified as high-priority calls. The simulation is
conducted over 200 episodes, with each episode running for a
duration of 5,000 min.

4.2.1 Simulation 2: penalty coefficient selection
In this simulation, the parameter β is varied within the range of

1–10. Comparing the empirical cumulative distribution functions
(ECDFs) of the episode mean response times against those of the
greedy policy, as illustrated in Figure 8a, final β value is set to local
maximum of 4. This choice demonstrated superior performance for
high-priority calls while avoiding a severe decline in performance for
low-priority calls, as shown in Figure 8b.

4.2.2 Simulation 2: response time analysis
Similarly, Figures 9a,b display the empirical cumulative

distribution of episode means and fraction of response times
exceeding a specified time threshold (assumed 8 min in this
case), over 200 episodes. These figures demonstrate that the
heuristic policy improves response times for high-priority calls
(middle plot) but compromises response times for low-priority
calls, as shown in the rightmost plots. With the heuristic policy,
the ECDFs of the episode means and the fractions of response times
exceeding specified time threshold for high-priority calls are
consistently above those of the greedy policy across nearly the

FIGURE 7
The locations of hospitals and ambulance bases in the Simulation 2 environment with (a) normalized incident rate distribution in the background and
(b) coverage map calculated with isochrone parameter τ = 6 min at the environment reset. This is the coverage based on which penalties are calculated
(denominator in Equation 1).
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entire range of the x-axis. For example, in Figure 9b, the greedy
dispatch policy maintains the fraction of late responses below 30% in
only 55% of episodes, while the heuristic policy achieves this in 70%
of episodes. Consequently, the two ECDFs can be similarly
compared and interpreted for all other proportions of late
responses. Based on the results from two experiments differing in
size and resource distribution, we found that achieving improved
response behavior with the penalty-based policy compared to the
greedy policy requires balancing the decision criterion between
proximity of the ambulances and the penalty assigned to them.
This balance can be adjusted using the parameter β in Equation 7 for
each experimental setup. In the experiments, the optimal locations
for hospitals and ambulance stations were not explored. This
decision was made because the performance of the policies and
their comparison are less influenced by the initial conditions, as
these conditions are fixed and consistent across all comparisons. The
results showed that the greedy policy can lead to suboptimal
response behavior, while incorporating the penalty concept can
guide decision-making toward improved responses. In the
following section, a real-scale EMS response in Manhattan, New
York, is simulated to evaluate the effectiveness of the penalty-based
policy in a real-world urban setting.

4.3 Simulation 3: emergency response in
Manhattan, New York

In this section, the EMS response in the Manhattan borough of
New York city is simulated using the heuristic-based ambulance
dispatching policy and compared with the greedy policy. The
simulation includes 100 idle units stationed at designated cross-street
locations and 14 hospitals across Manhattan. The locations of these
stations and hospitals are depicted in Figure 10a. Incidents are
generated using Poisson distribution with the average rate across the
entire region of an incident per minute. The on-scene and at-hospital
durations are generated using exponential distribution with rate of
21 and 35min, respectively. The borough is divided into regions and the
incident probabilities are generated with Dirichlet distribution having
incident counts for each region. These values are derived from a sample
of historical incident data from the year 2019. The paths of to-incident,
to-hospital and to-stations trips are assumed to be the path with the
shortest travel time for which the travel times are estimated by road
network analysis using speed profiles of the road segments. For the
shortest-path inference, a directed graph was constructed using
NetworkX (Hagberg et al., 2008) to represent the New York City
road network. The graph was built using geographic base information

FIGURE 8
(a) Empirical cumulative distribution of episodemeans for heuristic policy conducted with varying penalty coefficients (β) and the greedy policy, and
(b) the area between ECDFs of episode mean response times of heuristic policy conducted with varying penalty coefficients (β) and the greedy policy in
simulation 2 (200 episodes for each experiment).

Frontiers in Future Transportation frontiersin.org13

Mohammadi et al. 10.3389/ffutr.2025.1540502

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1540502


from the Lion shapefile, which contains New York City street data and
is publicly available on the New York City open data website (NYC
Department of City Planning, 2025). The speed data representing
mobility pattern in New York City shown in Figure 11 are obtained
from telematics data collected from approximately 4,500 city-owned
vehicles, and managed by the New York City Department of Citywide
Administrative Services (NYC DCAS). The data were map-matched
and the aggregated speed profiles of each road segment were obtained
(Alrassy, 2020; Alrassy et al., 2021). The shortest path travel times for
ambulances are calibrated using the regression model equation tamb �
1.21tna + 2.86(minute) derived by Olivier et al. (2022) to accurately
represent ambulance travel times in the city. Isochrones, used to identify
ambulance catchment areas, are generated based on this calibrated
travel time information within the road network. An example of an

isochrone to select the candidate ambulances is shown in Figure 10c.
For future research, incorporating probabilistic predictive models that
account for additional influencing factors on travel time, such as
weather condition, time of day, and path topological attributes,
could lead to more accurate and reliable predictions (Mohammadi
et al., 2023; Olivier et al., 2023), ultimately resulting in more precise
ambulance candidate selection. Moreover, incorporating deep learning-
basedmobility data modeling algorithms that are robust to spatial noise
and capable of uncovering hidden contextual structures in urban road
networks and drivers’ routing patterns leads tomore accurate derivation
and projection of mobility patterns on digital maps. (Mohammadi and
Smyth, 2024). The ischocrone parameter τ used to determine the
ambulance catchment area and to evaluate coverage, shown in
Figure 10b, is set to 8 min. The isochrone threshold (τ) was

FIGURE 9
Empirical cumulative distribution of (a) episode means and (b) episode fractions of response times greater than time threshold (=8 min) (b) in
simulation 2 (200 episodes). The leftmost, middle and rightmost ECDFs are associated with combined, high priority and low priority calls, respectively.

Frontiers in Future Transportation frontiersin.org14

Mohammadi et al. 10.3389/ffutr.2025.1540502

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1540502


selected based on the 10-min benchmark for emergency response in
New York City. We conservatively used an 8-min threshold in our
simulation to account for potential variability in real-world travel times
and to ensure the model remained sufficiently responsive under
operational standards. This threshold governs the selection of
candidate ambulances, restricting dispatch decisions to units capable
of reaching the incident location within 8 min. The simulation is
conducted for 25 episodes with duration of 5 h for each greedy and
heuristic policy with fixed seeds tomaintain comparability. The runs are
conducted in Linux operating systemwith 20CPUs, therefore, when the
penalty is calculated for each idle ambulance within the incident
isochrone zone, the coverage and incident probability for each
subzone center is parallel processed to accelerate the simulation.

4.3.1 Simulation 3: penalty coefficient selection
In this real-scale simulation, the parameter β is varied from

10 to 70 in increments of 10. Comparing the empirical
cumulative distribution functions (ECDFs) of the episode
mean response times against those of the greedy policy, as
illustrated in Figure 12a, final β value is set to the local
maximum of 40. This choice demonstrates a good balance for
achieving a superior performance for high-priority calls without
severely declining the performance for low-priority calls, as
shown in Figure 12b.

FIGURE 10
The locations of the EMS units stations shown by red plus signs and hospitals shown by black squares with (a) average daily incident count
distribution in the background and (b) the coverage map calculated with isochrone parameter τ = 8 min at the environment reset. This is the coverage
based on which penalties are calculated (denominator in Equation 1). (c) Example of an isochrone centered at the location marked with the red star.

FIGURE 11
Traffic pattern derived by analyzing telematics data from DCAS
used for estimating the travel time and trajectory, as well as to form
isochr ones.
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4.3.2 Simulation 3: response time analysis
Figure 13a displays the ECDF for the episode means of

simulated response times in Manhattan over 25 episodes. The
ECDF of the heuristic policy (green dashed line) generally lies
above the ECDF of the greedy policy (red solid line) specifically
for high priority calls. Although the greedy policy tends to offer
better performance for shorter response times in low-priority calls,
the heuristic policy outperforms it for longer response times in low-
priority calls (right plot) and overall for high-priority calls (middle
plot). Figure 13a indicates that the heuristic policy results in 90% of
episodes having a mean response time of less than 6 min for high-
priority calls, compared to 75% for the greedy policy. The box plots
in the leftmost and middle figures suggest that heuristic method
responds faster than the greedy method for high priority calls and
has less variability in response times. Similarly, in the Figure 13b that
presents ECDFs for episode medians of simulated emergency
response times, the distribution plot for the heuristic method
being higher than that of the greedy method suggests that for
any target response time on the x-axis, the percentage of
episodes with median response times less than or equal to that
target is greater for the heuristic method. For example, 55% of the
episodes have median response times less than or equal to 325 s

(5.4 min) in the heuristic method which is higher compared to the
greedy policy that achieves this in 40% of the episodes. Similarly,
since the mean or median represents aggregate measures, analyzing
the fraction of late responses, i.e., responses with time exceeding a
certain threshold (here 6 min), provides additional insight into the
response pattern within each episode. Figure 13c presents the
ECDFs of fraction of late responses over 25 episodes for
simulated emergency response in Manhattan using both greedy
and heuristic policies. In this figure, for high priority calls the ECDF
for the heuristic method (green dashed line) lies above the ECDF for
the greedy method (red solid line). This indicates that, for any target
fraction of responses taking longer than 6 min for high priority calls,
a higher proportion of episodes fall below that target for the heuristic
method compared to the greedy method. This means that the
heuristic method is better at keeping the late fractions low. For
instance, as shown in Figure 13c, in almost 75% of the episodes, the
heuristic policy keeps the fraction of responses for high priority calls
exceeding 6 min below 40% while the greedy policy achieves this in
65% of episodes. In conclusion, the response time analysis shows
that the penalty-based policy leads to better ambulance choice
decisions that particularly leads to fast response for high-priority
calls, compared to the greedy policy in this simulation.

FIGURE 12
(a) Empirical cumulative distribution of episode means for heuristic policy conducted with varying penalty coefficients (β) and the greedy policy for
combined (leftmost), high priority (middle), and low priority (rightmost) calls, and (b) the area between ECDFs of episodemean response times of heuristic
policy conducted with varying penalty coefficients (β) and the greedy policy (b) in simulated emergency response in Manhattan (25 episodes for each
experiment).
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FIGURE 13
Empirical cumulative distribution of (a) episode means, (b) episode medians, and (c) episode fractions of response times greater than threshold 6
min (c) for combined (leftmost), high priority (middle), and low priority (rightmost) calls in simulated emergency response in Manhattan (25 episodes).
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5 Conclusion

In ambulance dispatching, selecting the nearest available unit without
considering the supply-demand dynamics in its catchment area can lead
to suboptimal decisions. This issue becomes apparent when, among
several ambulances capable of reaching an incident within an acceptable
time, the nearest one covers a region with a high call rate and limited
nearby unit availability. Dispatching this ambulance based solely on
proximity can compromise resource availability in that area, especially for
future high-priority calls. This study introduces a penalty metric that
quantifies the supply-demand levels within each ambulance’s catchment
zone before dispatching, forming the basis of a heuristic-based
dispatching policy for EMS decision-making. This policy balances
ambulance proximity with the dynamic supply-demand conditions in
ambulance zone, as quantified by the penalty metric.

By using a discrete event simulation integrated with a Q-learning
agent that incorporates both the new penalty metric and travel time into
the learning process of the potential optimal dispatching policy, the EMS
response in a small-scale environment wasmodeled as aMarkovDecision
Process (MDP). The resulting response behavior was then compared to
the greedy policy, revealing the myopic nature of the greedy dispatching
approach. In the subsequent large-scale simulation conducted with both
greedy and heuristic, the response time analysis showed that the heuristic
approach outperforms the greedy policy, particularly for high-priority
emergencies. Unlike the computationally intensive process of training a
reinforcement learning agent to find an optimal policy, the proposed
heuristic model offers an improved yet practical alternative for large-scale
applications. The effectiveness of the proposed dynamic-penalty based
heuristic was also evaluated in a real-world urban setting.When applied to
EMS response inManhattan,NewYork, the heuristic policy results in 90%
of episodes having a mean response time of less than 6 min for high-
priority calls, compared to 75% for the greedy policy. These findings
highlight the practicality and effectiveness of the heuristic approach in real-
world, city-scale EMS responses, offering a more efficient and proactive
solution for improving emergency response times while preserving
resource availability for future high-priority calls. While finding the
optimal dispatching policy is a key research focus in ride-hailing
services, leading to the development of complex algorithms and
frameworks, these services face less uncertainty regarding where and
when vehicles will become available compared to emergency response
situations, which are inherently more challenging. Moreover, ride-sharing
companies are equippedwith advanced computing infrastructure and data
storage, enabling them to run sophisticated real-time optimization
schemes. In contrast, EMS requires more transparent yet
computationally accessible tools, such as the heuristics proposed in this
paper. It is important to clarify that the findings of this study aim to
provide insights into emergency response optimization, not to recommend
an immediate shift to the new policy. This work is primarily for study
purposes, aiming to contribute to the broader understanding of emergency
response systems and their optimization.

This paper presents a proof-of-concept study aiming at developing a
novel ambulance dispatching policy in response to emergency calls that
incorporates penalties imposed on ambulanceswhile balancing proximity
and penalties in dispatch decision making. Even though the effectiveness
of this policy was evaluated through conducting different simulations,
further improvements are required. For instance one limitation of this
study, and a recommendation for future research, is the incorporation of
time evolution in simulation. This includes accounting for the temporal

variation in incident calls and traffic fluctuations in a day and day of
weeks which can significantly affect pathfinding and travel time
estimation. Additionally, from an operational perspective, various
factors should be considered in a comprehensive end-to-end
simulation. These factors include ambulance types, such as Advanced
Life Support (ALS) and Basic Life Support (BLS), and more detailed
incident severity segmentation. In reality, severity often involves multiple
classes rather than the binary classification (high or low priority) used in
this study. Addressing these aspects would be a valuable future direction
following this proof-of-concept work.
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