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When we travel from one place to another, the first priority during our journey is
that, we all wish to reach safely at our destination. Ensuring driver wakefulness is
crucial for road safety, as drowsiness is a leading cause of fatal accidents, resulting
in physical injuries, financial losses, and loss of life. This paper proposes an anti-
sleep driver detection algorithm designed specifically for four-wheelers and larger
vehicles to mitigate accidents caused by driver drowsiness. The proposed
algorithm leverages deep learning (DL) models, including InceptionV3, VGG16,
and MobileNetV2, for real-time detection and classification of driver drowsiness.
The models were trained and evaluated using comprehensive performance
metrics, such as accuracy, precision, recall, F1 score, and confusion matrix. The
proposed method outperforms the traditional approaches such as Support Vector
Machines (SVM), K-Nearest Neighbors (KNN), Haar Cascade Classifiers, and other
DL architectures like Xception and VGG16, in terms of accuracy and efficiency.
Among the tested models, InceptionV3 demonstrated superior performance,
achieving an accuracy of 99.18%, a validation loss of 0.85%, and execution time
of 0.2 s on Raspberry Pi platform. The results suggest that the proposed algorithm
provides a robust and effective solution for real-time driver drowsiness detection
thereby contributing towards enhanced safety.

KEYWORDS

driver drowsiness detection, deep learning models, real-time monitoring, InceptionV3,
transfer learning, eye aspect ratio (EAR), Raspberry Pi, driver alert systems

1 Introduction

Drowsiness while driving is a condition in which the driver fells sleepy that can lead to
serious accidents (Ministry of Road Transport and Highways, Government of India, 2022) and
loss of life. Inattentiveness caused by drowsiness has been recognized as a major contributor to
traffic collisions and highway fatalities. According to a study by the Central Road Research
Institute (CRRI), a premier research institute in India focused on road and transportation
engineering, conducting studies to improve road safety, traffic management, and infrastructure
development, published in The Financial Express (Dated 15 July 2022), “40% of highway
accidents occur due to drivers dozing off. Exhausted drivers who doze off at the wheel are
responsible for road accidents” (Suresh et al., 2023). Despite safety campaigns and regulations,
drowsy driving continues to be a threat to road safety. However, technology-based solutions like
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drowsiness detection systems can help mitigate these risks by providing
real-time monitoring of a driver’s alertness and issuing timely warnings
when signs of fatigue are detected. This can be particularly useful in
preventing accidents caused by fatigue-related lapses in concentration
(Mahajan and Velaga, 2023; Peng et al., 2024). Optimization
techniques, such as integrating invasive weed optimization with
differential evolutionary models, have demonstrated significant
improvements in training neural networks, which can further
enhance system performance and robustness (Movassagh et al., 2023).

Traditional methods for detecting drowsiness, such as
electroencephalogram (EEG) monitoring (Venkata Phanikrishna
et al., 2023; LaRocco et al., 2020), which measure electrical activity
in the brain and provide accurate insights into drowsiness detection, are
known for their accuracy however, they are invasive and impractical for
everyday and continuous use while driving. “Prior approaches for
detecting drowsiness utilized various machine learning (ML)
algorithms like Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), and Haar Cascade classifiers (Ramzan et al.,
2019; Abtahi et al., 2014). Recent advancements in collaborative
adversarial networks have shown their potential in improving the
robustness of machine learning models, which could be further
explored to address the shortcomings of traditional approaches
(Alzubi et al., 2020). Additionally, deep learning (DL) methods such
as InceptionV3, Xception, VGG16, and a custom EfficientNet model,
which shows validation accuracy of 91.81%, 93.6%, 78.6%, and 95%,
respectively, in Suresh et al. (2023) and Yashaswini et al. (2024), among
others.”Also in drowsiness detection, InceptionV3 and VGG16models
show validation accuracy of 92.3% and 81.7% respectively in Sun et al.
(2023). These systems had their limitations, however DL algorithms
generally performed better than the traditional ML techniques in image
classification tasks and were more capable of handling complex
problems. DL algorithms excel in driver drowsiness classification
due to their ability to automatically learn relevant features and
hierarchical representations from raw data, such as facial expressions
and eye movements, without needing handcrafted features. These
models, particularly Convolutional Neural Network (CNN) can
capture complex patterns in the data, leading to better performance
in handling variability and noise compared to traditional ML
algorithms. However, the mentioned DL models were less accurate
compared to the newly proposed DL model (Suresh et al., 2023). The
aim of this proposed work is to develop effective DL algorithms to
address the shortcomings of earlier methods and offer a simple, user-
friendly solution for early-stage drowsiness detection that can be used
on desktops or mobile devices.

The proposed system relies on image processing (Yan et al.,
2016) techniques, offering a non-invasive approach to drowsiness
detection. The system uses a Universal Serial Bus (USB) camera, a
widely-used interface for connecting peripherals, to capture images
of the driver’s face, focusing on eye detection to determine whether
the eyes are open or closed. By analyzing these images, the system
can assess the driver’s state of alertness and generate appropriate
alerts to prevent accidents. We have used the MRL (Media Research
Lab) Eye Dataset, which contains data of 37 different persons
(33 men and 4 women) and consists of 84,898 images of open
and closed eyes, publicly available at (Fusek, 2018).

The detection process involves several key steps (Fu et al., 2024),
starting with face detection to locate the driver’s head in the image
(Sathya and Sudha, 2024). Once the face is identified, the system

zeroes in on the eyes to evaluate their status. Closed eyes over a certain
duration indicate drowsiness (Kamran et al., 2019), triggering an alert
in the form of an audible alarm or even shutting down the vehicle’s
engine in extreme cases. This approach is designed to work in various
lighting conditions and with different types of drivers, offering a
practical solution to reduce drowsy driving incidents.

The proposed system is suitable for four-wheel vehicles and can
be installed in a variety of transportation settings, making it a
versatile tool for improving road safety. Moreover, the DL based
architecture used in this system ensures a high level of accuracy in
detecting drowsiness, with models such as InceptionV3, VGG16,
and MobileNetV2 being assessed for their performance. The
InceptionV3 model achieved an overall accuracy of 99.18% and a
validation loss of 0.85% in classifying drowsiness, making it a reliable
choice for this application.

Overall, the system not only enhances safety but also has the
potential to save lives by reducing the number of accidents caused by
drowsiness. With its non-invasive design and high accuracy, it
provides a promising approach to addressing one of the leading
causes of road accidents.

The paper is organized as follows. Section 2 describes the applied
methodology for the proposed real-time anti-sleep alert algorithm,
detailing the CNN architectures and computer vision techniques
employed. Section 3 elaborates on the dataset selection and model
training process, emphasizing the integration of transfer learning with
pre-trainedmodels like InceptionV3, VGG16, andMobileNetV2. Section
4 presents a comprehensive performance evaluation, comparing the
proposed system against existing methods in terms of accuracy,
precision, recall, and F1-score. Section 5 introduces the prototype
implementation, including the hardware and software components,
followed by testing scenarios in real-world conditions. Lastly, Section
6 concludes the paper by emphasizing the proposed system’s potential in
enhancing road safety through efficient and reliable drowsiness detection.

2 Applied methodology

The proposed algorithm leverages CNN (Taye, 2023) and computer
vision techniques to detect drowsiness. CNN architectures usually
comprise of four main types of layers: convolutional, pooling,
activation, and fully connected. Figure 1 depicts a CNN architecture
used for classifying eye states (open or closed) to determine drowsiness,
illustrating the stages of feature learning through convolution and
pooling layers, followed by classification using fully connected and
softmax layers. CNN-based image classification algorithms (Chen
et al., 2021) have gained immense popularity due to their ability to
learn and extract intricate features (Liu et al., 2022) from raw image data
automatically. Recent advancements, such as compressed energy-efficient
CNNs, have proven effective in distracted driver detection, highlighting
the need for lightweight and efficient models for real-time applications
(Alzubi et al., 2022). Building upon this, we have utilized different CNN
models in this work, including InceptionV3, VGG16, andMobileNetV2.
OpenCV offers various face detectionmethods (Kumar et al., 2019), each
differing in terms of accuracy and speed. To implement this in real-time,
we need to use the most accurate method for detecting the driver’s
drowsiness state. In addition to detecting drowsiness, computer vision
has various other applications, including facial recognition, vehicle
detection (Deshmukh et al., 2024) and aiding law enforcement
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agencies in tracking and identifying criminals. TheAlgorithm 1 describes
detection of eye status using DL model.

Require:

HD � HumanDataset

OC � Open& CloseEyeDataset CloseEyeDataset

M � Pre − trainedmodel

(e.g.,InceptionV3,VGG16 ,MobileNetV2)
Ensure:

The detected status of eyes (open or closed).

1. Take X and Y images where X ∈ HD,Y ∈ OC

2. PX � pre − process(X),PY � pre − process(Y)
3. AX � Numpy.array(PX),AY � Numpy.array(PY)
4. DX � DataAugmentation(AX),DY � DataAugmentation(AY)
5. Model = M (Pre-trained model for classification)

6. T1x � 80%ofDX,T2x � 20%ofDX

T1y � 80%ofDY,T2y � 20%ofDY

7. Trained_model1 � Train(Model,T1x)
Trained_model2 � Train(Model,T2x)

8. Test (Trained_model1,T1y) and (Trained_model2,T2y)
9. Take the image(x) from the dataset

10. if image(x) eyestatus �� detected then

a. Output = Label for the detected eye status

b. if Output == open then

(1) Eyes Open

c. else

(1) Eyes Closed

d. end if

11. else

a. Output = not detected

12. end if

Algorithm 1. Deep Learning Model for Eye Status Detection.

FIGURE 2
InceptionV3 architecture.

FIGURE 1
CNN based drowsiness classification.
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2.1 InceptionV3

The InceptionV3model has 23.8M parameters and 159 layers. This
model employs the Inception module (Szegedy et al., 2016), a concept
developed by researchers at Google, which uses a combination of
convolutions with varying filter sizes, allowing the network to
simultaneously consider different levels of detail in the same layer.
InceptionV3 features mixed layers where these parallel convolutions
occur, and it includes multiple blocks, each with its own sequence of
convolutions, batch normalization, and pooling operations.

The data in InceptionV3 first undergoes a few initial
convolutional layers before entering the main “mixed” layers
containing the distinctive Inception modules. These mixed layers
help the network efficiently manage parameters while maintaining a

high degree of versatility in feature extraction. Batch normalization is
used extensively throughout the model to improve training stability.

For drowsiness detection, the final few layers of the pre-trained
InceptionV3 model are replaced with custom-designed layers specific
to this task. The adjusted final layer produces two categories: sleepy
and not sleepy. This customization allows the pre-trained network to
be fine-tuned for the specific problem of drowsiness detection.
Figure 2 depicts the architectural diagram of InceptionV3.

2.2 VGG16

The VGG16 (Tao et al., 2021) model has 138 million parameters
and 16 layers which is developed by Simonyan and Zisserman. It is

FIGURE 4
MobileNetV2 architecture.

FIGURE 3
VGG16 architecture.
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known for its straightforward deep CNN design, where the emphasis
is on using multiple stacked layers of small 3 × 3 convolutions. This
architectural approach was developed by researchers at the Visual
Geometry Group (VGG) (Visual Geometry Group, 2024) at the
University of Oxford.

Unlike other convolutional architectures that use complex
operations or various convolution sizes within a single module,
VGG16 exclusively employs uniform 3 × 3 convolutions followed by
2 × 2 max-pooling layers. This consistent structure leads to a deep
network with a relatively simple design. The layers are organized

FIGURE 6
MRL eye dataset images.

FIGURE 5
Eye detection process using facial landmarks.
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into distinct blocks with increasing depth, starting with smaller
numbers of filters and gradually increasing as the data moves
through the network.

Batch normalization is not part of the original
VGG16 architecture, unlike other models like Xception. Each
convolutional block ends with a max-pooling layer, and the final
fully connected layers are trained for specific tasks like image
classification. The model typically ends with a softmax output
layer that indicates class probabilities.

When adapting the VGG16 model for a specific task like
drowsiness detection, the final layers can be replaced with task-
specific ones. For instance, replacing the fully connected layers with
a custom-designed structure, like a smaller dense layer and an output
layer with two classes, sleepy and not sleepy. This restructured final
section allows the model to specialize in detecting drowsiness while
leveraging the robust feature extraction from the earlier layers. Figure 3
depicts the architectural diagram of VGG16.

2.3 MobileNetV2

The MobileNetV2 model has 3.4M parameters and 53 layers.
Inverted Residuals and Linear Bottlenecks are used in the deep CNN

design of MobileNetV2 (Dong et al., 2020) developed by researchers
from Google Inc. According to Google Inc., the Inverted Residual
architecture (Sandler et al., 2018) allows the network to maintain
high efficiency and performance with low computational
complexity. It achieves this by utilizing residual blocks with
depthwise separable convolutions (Lu et al., 2021) and linear
bottlenecks, providing a balance between compactness and
effectiveness. The MobileNetV2 model consists of an initial
convolution layer followed by a bottleneck layer, then several
inverted residual blocks with expansion and depthwise separable
convolution, ultimately leading to a fully connected output layer.
Batch normalization (Thakkar et al., 2018) is applied after each
convolution and inverted residual block to maintain stable training.
The final layers of the pre-trained MobileNetV2 model are replaced
by a custom-designed set of layers for various specific tasks. For
detecting drowsiness, the output of the final layer is defined with two
classes: 0 indicates “sleepy” and 1 indicates “not sleepy.” Figure 4
depicts the architectural diagram of MobileNetV2.

2.4 Facial landmarks

Here, facial landmarks are used as a method to detect the specific
facial features such as the eyes, nose, mouth, and jawline. It involves
identifying a set of key points on the face, such as the corners of the
eyes, the tip of the nose, and the edges of the mouth. These key
points are then used to determine the position of the facial features
with respect to each other. This can be done by using aML algorithm
to detect the facial landmarks (Dewi et al., 2022) in an image. Once
the landmarks are detected, they can be used to perform further
calculations and analysis on the image. The output of this process is
a set of coordinates that represent the position of each facial
landmark on the face, which can be used for further processing,
as shown in Figure 5.

FIGURE 7
Training and validation accuracy and loss curve for VGG16.

TABLE 1 Binary-class confusion matrix.

Predicted classes

Positive Negative

Actual Classes

Positive TP FN

Negative FP TN

Frontiers in Future Transportation frontiersin.org06

Pathak et al. 10.3389/ffutr.2025.1545411

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1545411


3 Model training

First, the dataset (Fusek, 2018) has been prepared and categorized
for training the CNN model. The CNN models for image
classification, using pre-trained bases like MobileNetV2,
InceptionV3 and VGG16, all configured for max pooling. These
models include Batch Normalization, and a dense layer with L1/L2
(Least Absolute Deviations/Least Squares) regularization, and ReLU
(Rectified Linear Unit) activation. Dropout is applied at 45%, followed
by a dense output layer with Softmax for multi-class classification.
Adamax serves as the optimizer, while categorical cross-entropy is
used as the loss function, with accuracy as a key metric.

For the training process, the dataset is prepared and
categorized for the CNN models’ training, using transfer
learning to adapt MobileNetV2, InceptionV3 and VGG16 to
specific needs. This entails modifying the pre-trained models
and using targeted datasets to train them for the desired output.
The training of the models evaluates precision, recall, F1-Score,
loss, Confusion matrix, and accuracy. The same MRL Eye Dataset
is utilized across all models for consistency. To compare
efficiency and performance, these models undergo training and
evaluation. The training is conducted over 50 epochs on the same
hardware configuration, ensuring consistency in
computational resources.

3.1 Dataset selection

The MRL Eye Dataset (Fusek, 2018) is an extensive collection of
human eye images designed to support various DL and computer
vision tasks, which consisted of 84,898 images of open and closed
eye. At this moment, the dataset contains the images captured by
three different sensors (Intel RealSense RS 300 sensor with 640 ×
480 resolution, Imaging Development Systems (IDS) imaging sensor
with 1,280 × 1,024 resolution, and Aptina sensor with 752 ×
480 resolution. Thirty seven individuals, some wearing glasses for
the left or right eye and some without, contributed samples for this
study. This dataset includes infrared images in both low and high
resolutions, gathered under diverse lighting conditions and with a
range of capturing devices. It is a valuable resource for testing
multiple features or training classifiers, providing a
comprehensive set of data for experimentation and analysis. The
proportion of the training dataset to the test dataset was 80 to 20.
This allocation provides a substantial amount of data for model
training while retaining a sufficient portion for performance
evaluation. A few sample photos from the MRL Eye dataset are
displayed in Figure 6.

FIGURE 9
Training and validation accuracy and loss curve for InceptionV3.

FIGURE 8
Confusion matrix for VGG16.
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3.2 MobileNetV2

The model underwent training for 50 epochs on
the dataset, which required approximately 3.5 h using a batch
size of 16.

3.3 InceptionV3

The model underwent training for 50 epochs on
the dataset, which required approximately 6 h using a batch
size of 16.

3.4 VGG16

The model underwent training for 50 epochs on the dataset,
which required approximately 7 h using a batch size of 16.

4 Performance evaluation and key
metrics analysis

The evaluation of the model’s performance involves common
metrics (Van Thieu, 2024) such as classification accuracy, precision,
recall, and F1-score, which are derived from a confusion matrix.
This matrix contains data on true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). Table 1 presents
the confusion matrix for binary class classification. The performance
metrics for each class within this matrix are calculated using
Equations 1–4.

Accuracy � TP + TN

TP + TN + FP + FN
, (1)

Precision � TP

TP + FP
, (2)

Recall � TP

TP + FN
, (3)

F1 − score � 2 × Precision × Recall
Precision + Recall

, (4)

Accuracy represents the proportion of correct predictions,
indicating the classifier’s overall accuracy. Precision measures the
accuracy of the model when it predicts a positive class, giving an
indication of false positives. Recall reflects the model’s ability to
detect true positive cases, providing information on false negatives.

Validation accuracy quantifies a MLmodel’s ability to accurately
predict labels on a dataset it hasn’t been trained with. This metric is
commonly used during model training to gauge performance and to
avoid overfitting. To avoid this we have used L1/L2 regularization
techniques. Validation loss measures the disparity between the

FIGURE 11
Training and validation accuracy and loss for MobileNetV2.

FIGURE 10
Confusion matrix for InceptionV3.
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forecasted output of a ML model and the real output, considering a
distinct dataset that wasn’t part of the training process. It serves as an
indicator of the model’s ability to generalize to fresh, unfamiliar data.

Training accuracy refers to the extent to which a ML model
accurately categorizes the data it was trained with. It represents the
proportion of samples in the training dataset that are accurately
categorized by the model during its learning phase. Training loss
quantifies how effectively a ML model reduces the gap between the
forecasted result versus the real outcome from the training dataset. It
represents the error or the difference between the predicted and true
results for a given set of training data. The numpy and matplotlib
library in Python are involved in generating, evaluating, and
visualizing the outcomes achieved during the training and
validation phases of the model. Graphs illustrate the accuracy
and loss of different models across varying epochs of training
and validation. The classification report, which includes metrics
like precision, recall, and F1-score, is provided for each model, along
with their confusion matrix.

4.1 VGG16

The loss and accuracy curves for VGG16 over epochs are shown
in Figure 7. The training and validation loss of the VGG16 model is
displayed on the left side of Figure 8, while its accuracy is displayed
on the right side. Furthermore, the VGG16 model’s confusion
matrix is shown in Figure 8. This model has a validation loss of
11.12% and a peak validation accuracy of 98.80%.

4.2 InceptionV3

The loss and accuracy curves for InceptionV3 over epochs are
shown in Figure 10. The training and validation loss of the

InceptionV3 model is displayed on the left side of Figure 9, while
its accuracy is displayed on the right side. Furthermore, the
InceptionV3 model’s confusion matrix is shown in Figure 10.
This model has a validation loss of 5.85% and a peak validation
accuracy of 99.18%.

4.3 MobileNetV2

The loss and accuracy curves for MobileNetV2 over epochs are
shown in Figure 12. The training and validation loss of the
MobileNetV2 model is displayed on the left side of Figure 11,
while its accuracy is displayed on the right side. Furthermore, the
MobileNetV2 model’s confusion matrix is shown in Figure 12. This
model has a validation loss of 8.21% and a peak validation accuracy
of 99.01%.

4.4 Comparison

Table 2 displays the training accuracy and loss, as well as
validation accuracy and loss, for three models: InceptionV3,
VGG16, and MobileNetV2. Likewise, Table 3 provides a
comparison of precision, recall, and F1-Score among the various
models. The comparison reveals that the InceptionV3 model
demonstrates the most superior performance, boasting a
validation accuracy of 99.18% and a validation loss of 0.85%.
Consequently, the InceptionV3 model is chosen for the
deployment of the Real-Time Anti-Sleep Alert Algorithm in
practical scenarios.

4.5 Statistical analysis

To detect the sleepiness of the driver, an model was trained using
multiple faces in different conditions. If the Eye Aspect Ratio (EAR)
(Dewi et al., 2022) was found to be less than 0.3, the driver can be
classified as drowsy. In total, 20 consecutive frames should be
considered for calculation, which is crucial in the real-time
application of the system. Illustrations of real-time detection of
eyes in normal and drowsy situations are depicted in Figures 13, 14
respectively.

The system further enhances its robustness by integrating a
CNN. If the EAR falls below the threshold for 20 consecutive frames,
the cropped face region is passed through the CNN for confirmation.
This hybrid approach ensures higher accuracy and reduces false
positives and negatives. At 30 FPS, this corresponds to

FIGURE 12
Confusion matrix for MobileNetV2.

TABLE 2 Comparison of performance of different models on dataset.

Models Train Validation

Accuracy Loss Accuracy Loss

Inceptionv3 99.97 0.89 99.18 0.85

VGG16 99.95 2.71 98.80 11.12

MobileNetV2 99.87 0.01 99.01 0.08
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approximately 0.67 s of continuous eye closure, aligning more
closely with the durations used in existing studies (Bhope, 2019;
Thulasimani et al., 2021) and better distinguishing between normal
blinks and drowsiness indicators.

The values obtained during the testing of the system, where the
threshold value for the number of frames was set to “20”. This
implies that the driver will be determined as drowsy if the EAR is less
than 0.3 for 20 consecutive frames. If the EAR goes below 0.3 for less
than 20 frames, a drowsiness alert will not be generated. Equation 5
shows the formula for the eye aspect ratio, where points p1 through

FIGURE 13
Real time detection of eyes in normal situations, where the EAR remains above the threshold value.

FIGURE 14
Real time detection of eyes in drowsy situations, where the EAR is below the threshold value.

TABLE 3 Comparision of precision, recall and f1-score for closed and open eyes of different models on dataset.

Models Open eyes Close eyes

Precision Recall F1-Score Precision Recall F1-Score

Inceptionv3 1.00 0.91 0.95 0.91 1.00 0.95

VGG16 1.00 0.88 0.94 0.89 1.00 0.94

MobileNetV2 1.00 0.88 0.94 0.89 1.00 0.94

FIGURE 15
A schematic diagram of EAR calculation process.
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p6 represent the 2D landmark coordinates. Points p2, p3, p5, and p6

are used to calculate the eye’s height, while p1 and p4 are used to
determine its width, measured in meters (m), as illustrated
in Figure 15.

EAR � ‖p2 − p6‖ + ‖p3 − p5‖
2‖p1 − p4‖ . (5)

5 Prototype implementation

5.1 Prototype setup

The pre-trained models obtained previously are implemented
for real-time drowsiness detection on a Raspberry Pi board, to
creaate a real-time anti-sleep alert system. The hardware

components required to build the real-time anti-sleep alert
system are shown in Figure 16. The specific roles of those
components in the functioning of the prototype, which is
presented in Figure 17, are described as follows.

5.1.1 Raspberry Pi 4B
The Raspberry Pi 4B serves as the main processing unit for the

prototype, a versatile, low-cost single-board computer equipped
with a quad-core Cortex-A72 CPU, 2GB RAM, and VideoCore
VI GPU, providing sufficient processing power to handle the real-
time video processing required for drowsiness detection (Kumar
et al., 2020; Biswal et al., 2021). It runs the necessary algorithms for
detecting driver fatigue, processes the input from the web camera,
and triggers alerts when drowsiness is detected. The choice of
Raspberry Pi makes the system compact, cost-effective, and
energy-efficient, which is essential for an in-vehicle environment
(Daengsi et al., 2021).

FIGURE 16
Equipments used.

FIGURE 17
Prototype setup.

FIGURE 18
Work sequence.
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5.1.2 Web camera
A high-definition web camera is mounted in front of the

driver to continuously capture video footage of their face. The
Logitech HD Webcam C270, with its 720p resolution and
RightLight™ technology, ensures clear image capture even in
varying lighting conditions. The camera is used to track facial
features such as eye movement and head position, which are
crucial indicators of drowsiness. The camera must provide clear
images in varying light conditions, such as during day and night
driving, making infrared capabilities a beneficial addition for
night-time detection.

5.1.3 Buzzer
The buzzer acts as the primary alert mechanism in the

prototype. When the system detects signs of drowsiness
or prolonged eye closure, the Raspberry Pi triggers the
buzzer, emitting a loud sound to alert the driver. The
CentIoT Speaker Buzzer Module, with its 5V operating
voltage and compact printed circuit board (PCB) design,
ensures reliable and efficient auditory alerts. This immediate
auditory feedback ensures that the driver becomes aware of their
drowsiness and can take appropriate action to prevent
an accident.

5.1.4 Card reader
The card reader serves as an additional component

that can be used to log driver activity. For example, drivers
may use a card to log in before starting a journey, allowing the
system to track individual driving sessions. This can be
particularly useful for fleet management, where multiple
drivers use the same vehicle. The SanDisk ULTRA 64 GB
MicroSDXC card, with its high speed and durability, ensures
reliable storage of driver-specific data and drowsiness patterns.
The system can store data related to each driver’s drowsiness
patterns and provide insights into long-term fatigue
management.

5.1.5 Power source
A reliable power source is critical for the continuous operation

of the system. The prototype can be powered either through the
vehicle’s battery or through a portable power bank, depending on
the vehicle’s configuration. For vehicles with integrated USB power
outlets, the Raspberry Pi and connected devices can easily draw
power directly, ensuring uninterrupted monitoring throughout the
drive. The Raspberry Pi 15.3W USB-C power supply ensures stable
and efficient power delivery, critical for maintaining system
reliability during operation.

5.2 Warning mechanism

5.2.1 Post-warning actions
After a drowsiness warning is triggered, the system issues an

initial alert using a buzzer. This immediate auditory alert is intended
to capture the driver’s attention and prompt corrective action, such
as pulling over or focusing on the road. The system continues
monitoring the driver’s condition in real time to ensure
sustained alertness.

5.2.2 Feedback mechanism
The system tracks real-time EAR values and monitors if the

driver’s response (e.g., eyes reopening) indicates regained alertness.
If drowsiness indicators persist despite the initial alert, the system
escalates the warning to more prominent alerts.

5.3 Prototype testing

The system is designed to monitor the driver’s face using a web
camera that continuously captures live images or video feed. The
web camera is strategically placed inside the vehicle to ensure a clear
view of the driver’s face, focusing on key facial features like the eyes
and head position. This real-time data acquisition is essential for
detecting early signs of drowsiness, such as slow eye blinking or head
nodding, which are critical indicators of fatigue.

Unlike cloud-based systems, where data is sent to remote servers
for processing, this system operates entirely locally, whose work
sequence is shown in Figure 18. All image and video data captured
by the web camera is processed directly on the Raspberry Pi 4B. The
decision to use local data storage and processing instead of relying
on a cloud platform is crucial for several reasons which are discussed
in the following points.

5.3.1 Real-time processing
The primary goal of this system is to provide instantaneous

alerts when drowsiness is detected. Sending data to the cloud for
processing introduces unavoidable latency due to network
transmission delays, which could result in critical time loss. A
real-time system requires the ability to analyze data within
milliseconds to effectively warn the driver before an accident
occurs. The Raspberry Pi 4B, with its sufficient computational
power, ensures that data processing happens immediately upon
capture, allowing the system tomaintain real-time performance with
an execution time of just 0.2 s.

5.3.2 Independence from internet connectivity
The local processing approach also makes the system self-

sufficient and operational in environments with poor or no
internet connectivity. This is especially important for vehicles
traveling through rural areas or regions with unreliable network
coverage, where cloud-based systems would struggle to operate. By
storing and analyzing data on the Raspberry Pi, the system can
function independently of network availability, ensuring continuous
operation regardless of location.

5.3.3 Privacy and security
Another key advantage of local processing is enhanced privacy

and security. Since all data, including potentially sensitive facial
images, is processed locally, there is no need to transmit it to external
servers, reducing the risk of data breaches or unauthorized access.
This makes the system particularly attractive for privacy-conscious
users or industries where data security is a top priority, such as in
fleet management for commercial vehicles.

5.3.4 Cost efficiency
Operating without reliance on cloud services also makes the

system more cost-effective. Cloud platforms often charge for data
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storage, bandwidth usage, and computational resources. By keeping
all processing local, the system avoids these recurring costs, making
it more affordable for individual users or small businesses who wish
to implement drowsiness detection without incurring high
operational expenses.

After the data is processed locally on the Raspberry Pi, the
system assesses the driver’s level of alertness by analyzing the
facial features. If the system detects drowsiness, it will trigger an
immediate alert, such as a loud buzzer or vibration in the seat.
The system continuously monitors the driver’s condition,
ensuring they remain alert throughout the drive.

6 Conclusion

The study introduced an algorithm that uses DL to detect
drowsiness by classifying different eye states, incorporating
InceptionV3, VGG16, and MobileNetV2 architectures.
Performance was evaluated using metrics such as accuracy,
precision, recall, F1 score, and the confusion matrix, with
impressive validation accuracy achieved across all models: 99.18%
for InceptionV3, 98.80% for VGG16, and 99.01% for MobileNetV2.
InceptionV3 demonstrated superior performance with rapid
execution time on Raspberry Pi, making it highly suitable for
real-time applications. The system utilizes non-invasive image
processing techniques to classify eye states, offering a practical
and scalable solution for fatigue detection and real-time alerts to
enhance road safety.

While the results indicate high accuracy and efficiency, the
absence of extreme weather conditions in the dataset emphasizes
an opportunity for improvement through the inclusion of diverse
scenarios, further optimizing the system’s real-world
applicability and potential to reduce accidents. Future
iterations of the system could incorporate escalating alerts,
such as adaptive buzzer volumes, seat vibrations, visual cues,
or integration with vehicle safety features like automated
deceleration and hazard light activation, to enhance
robustness and real-world effectiveness.
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