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Electrification of transport is accelerating worldwide, raising new challenges for
energy efficiency and control in electric vehicles. Reinforcement learning has
emerged as a promising data-driven approach to address the complexity of real-
time energy management. This review presents a structured synthesis of open-
access research published between 2016 and 2024 on the application of
reinforcement learning methods to electric vehicle energy optimization. The
study formulates four guiding research questions to analyze types of learning
algorithms, evaluation criteria, system-level constraints, and practical
implementation aspects. Key contributions include a comparative mapping of
reinforcement learning techniques—such as Q-learning, deep deterministic
policy gradient, twin delayed deep deterministic policy gradient and soft
actor-critic—their applicability to electric vehicle control scenarios, and the
identification of current research gaps and deployment challenges. The
findings aim to support researchers and engineers in selecting suitable
reinforcement learning strategies for efficient and scalable electric vehicle
energy management.
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1 Introduction

Energy management for electric vehicles is becoming increasingly significant in both
scientific research and industry (Yang et al., 2020). In the current context, where climate
change and the quest for new energy sources for locomotion are critical challenges, the
adoption of electric vehicles has gained substantial relevance. Electrical vehicles not only
contribute to reducing carbon emissions (Harvey, 2020) but also present the opportunity to
implement advanced artificial intelligence techniques, such as reinforcement learning, to
optimize their energy performance.

Despite significant progress in electric vehicle technologies, optimizing energy
management strategies remains a critical challenge due to highly variable operating
conditions and the need for real-time adaptation. Traditional control methods often fall
short when dealing with such complexity, motivating the search for more flexible, data-
driven approaches like reinforcement learning.
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Reinforcement learning (RL), a technique derived from dynamic
programming, has demonstrated considerable potential for
addressing complex and nonlinear problems (Perrusquía and Yu,
2021). Its ability to learn and adapt through interaction with the
environment renders it particularly well-suited to the management
of energy systems in electric vehicles. This suitability arises because
electric-vehicle energy management must respond in real time to
highly dynamic driving conditions—such as variations in
acceleration, regenerative-braking events, road grade, and vehicle
load—that traditional model-based controllers struggle to anticipate
without extensive recalculation (Kasri et al., 2024). Reinforcement-
learning agents, by continuously updating their control policies
through trial-and-error, can adjust power distribution on-line to
maximize battery efficiency and recuperation under uncertain and
non-stationary scenarios (Oubelaid et al., 2022). With recent
advancements in hardware and increasing processing capabilities,
reinforcement learning has experienced a significant surge in its
applicability and effectiveness across various areas of artificial
intelligence (Naeem et al., 2020).

The significance of reinforcement learning has seen a marked
increase since 2016, underscored by a sustained growth in interest as
observed in global trends data, as can be seen in Figure 1. Despite a
temporary decline in 2020, the field rebounded strongly in
subsequent years, particularly since 2022, which marked a
significant turning point. This resurgence can be attributed to the
continuous advancements in artificial intelligence and the successful
application of RL in various domains, including robotics, game
theory, and autonomous systems (Prudencio et al., 2023). With the
increasing adoption of electric vehicles as a response to climate
change, energy management remains a critical challenge.
Traditional optimization methods fall short in handling real-time
complexities and environmental variability. This review bridges the
gap by focusing on reinforcement learning, a promising solution
capable of adapting to dynamic scenarios and providing scalable
energy management strategies.

The ability of RL algorithms to optimize complex decision-
making processes in dynamic environments has positioned it as a
critical area of research within machine learning. The growing
academic and commercial interest highlights RL’s potential to
drive innovation in diverse applications, solidifying its role as a
cornerstone in the future of intelligent systems (Zai and
Brown, 2020).

The adoption of electric vehicles, while promising, is
confronted with a multitude of challenges, including the
effective planning and simulation of their energy consumption
(Cao et al., 2020). Proper energy management is of critical
importance for maximizing the range and efficiency of these
vehicles. Reinforcement learning can play an essential role in
this regard. This approach allows for the formulation of energy
management strategies that can respond to diverse driving
conditions and environmental variability, thereby optimizing
energy consumption (Liu et al., 2020).

The main purpose of this review is to conduct a comprehensive
review of the application of reinforcement learning to energy
management in electric vehicles by analyzing open-access articles
published in the Web of Science database. Furthermore, we aim to
identify and analyze the current methodologies, results, and trends
in this field of study. In particular, the research questions are:

• RQ1:Which are themost employed RLmethods in the context
of energy management in electric vehicles?

• RQ2: How do RL methods improve efficiency in the context of
energy management in electric vehicles?

• RQ3: What are the challenges of implementing RL methods in
the context of energy management in electric vehicles?

• RQ4: How is performance measured for RL methods in the
context of energy management in electric vehicles?

In contrast to previous reviews that broadly address
reinforcement learning in energy systems or hybrid
configurations, this work offers a focused and up-to-date
synthesis of open-access applications of RL specifically in the
energy management of electric vehicles. It distinguishes itself by
prioritizing accessibility, reviewing only peer-reviewed and publicly
available studies, and analyzing their methodological contributions
across efficiency, adaptability, and real-world feasibility dimensions.
By covering recent developments up to 2024, this review bridges the
gap between theoretical advances and practical implementations,
offering a valuable roadmap for researchers and practitioners
working on scalable and intelligent control strategies in EVs.

Recent works have significantly advanced the field of electric
vehicle control and energy optimization (Oubelaid et al., 2022;
Belkhier et al., 2023; Kasri et al., 2024). These studies offer robust
and experimentally validated approaches based on heuristic and
model-based control strategies, demonstrating strong potential for
real-world deployment. Inspired by their contributions, this
review complements such efforts by focusing specifically on
reinforcement learning methods, analyzing how these adaptive
techniques can enhance energy management performance under
dynamic and uncertain driving conditions.

The structure of the article follows four research questions,
which guide the analysis of common RL methods, comparative
performance, implementation challenges, and validation
techniques. The remainder of the paper is organized as follows:
Section 2 presents background theory; Section 3 details the
methodology used for selecting and analyzing the literature;
Section 4 provides a comparative analysis of the reviewed
approaches; and Section 5 discusses open challenges and future
research directions.

2 Theoretical background

2.1 Reinforcement learning

Reinforcement learning is a subfield of machine learning where
an agent learns to make decisions by interacting with an
environment. The core components of RL include the agent, the
environment, actions, states, rewards, and policies. The agent’s goal
is to learn a policy that maximizes cumulative rewards by mapping
states to actions (Ding et al., 2020). RL has evolved from classical
control theory and behavioral psychology, where early methods
were based on trial-and-error approaches. Significant advances have
been made with the advent of deep learning, leading to the
development of algorithms like Deep Q-Networks (DQN) and
Policy Gradient methods, which have shown remarkable success
in complex environments (Li, 2017).
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Reinforcement learning shares a strong foundation with Dynamic
Programming (DP), particularly in how both methods address
sequential decision-making problems (Barto, 1995). In DP, the
Bellman equation is central, providing a recursive decomposition of
the value function, which represents the optimal cost-to-go for a given
state. RL leverages this concept by approximating the value function
through iterative methods such as value iteration or policy iteration,
without requiring a complete model of the environment.

The value function V(s) in DP is defined in Equation 1 as (Ding
et al., 2020):

V s( ) � max
a

R s, a( ) + γ∑
s′
P s′|s, a( )V s′( )⎡⎢⎣ ⎤⎥⎦ (1)

where:

• s is the state,
• a is the action,
• R(s, a) is the immediate reward received after taking action a
in state s,

• γ is the discount factor (0≤ γ< 1),
• P(s′|s, a) is the transition probability to state s′ given s and a.

Similarly, the action-value function Q(s, a) is presented in
Equation 2:

Q s, a( ) � R s, a( ) + γ∑
s′
P s′|s, a( )max

a′
Q s′, a′( ) (2)

These recursive formulations are essential for solving RL
problems via dynamic programming or approximations in the
absence of a complete model. RL approximates this process

iteratively, either through value-based methods (e.g., Q-learning)
or policy-based methods. Reinforcement learning environments are
typically modeled as Markov Decision Processes (MDPs), where the
Markov property holds (Sutton et al., 1999). This implies that the
future state depends only on the current state and action, not on the
sequence of events that preceded it. The MDP framework provides a
formalization for the interaction between the agent and the
environment, facilitating the use of RL algorithms. An MDP is
defined by the tuple (S, A, P, R, γ), where:

• S is the set of all possible states,
• A is the set of all possible actions,
• P(s′|s, a) represents the transition probability,
• R(s, a) is the reward function,
• γ is the discount factor.

The Markov property is mathematically expressed in Equation
3 as:

P st+1|st, at, st−1, at−1, . . . , s0, a0( ) � P st+1|st, at( ) (3)

To map the Markov decision process of Equation 3 onto real
hardware, we present in Figure 2 a system-level block diagram of the
reinforcement-learning control loop. The electric-vehicle
environment consists of five main subsystems—battery pack,
power electronics, electric motor, road-load model and
regenerative-braking unit—through which energy flows
bidirectionally under vehicle dynamics. At each time step t, the
reinforcement-learning agent observes the current state vector st
(state-of-charge, torque, speed, slope, slip), issues control signals at
(inverter set-points and braking commands), and receives a scalar

FIGURE 1
Interest in reinforcement learning over time (2016–2025) based on Google Trends data. The graph shows normalized search volume (0–100) with
quarterly averages. Data collected on 1 March 2025. Notable peaks correspond to major breakthroughs in the field, including the surge in 2022 due to
increased applications in energy management in electric vehicles. Source: (Google Trends, 2024).
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reward rt computed by the reward module from energy-efficiency
and battery-health metrics. This high-level diagram clarifies how the
theoretical loop of sensing, action and feedback drives policy
updates in an on-board controller.

This simplification allows for more affordable solutions in RL
problems. In RL, the reward function R(s, a) defines the immediate
feedback received by the agent after taking an action a in state s. The
design of the reward function is critical as it directly influences the
behavior that the agent will learn. A well-designed reward function
encourages the agent to develop policies that maximize long-term
rewards (Icarte et al., 2022). The reward function can be represented
as R: S × A → R, where R(s, a) returns a scalar value indicating the
immediate reward for the state-action pair (s, a). The cumulative
reward, also known as the return Gt, is defined as presented in
Equation 4:

Gt � ∑∞
k�0

γkR st+k, at+k( ) (4)

The objective in RL is to maximize the expected return over time
(Brys et al., 2014). It can be achieved with a good policy. A policy
π(a|s) in RL defines the strategy that the agent employs to choose
actions given a state. Policies can be deterministic or stochastic, and
the goal of RL is to find an optimal policy π* that maximizes the
expected return. Policies can be directly optimized in policy-based

methods or derived from value functions in value-based methods
(Du et al., 2019).

2.2 Energy management in electric vehicles

Energy management in electric vehicles refers to the process of
optimizing the use of available energy resources to enhance vehicle
performance, extend driving range, and improve overall efficiency. It
involves controlling various subsystems, such as battery
management, regenerative braking, and power distribution (Liu
et al., 2021). Effective energy management is critical in electric
vehicles due to the limited energy storage capacity of batteries.
Optimizing energy usage not only maximizes driving range but also
prolongs battery life and ensures the vehicle operates within safe
parameters (Wu et al., 2020). RL techniques are increasingly being
explored as they offer adaptive and real-time decision-making
capabilities that are essential for dynamic energy management.

In orde to determine the control scenarios for different
electrified vehicle architectures, Figure 3 breaks down the energy-
flow paths into three distinct configurations: (a) parallel hybrid-
electric vehicle, (b) series hybrid-electric vehicle, and (c) battery-
electric vehicle. In panel 3a, the internal-combustion engine and the
electric motor jointly deliver torque to the transmission, and

FIGURE 2
System-level block diagram of the reinforcement learning control architecture for electric vehicle energy management. The agent observes
subsystem states st (battery state-of-charge, motor torque and speed, road load), issues control signals at (power electronics set-points, braking
commands), and receives reward feedback rt computed from energy efficiency and battery health metrics. Source: Own elaboration.
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regenerative braking returns energy electrically to the battery. In
panel 3b, the internal-combustion engine drives a generator that
charges the battery and/or powers the electric motor. In panel 3c,
power flows unidirectionally from the battery through the DC/AC
inverter to the electric motor and wheels, with braking energy
recuperated back into the battery. These separate views clarify
the different state and action spaces—and thus the distinct
reinforcement-learning control challenges—associated with each
topology (Schulz-Mönninghoff et al., 2021).

The electric motor, which directly converts electrical energy into
mechanical energy, drives the vehicle’s propulsion system. The
mechanical energy generated by the motor is then transmitted
through the transmission system to the differential. The
differential is responsible for distributing the mechanical power
to the wheels, facilitating vehicle movement. This mechanical energy
transfer is depicted by the blue arrows in the diagram, representing
the physical power flow from the motor to the wheels.

Oubelaid et al. (2022) propose an intelligent control scheme for
battery electric vehicles (BEVs) based on vector control of a
permanent magnet synchronous motor (PMSM), where speed

and current PI controllers are tuned using bio-inspired
optimization techniques, namely Particle Swarm Optimization
(PSO) and Genetic Algorithms (GA). Their tuning approach
relies on two cost functions tailored to both step inputs and
realistic driving cycles, such as the ECE-15. The system
incorporates environmental disturbances, including a 10° road
slope and constant wind speed, and is evaluated under varying
vehicle dynamics. Results show that PSO and GA yield significantly
lower absolute speed and torque errors (approximately 3.5 × 10−3

and 0.01 Nm, respectively), outperforming manual trial-and-error
tuning methods. In a complementary direction, Belkhier et al. (2023)
develop an energy management strategy for electric vehicles
powered by a hybrid PEMFC-battery architecture. Their system
integrates vector control of a PMSM with a second-order sliding
mode control enhanced by fuzzy logic, enabling robust performance
under substantial variations in vehicle mass (from 1,000 to 1,500 kg).
The controller is validated under the FTP-75 urban driving cycle,
demonstrating accurate tracking of speed profiles ranging from 0 to
100 km/h. The hybrid fuzzy-sliding mode approach effectively
compensates for parametric uncertainties while maintaining

FIGURE 3
System-level power-flow architectures for (a) parallel hybrid-electric, (b) series hybrid-electric, and (c) battery-electric vehicles, with regenerative-
braking feedback loops. In panel (a), mechanical torque from both the internal-combustion engine and electric motor is combined at the transmission
before wheel propulsion, defining a dual-actuator action space for torque-split policies. Panel (b) shows how the engine drives a generator to charge the
battery or power the motor, creating a sequential energy path that shapes the agent’s state-action mapping for charge-management strategies.
Panel (c) depicts a pure battery-electric configuration, where energy flows from the battery through the DC/AC inverter to the motor and wheels, with
regeneration feeding back during braking-ideal for model-free policies focused solely on energy efficiency and battery health. Source: Own elaboration.
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stable energy distribution and motor control performance. Kasri et al.
(2024) present a robust predictive torque control strategy for induction
motor-driven electric vehicles. Their method, referred to as RMPDTC
(Robust Modified Predictive Direct Torque Control), incorporates
integral action and a control law derived from Lie derivatives and
Taylor series expansion, allowing accurate compensation for load
disturbances and parameter variations. The proposed system was
implemented and tested in a real-time environment using OPAL-
RT hardware, demonstrating enhanced disturbance rejection and
reduced torque ripple compared to conventional methods. This
work highlights the feasibility of deploying robust predictive
controllers for EVs under physical and real-time constraints.

To better highlight the differences and commonalities among
recent intelligent control approaches for electric vehicles, a
comparative evaluation is presented in Figure 4. This figure
synthesizes five key dimensions observed across three representative
works: adaptivity, real-world validation, optimization sophistication,
control robustness, and deployment feasibility. The scoring ranges from
1 (minimal presence) to 5 (strong or advanced presence), based strictly
on criteria extracted from each article’s methods and results.

While Oubelaid et al. (2022) demonstrates strong optimization
capabilities through the use of PSO and GA for offline tuning, it
lacks adaptive behavior and is limited to simulation-based
validation. Belkhier et al. (2023) introduces a partially adaptive
fuzzy-sliding mode controller that effectively handles mass
variations and is tested under standardized FTP-75 driving
cycles. In contrast, Kasri et al. (2024) achieves the highest levels
of robustness and feasibility through a predictive torque control
strategy implemented on real-time hardware (OPAL-RT), although
it does not include adaptive learning mechanisms.

Unlike hybrid systems, electric vehicles rely solely on electrical
energy for propulsion, eliminating the need for internal combustion
engines and associated components such as clutches or gearboxes.
The electric system’s efficiency is enhanced through regenerative
braking, where the electric motor functions as a generator during
deceleration. This process converts kinetic energy back into
electrical energy, which is then fed into the battery for storage, as
indicated by the green arrows in the diagram. This regenerative

mechanism not only improves the overall energy efficiency of the
vehicle but also extends the driving range by recovering energy that
would otherwise be lost as heat in traditional braking systems.

2.3 Integration of energy management and
reinforcement learning in electric vehicles

RL is well-suited for energy management tasks in electric vehicles
due to its ability to learn optimal strategies in complex and uncertain
environments. By continuously interacting with the vehicle’s
powertrain and external conditions, an RL-based controller can
adapt to changes in real-time, improving energy efficiency and
performance over time (Chen et al., 2019). An scheme illustrating
the concept can be seen at Figure 5. Another RL models have been
applied to energy management in electric vehicles, each with unique
strengths. For example, Q-learning and its variants are commonly used
for discrete action spaces, while DQN and other deep RL methods are
employed for handling continuous and high-dimensional spaces.
Techniques such as SARSA and Actor-Critic methods also play
significant roles depending on the specific application and system
requirements (Yoon, 2022). Numerous studies have demonstrated the
effectiveness of RL in the context of energy management in electric
vehicles. Those studies will be discussed in the next sections.

2.4 Comparison with other methods

Traditional energy management strategies often rely on
predefined rules or optimization-based approaches (Ding et al.,
2021), which can be rigid and may not adapt well to varying
driving conditions. In contrast, RL offers a more flexible and
adaptive solution by learning from experience. This learning
capability allows RL-based methods to outperform traditional
techniques, especially in dynamic and uncertain environments.
Recent advances in RL have led to the development of hybrid
approaches that combine RL with other AI techniques, such as
supervised learning and evolutionary algorithms. These innovations

FIGURE 4
Comparative radar chart of three selected recent contributions to EV energymanagement systems. Scores are based on criteria including adaptivity,
real-world validation, optimization approach, robustness, and deployment feasibility, using a scale from 1 (minimal) to 5 (advanced). Source: Own
elaboration.
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aim to enhance the stability and efficiency of energy management
systems, addressing some of the limitations of pure RL methods,
such as convergence issues and computational complexity. Table 1
presents a comparative overview of four leading energy-
management approaches—reinforcement learning, dynamic
programming, rule-based control, and model-predictive
control—highlighting their input requirements, decision logic,
adaptability and online computational load.

3 Methodology

3.1 Designing

This review aims to address key research questions concerning
the application of reinforcement learning in the context of energy
management in electric vehicles. First, we investigate which RL
algorithms are most commonly employed in this domain. Second,
we explore how RL contributes to improving energy efficiency
compared to traditional methods. Third, we examine the
practical challenges associated with implementing RL for energy
management in electric vehicles. Lastly, we identify the key
performance metrics used to evaluate the effectiveness of RL
algorithms in optimizing energy consumption.

3.2 Study selection criteria

We used Web of Science (WoS) as the only database for
literature retrieval, given its extensive coverage of high-impact

academic journals and its integration of multiple leading libraries,
including IEEE, MDPI, and other databases. This choice ensures
that the review captures a broad spectrum of peer-reviewed articles,
providing a solid foundation for subsequent analysis.

3.2.1 Inclusion criteria
The search strategy within WoS was designed to target studies

that specifically address the application of reinforcement learning in
the context of energy management in electric vehicles. Keywords
were selected and refined to ensure precision, focusing on abstracts
to maximize relevance while minimizing the inclusion of
tangentially related works.

In particular, we included articles published within the specified
timeframe (1 January 2016 to 1 June 2024) based on the presence of
three relevant keywords: “reinforcement learning,” “energy
management,” and “electric vehicle” in the abstract or the title.
Furthermore, only articles classified as “Open Access” were
considered to ensure the accessibility of full texts for
detailed analysis.

3.2.2 Exclusion criteria
To refine the selection and maintain a targeted scope, exclusion

criteria were implemented to discard studies that, despite appearing
in the search results, did not substantively address the research
focus. Articles were excluded if they discussed reinforcement
learning or energy management outside the specific context of
electric vehicles, or if they explored broader applications like grid
management or residential energy systems without direct relevance
to the topic. Additionally, non-empirical works such as reviews and
commentaries were excluded to maintain a focus on original

FIGURE 5
Conceptual framework of reinforcement learning application in the context of energy management in electric vehicles. The diagram illustrates the
interaction between the RL agent and the vehicle environment, showing state variables (battery charge, speed, slope, terrain), actions (brake/throttle
control, energy distribution), and reward metrics (autonomy maximization, energy optimization). Source: Own elaboration.
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research that provides new insights or data. Moreover, only journal
articles were considered, while conference proceedings were
deliberately omitted to ensure the inclusion of high-quality
publications indexed in the Web of Science.

3.3 Literature search

In addition to the previous considerations, we also adhere to an
adapted version of the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines (Page et al.,
2021). PRISMA is a widely recognized methodology designed to
enhance the transparency and reproducibility of systematic reviews
(Martínez-Peláez et al., 2023). In particular, we adapted this method
to accommodate the specific requirements of analyzing the
intersection of reinforcement learning, energy management, and
electric vehicles.

Initially, the search strategy implemented in the Web of Science
database yielded a total of 91 articles, which formed the preliminary
dataset for further screening. Following the PRISMA framework, the
review process proceeded through a series of structured steps to
ensure a thorough and unbiased evaluation of the literature. The
initial set of articles underwent a screening process, where each
article was assessed against predefined inclusion and exclusion
criteria. This step was crucial in narrowing down the pool of
studies to those that directly contribute to the research questions.
This approach ensured that the review remained focused on
empirical research with substantial methodological and
theoretical contributions to the field.

3.4 Selection of studies and elegibility

The co-occurrence network (made with VOSviewer) depicted in
Figure 6 presents a structured visualization of the key research terms
extracted from the 91 articles analyzed. Each node corresponds to a

keyword, with the size of the nodes proportional to the frequency of
occurrence within the dataset. The larger nodes, such as
“reinforcement learning” and “energy management” indicate
terms with higher prominence, while the edges between nodes
represent co-occurrences, signifying that these keywords
frequently appear together within the same publications.

The network is organized into distinct clusters, eachmarked by a
different color, which suggests thematic groupings in the literature:

• The red cluster centers around “energy management” and
“energy management strategies” along with related concepts
such as “hybrid electric vehicles,” “batteries,” and “state of
charge” indicating a strong focus on strategies for efficient
energy use in electric vehicles.

• The blue cluster is dominated by “reinforcement learning”
connecting to methodological terms such as “deep learning,”
“Q-learning,” and “optimal control” highlighting the role of
advanced machine learning techniques in optimizing energy
management systems.

• The purple cluster is associated with “electric vehicles” and
includes terms like “vehicle-to-grid” and “electric vehicle
charging” underscoring the significance of charging
infrastructure and grid integration in the context of electric
vehicle energy management.

• The green cluster emphasizes terms related to “cost
optimization,” “energy management systems,” and
“uncertainty” reflecting a concern with optimizing costs
and handling uncertainties in energy distribution and
consumption.

This co-occurrence network analysis provides a comprehensive
overview of the intellectual structure of the field, showing key
intersections between machine learning methodologies and their
applications in the context of energy management in electric
vehicles. The clusters highlight how reinforcement learning has
been integrated with practical concerns such as optimization, grid

TABLE 1 Comparison of reinforcement learning, dynamic programming, rule-based control, and model predictive control for energy management in
electric vehicles.

Feature Reinforcement learning Dynamic programming Rule-based control Model predictive
control

Input Data Current vehicle states (Sutton and
Barto, 2018) (e.g., battery charge level,
speed, terrain conditions)

Complete mathematical model of
the system and known prior data
(Bertsekas, 2005)

Basic vehicle sensors with discrete
state inputs (Russell and Norvig,
2016) (e.g., speed, charge level)

Continuous state measurements
(state-of-charge, speed, road grade,
driver demand) and prediction
horizon data (Minchala-Ávila
et al., 2025; Yan et al., 2012)

Decision Process Decisions based on policies learned
through interaction with the
environment, adjusted by rewards
(Mnih et al., 2015)

Decisions optimized by solving the
model, considering all possible
states recursively (Bellman, 1957)

Decisions based on predefined
rules that dictate specific actions
in response to certain states or
conditions (Mamdani and
Assilian, 1975)

Receding-horizon optimization of
a cost function under constraints,
solved at each time step
(Minchala-Ávila et al., 2025; Yan
et al., 2012)

Adaptability Highly adaptable. Capable of learning
and improving with new experiences
and data (Eller et al., 2018)

Limited. Relies on a fixed model
and requires recalculation if
conditions or the model change
(Powell, 2007)

Low. Rules are fixed and do not
automatically adapt to new
situations or conditions
(Isermann, 2006)

Moderate. Can handle varying
driving scenarios and constraints
but depends on model accuracy
and horizon length
(Minchala-Ávila et al., 2025)

Computational
Requirements

High. Requires significant
computational resources and training
time

Very high. Needs to consider all
possible combinations of states and
actions

Low. Easy to implement with
minimal computational
requirements

Moderate to high. Involves on-line
quadratic/linear programming at
each control step (Yan et al., 2012)
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integration, and cost efficiency, reflecting the multidisciplinarity and
complexity of the domain.

3.5 Filtering process

The article filtering process employed a multi-stage approach to
refine the selection from an initial set of 91 articles to 10. This
approach combined keyword-based filtering with text mining
techniques and quantitative evaluation through TF-IDF and
article-specific weighting based on the number of recent citations.
Figure 7 shows a summary of the process. The steps are as follows:

3.5.1 Initial title-based filtering
A set of relevant keywords (e.g., “reinforcement learning,”

“energy management,” “electric vehicle”) was applied to the titles
to exclude articles that did not align with the research topic. This
step reduced the dataset to 86 articles.

3.5.2 Abstract-based filtering
The same set of keywords was applied to the abstracts to further

ensure relevance. All 86 articles contained relevant terms in their
abstracts, so no further reduction occurred at this stage.

3.5.3 Keyword frequency analysis
Abstracts were preprocessed by removing common stopwords

and punctuation, followed by the computation of Term Frequency-

Inverse Document Frequency (TF-IDF) scores for each term across
the corpus. A threshold based on the 75th percentile of total TF-IDF
values was used to select the top 20 articles, ensuring the most
relevant abstracts were retained.

The usage of TF-IDF is crucial for identifying the most relevant
articles based on the content of their abstracts. TF-IDF is a well-
established information retrieval technique that calculates the
importance of terms within a document relative to the entire
corpus. In this review, the TF (term frequency) component
captures the frequency of a term in an abstract, while the IDF
(inverse document frequency) reduces the weight of common terms
that appear frequently across multiple abstracts, thus highlighting
terms that are more unique and relevant to individual articles. This
weighting mechanism is effective in literature reviews because TF-
IDF filters articles by identifying those that contain domain-specific
terms (e.g., “reinforcement learning” and “energy management”)
with high significance relative to the entire set of abstracts. This
helps narrow down the corpus to the most relevant studies (Spärck
Jones et al., 1998). By reducing the influence of commonly used but
less specific terms, TF-IDF ensures that selected articles closely align
with the specific research questions of the literature review, thus
improving precision in topic identification.

It is important to acknowledge that while TF-IDF provided a
quantitative approach to article selection, the method has inherent
limitations. The technique relies solely on term frequency and
distribution, and cannot account for semantic nuances or
contextual relationships between terms. In this context, we note

FIGURE 6
Keyword co-occurrence network visualization based on bibliometric analysis of 91 articles (2016–2024) made with VOSviewer. Node size indicates
keyword frequency, while edge thickness represents co-occurrence strength. Colors denote distinct research clusters: red (energy management
strategies), blue (reinforcement learning methods), purple (electric vehicle applications), and green (optimization approaches).
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that our goal was to use the TF-IDF results as a filtering tool rather
than a statistical analysis method. In particular, the articles were
ranked based on their TF-IDF scores, with the top quartile of articles
(75th percentile) selected for further analysis, leading to a subset of
20 articles.

We note that the TF-IDF analysis represented one step in our
broader selection process, working in conjunction with our citation-
based weighting formula to identify the final set of ten articles for
detailed review. This methodology allows the review to remain
focused on studies that are not only relevant but also impactful
in advancing the field.

3.5.4 Weighting articles by citations
The final set of 20 articles was ranked according to a pre-existing

weighting column, based on the number of recent citations of each
article. The top 50% of these articles, based on the highest weighting
scores, were selected, resulting in 10 articles being included in the
final dataset.

The weighting methodology designed to prioritize more recent
and highly cited publications. The weighting score w for each article
was calculated as shown in Equation 5:

w � ∑ eλ ti−2024( ) · ci (5)

Where ti represents the year of the article, ci is the number of
citations the article received in year ti, and λ � 0.3 is a constant that
controls the exponential decay based on the publication date. The
exponential factor eλ(ti−2024) applies a time-based decay, emphasizing
the significance of more recent citations while diminishing the weight
of older publications. This allows for a balanced approach, where both
the citation count and the recency of the citations contribute to the
overall relevance of the article.

It is worth noting that this review exclusively considered open-
access publications. While this choice ensures transparency and
reproducibility, it may introduce a selection bias by excluding
relevant closed-access contributions.

FIGURE 7
Review filtering process flowchart. The diagram shows the progression from initial identification (n = 91) through screening, eligibility assessment, to
final inclusion (n = 10), with detailed criteria at each stage.

Frontiers in Future Transportation frontiersin.org10

Ananganó-Alvarado et al. 10.3389/ffutr.2025.1555250

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1555250


4 Results and comparative analysis

4.1 Temporal distribution of the publications

Based on the data retrieved from the Web of Science database,
Figure 8 illustrates the yearly progression of publications and
citations related to reinforcement learning applied to energy
management in electric vehicles from 2016 to 2024 (with
2024 data collected up until August). The number of publications
demonstrates a consistent upward trend, peaking in 2023, reflecting
a growing research interest in this field. Similarly, citation counts
have risen sharply since 2020, indicating an increasing academic
impact. Although there appears to be a slight decline in citations in
2024, this can be attributed to the incomplete data for the year,

which only covers up to August. These trends emphasize the
expanding importance and recognition of reinforcement learning
in energy management systems within the electric vehicle scope.

4.2 Citation analysis

The chart presented in Figure 9a shows the total citations from
2016 to 2024, distributed across various journals based on the raw
database of 91 articles. IEEE Access emerges as the leading journal,
with a significant citation count of 353, highlighting its role in
publishing influential research on reinforcement learning and
energy management in electric vehicles. Other key IEEE journals,
such as IEEE Transactions on Smart Grid and IEEE-ASME

FIGURE 8
Annual distribution of publications and citations in reinforcement learning for electric vehicle energy management (2016–2024). Left y-axis shows
publication count, right y-axis displays citation count. Note: 2024 data includes publications and citations until August 2024. Source: Web of Science.

FIGURE 9
Analysis of publications in RL for EV energy management (2016–2024): (a) Total citations per journal, showing dominance of IEEE publications and
growing influence of open-access journals, based on Web of Science database; (b) Top decile institutional contributions based on affiliation data from
91 publications, highlighting geographical distribution and research concentration.
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Transactions on Mechatronics, also show substantial citation
numbers, with 286 and 216 citations, respectively. This
concentration of citations within IEEE journals reflects their
prominence as authoritative platforms for disseminating
advanced research in this domain.

Non-IEEE journals, such as Applied Sciences-Basel and
Energies, contribute notably to the academic landscape with
196 and 102 citations, respectively, despite having fewer
publications. These journals demonstrate significant impact
within their specific areas of focus, offering valuable
contributions to the broader field. A variety of specialized
journals, including Energy and Journal of Energy Storage, also
feature in the citation analysis, indicating their relevance in
niche aspects of energy management and optimization. The
“Others” category, which groups journals with lower
individual citation counts, accumulates a total of 67 citations,
suggesting that while major journals dominate, there is still a
dispersed and meaningful scholarly output across a range of less
prominent publications.

4.3 Institution analysis

The chart in Figure 9b reflects the top decile of institutions
contributing to the research within the raw 91-element database.
Chongqing University leads the contributions with
8 publications, followed by Seoul National University with 7.
Both the Chinese Academy of Sciences and Polytechnic
University of Turin have 6 publications each, indicating a
notable presence in the field. Institutions such as Khon Kaen
University and Beijing Institute of Technology follow closely
with 6 and 5 publications, respectively.

Additionally, the Northeastern University in China, the
University of California System, and Hanyang University each
contribute 4 publications, with several other institutions,
including the Eindhoven University of Technology and the
University of London, contributing 3 publications. This analysis
emphasizes that research in this domain is highly concentrated in
specific Asian and European institutions.

4.4 Funding sources analysis

Chart in Figure 10a illustrates the top decile of funding
organizations supporting research within the raw 91-element
database. The National Natural Science Foundation of China is
the most prominent supporter, backing 16 publications. A
considerable gap follows, with 7 entries marked as having
insufficient data regarding funding sources. The National Key R
&D Program of China supports 5 papers, while the National
Research Foundation of Korea contributes to 3. Other significant
supporters include the Guangzhou Basic and Applied Basic
Research Program and the European Union, each supporting
2 publications. Several other programs, such as the Jiangsu
Province Key Research and Development Program and the
Technology Innovation Program Korea, each back 1 paper. This
distribution highlights the central role of Chinese funding
organizations in driving research in this area, along with notable
contributions from Korean and European institutions. While this
reflects active research in the region, it may limit the generalizability
of the conclusions across different geographical contexts.

4.5 Publisher analysis

The publisher analysis in Figure 10b reveals that IEEE is the
leading publisher within the dataset, contributing 30 publications
with a total of 783 citations. This establishes IEEE as a dominant
platform for research dissemination in reinforcement learning and
energy management in electric vehicles. The high citation count
reflects the quality and visibility of the research published in IEEE
journals, which are widely recognized in the field of electrical
engineering and related disciplines. MDPI, another prominent
publisher, closely follows with 29 publications and 292 total
citations, showcasing its relevance in the dissemination of
cutting-edge research in this domain.

Other notable publishers include Elsevier and Pergamon-
Elsevier Science, which, although contributing fewer papers
(11 and 5, respectively), have garnered a combined total of
370 citations, highlighting their impact in the field. Frontiers

FIGURE 10
Analysis of research funding and publishing in RL for EV energy management (2016–2024): (a) Distribution of funding sources based on
acknowledgments in 91 publications, showing significant role of national funding agencies; (b) Publisher distribution and citation impact comparing
publication volume and citation metrics across major publishers.

Frontiers in Future Transportation frontiersin.org12

Ananganó-Alvarado et al. 10.3389/ffutr.2025.1555250

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1555250


Media also contributes with 3 publications and 32 citations. These
results suggest that while IEEE andMDPI dominate in terms of both
volume and impact, other publishers such as Elsevier maintain a
significant presence, further emphasizing the multidisciplinary
interest in research on reinforcement learning and energy
management.

4.6 Applications of reinforcement learning

Reinforcement learning algorithms applied to energy
management in electric vehicles show diverse implementations,
and each work addresses specific aspects of these applications.
Ahmadian et al. used Q-learning for hybrid electric vehicles
(HEVs) and demonstrated how it significantly optimized fuel
consumption and battery life (Ahmadian et al., 2023). This
method, unlike traditional rule-based systems, adapts to real-time
conditions without requiring detailed prior knowledge of the driving
cycle, setting it apart as an effective RL solution. Similarly, Hu et al.
developed a data-driven model using RL for HEVs, emphasizing the
integration of uncertainty in offline reinforcement learning to
enhance energy efficiency under varying conditions (Hu et al.,
2023). Both studies focus on reducing fuel consumption and
improving battery longevity, critical metrics in the energy
management of hybrid systems.

Deep reinforcement learning (DRL) techniques also offer
notable benefits in home energy management systems (HEMS)
and microgrids. Forootani et al. leveraged a Deep Q-Networks to
optimize appliance scheduling, highlighting a substantial reduction
in electricity costs and enhanced user satisfaction compared to
conventional optimization methods (Forootani et al., 2022).
Compared to Q-learning, DQN demonstrates superior
performance in managing nonlinear and dynamic environments
typical of smart homes. This technique is further applied to hybrid
electric vehicle energy management by optimizing fuel consumption
under varying conditions, as demonstrated in several studies.

Beyond Q-learning and DQN, other RL algorithms such as Deep
Deterministic Policy Gradient (DDPG) and Trust Region Policy
Optimization (TRPO) are also gaining traction. These algorithms
offer advantages in handling continuous state and action spaces, as
seen in the work of Lee et al. (2020), who compare dynamic
programming with RL methods, emphasizing the ability of RL
algorithms to provide near-optimal energy management in
real-time.

In microgrid applications, Fang et al. propose a multi-agent
reinforcement learning (MARL) approach to balance energy
scheduling for residential systems with electric vehicles and
renewable energy sources (Fang et al., 2020), integrating electric
vehicles and renewable energy sources to balance energy
consumption dynamically. Their work also underlines how
MARL significantly outperforms traditional scheduling
algorithms, both in terms of efficiency and adaptability. These
implementations showcase the versatility of RL beyond vehicles,
expanding its relevance to broader energy management contexts.

Other RL variants, such as Soft Actor-Critic (SAC) and Twin
Delayed Deep Deterministic Policy Gradient (TD3), address
different challenges in the context of energy management in
electric vehicles. Li T. et al. (2022) implemented SAC in plug-in

hybrid electric vehicles to manage energy flow, achieving superior
performance in optimizing both electric and fuel consumption over
heuristic methods. Yan et al. (2023) used TD3 to design a multi-
objective energy management strategy for HEVs, emphasizing how
the RL algorithm can manage multiple, often competing, objectives
such as minimizing fuel use while maximizing battery life. These
studies highlight the adaptability of more complex RL methods in
balancing real-time operational demands with long-term
energy goals.

In terms of challenges, Li S. et al. (2022) focused on online
battery protection using RL, addressing the difficulty of balancing
battery health and energy efficiency in real-time environments. The
work by Mocanu et al. (2019) on online building energy
optimization demonstrates how DRL techniques can be applied
to optimize energy use in buildings, directly contributing to a
reduction in operational costs. Xu et al. (2020) further explored
MARL in home energy management, focusing on the decentralized
nature of energy scheduling and the difficulties in coordinating
multiple agents effectively. Together, these papers illustrate the
broad applicability and ongoing evolution of RL techniques in
addressing both the technical and practical challenges of energy
management across various domains.

The variety of RL techniques applied in the context of energy
management in electric vehicles highlights the flexibility and
efficacy of these algorithms. Q-learning remains a standard due
to its simplicity and effectiveness in discrete action spaces, while
advanced methods like DQN and MARL are increasingly applied
to more complex, continuous environments. These algorithms
not only improve fuel efficiency and battery life but also adapt to
the dynamic nature of real-world driving and energy
usage scenarios.

Figure 11 provides an overview of recent advancements in the
application of reinforcement learning (RL) techniques to energy
management systems. The figure outlines the achievements of
various researchers, demonstrating the significant improvements
in energy efficiency, cost reduction, and operational performance.

4.6.1 Comparison with other methods
Reinforcement learning has been proven to significantly

enhance energy efficiency compared to traditional methods
across multiple domains, particularly in electric vehicles and
home energy management systems. Ahmadian et al. (2023)
highlight the effectiveness of Q-learning in optimizing fuel
consumption and extending battery life in hybrid electric
vehicles. The model-free nature of Q-learning allows it to
adaptively manage energy based on real-time driving data,
resulting in substantial improvements in fuel economy over
conventional rule-based strategies. This dynamic adaptation
makes Q-learning particularly suitable for scenarios with varying
driving conditions.

Similarly, RL techniques have outperformed traditional
optimization methods in home energy management systems.
Forootani et al. (2022) propose a DQN-based HEMS that
schedules household appliances while minimizing energy costs.
In this case, DQN significantly reduces electricity costs and
improves user satisfaction compared to heuristic-based
approaches and traditional optimization algorithms. The model
demonstrates RL’s superior ability to learn from dynamic
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environments, offering a robust and flexible solution to energy
management challenges.

In a broader context, Hu et al. (2023) explore the integration of
RL in hybrid electric vehicles and demonstrate its advantages over
traditional optimization strategies like dynamic programming.
Their approach uses a data-driven model combined with offline
RL, providing a more efficient and scalable solution for managing
energy consumption in HEVs. The proposed RL algorithm
significantly improves energy efficiency by learning optimal
control strategies in real-time, unlike traditional methods that
rely on predefined driving cycles.

Moreover, multi-agent RL frameworks have proven effective in
distributed energy management systems. Fang et al. (2020) describe
a multi-agent system for residential microgrids, showing that RL-
based methods outperform traditional scheduling algorithms by
dynamically adjusting energy usage according to real-time demand
and supply fluctuations. This capability leads to more efficient
energy use, particularly in systems incorporating renewable
energy sources.

4.6.2 Performance metrics
Reinforcement learning techniques applied to energy

management in electric vehicles are evaluated using specific
performance metrics to assess their effectiveness in optimizing
energy consumption (Ahmadian et al., 2023). A key metric often
employed is fuel consumption, particularly in hybrid electric
vehicles. In addition, battery life improvement, a critical
performance indicator in HEV energy management.

In multi-agent systems, another important metric is the
system’s energy efficiency in microgrids. Fang et al. (2020)
demonstrate that using a multi-agent reinforcement learning
framework in residential microgrids improves overall energy
efficiency by reducing reliance on external energy sources,
thus minimizing energy purchases from the grid. This
demonstrates the system’s effectiveness in promoting self-
sufficiency in energy consumption and balancing demand
between various agents.

When comparing traditional and RL-based energy management
strategies, computational efficiency is also a key metric. The work by Hu
et al. (2023) highlights that model-free RL methods, particularly in
hybrid energy management systems, achieve significant computational
savings. Thesemethods can optimize energy consumption in a way that
reduces computational complexitywhile still achieving real-time control,
making them more suitable for practical implementation compared to
dynamic programming methods.

Finally, scalability and generalization to different driving
conditions are critical metrics. Yan et al. (2023) propose a TD3-
based RL strategy for energy management in hybrid vehicles, focusing
on how well the algorithm generalizes across varying operational
environments without needing prior knowledge of driving conditions.
This scalability is essential for evaluating the robustness of RL
algorithms, ensuring that the energy management system remains
effective across a wide range of real-world driving scenarios.

4.6.3 Practical applications
The implementation of reinforcement learning in electric

vehicle energy management has demonstrated concrete benefits
across various practical applications.

In hybrid electric vehicles, Ahmadian et al. (2023) implemented
a Q-learning based control strategy that achieved a 1.25% reduction
in fuel consumption during the HWFET driving cycle while
simultaneously extending battery life by 65% compared to
conventional rule-based methods. This dual optimization
showcases RL’s ability to balance multiple objectives in real-
world driving conditions. Li et al. (Li S. et al., 2022)
demonstrated practical applications in battery protection, where
their online RL system achieved a reduction in battery life loss of
24.4% compared to the PSOS baseline.

In residential settings, Forootani et al. (2022) deployed a Deep
Q-Network for home energy management that successfully
integrated electric vehicle charging with household appliance
scheduling. Their system reduced electricity costs while reducing
customer dissatisfaction by 14% compared to the Q-learning
baseline, demonstrating RL’s effectiveness in managing complex

FIGURE 11
Overview of reinforcement learning applications in energy management systems, highlighting key algorithms and their respective contributions to
energy optimization. Source: Own elaboration.
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multi-component systems. For microgrid applications, the multi-
agent reinforcement learning system by Fang et al. (2020)
coordinated energy distribution among multiple electric vehicles
and renewable energy sources.

Building-level energy optimization, as implemented by Mocanu
et al. (2019), showed how RL can scale to larger systems. Their
implementation of Deep Policy Gradient reduced the peak
consumption by 26.3% and the cost by 27.4% while their
implementation of Deep Q-Learning reduced the peak
consumption by 9.6% and the cost by 14.1%.

Figure 12 presents a comparative analysis of key reinforcement
learning algorithms, including Q-Learning, DQN, TD3, SAC,
MARL, and DPG. The figure highlights the distinct advantages
and practical implementations of these algorithms in complex
energy management systems, offering insights into their
suitability for various applications.

4.6.4 Practical challenges
Implementing reinforcement learning for energy management in

electric vehicles presents various practical challenges, particularly
regarding real-time deployment and computational efficiency.
Ahmadian et al. note that while Q-learning-based approaches can
optimize fuel consumption and battery life, high computational cost
and convergence issues in dynamic environments pose significant
obstacles (Ahmadian et al., 2023). The lack of real-time adaptability
in traditional Q-learning algorithms limits their effectiveness when faced
with fluctuating energy demands and unpredictable driving conditions.

In multi-agent reinforcement learning systems for residential
microgrid scheduling, Fang et al. (2020) highlight the complexity of
ensuring fairness and autonomy among agents while maintaining

system efficiency. The MARL framework must address the challenge
of balancing the energy requirements of electric vehicles, renewable
energy sources, and household appliances. Achieving equilibrium in
such distributed systems can be computationally expensive, and
ensuring privacy and fairness further complicates the real-time
application of these RL algorithms.

Hu et al. introduce an uncertainty-aware, model-based RL
strategy for energy management in hybrid electric vehicles, which
addresses some of these challenges (Hu et al., 2023). However, even
with an offline learning approach, their system struggles with the
high variability in energy consumption patterns and the limitations
of the RL algorithm in generalizing under different driving
conditions. This leads to inefficiencies when attempting to
manage energy in real-time under diverse operational scenarios.

Finally, advanced RL algorithms like TD3 used by Yan et al. (2023)
face challenges in state redundancy and reward function design. The
complexity of accurately modeling the energy consumption and
degradation of lithium-ion batteries while optimizing fuel efficiency
adds another layer of difficulty. These challenges underscore the need
for more refined state space and reward structures, which can
significantly increase training times and computational demands,
making real-time implementation challenging.

4.7 Summary of results

The diagram shown in Figure 13 provides a visual representation
of the key findings from our review. It links the four research
questions to the relevant RL algorithms, energy efficiency
improvements, challenges, and performance metrics, offering an

FIGURE 12
Detailed comparison of reinforcement learning algorithms, focusing on Q-Learning, DQN, TD3, SAC, MARL, and DPG in energy management
scenarios. Source: Own elaboration.
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overview of how these components integrate into different systems
such as electric vehicles, home energy management, and
microgrids.

Figure 14 illustrates the core challenges involved in applying
reinforcement learning algorithms to energy management systems.
At a high level, practitioners must contend with computational

FIGURE 13
Conceptual framework linking research questions with key findings in reinforcement learning applications for energy management systems. The
diagram synthesizes algorithms, efficiency improvements, implementation challenges, and performance metrics identified in our review. Source: Own
elaboration.

FIGURE 14
Key Challenges in Deploying Reinforcement Learning Algorithms for Energy Management Systems. Source: Own elaboration.
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complexity, such as the time-consuming nature of sophisticated
algorithms and the necessity for real-time adaptability. They also
face hurdles with data and modeling, given the multidisciplinarity
and intricacy of energy domains. Furthermore, multi-agent systems
introduce difficulties in achieving a stable equilibrium among
distributed agents. Hyperparameter tuning is critical—particularly
for algorithms like TD3—to ensure reliable performance. Finally,
real-time applications introduce another layer of uncertainty,
further complicating the successful deployment of reinforcement
learning for energy management.

5 Discussion of findings and
implications

5.1 General results

Our analysis of the relevant open-access articles retrieved from
the Web of Science database reveals several key insights into the
current research landscape. First, the analysis of key publishers
shows that IEEE and MDPI are the leading outlets, collectively
accounting for the majority of the publications, indicating their
central role in the dissemination of cutting-edge research in this
domain. Moreover, the citation trends reflect the prominence and
academic recognition of articles published in these journals,
particularly IEEE, which has amassed the highest citation count,
demonstrating its impact within the field.

Additionally, the institutional and country analyses reveal that
research contributions are heavily concentrated in Chinese
institutions, led by Chongqing University and supported by
national funding bodies such as the National Natural Science
Foundation of China. These findings point to China’s leadership
in advancing reinforcement learning applications in energy
management systems, with strong contributions from institutions
in South Korea and Europe, such as Seoul National University and
Polytechnic University of Turin. Despite the geographical
concentration, the involvement of institutions from multiple
continents highlights the global interest in addressing energy
efficiency and sustainability in electric vehicles through
reinforcement learning techniques.

5.2 Key methods and algorithms

The application of reinforcement learning algorithms in electric
vehicle energy management reveals both significant potential and
notable challenges that warrant deeper examination.

In general, application of RL in the context of energy
management in electric vehicles and broader energy systems
demonstrates significant improvements in fuel consumption,
battery life, and overall energy efficiency compared to
traditional methods. Across the ten studies, Q-learning,
DQN, and more advanced algorithms like SAC and
TD3 consistently outperform rule-based or heuristic
approaches. These findings underline RL’s capability to adapt
to dynamic, real-time environments, offering solutions that
traditional methods, bound by static decision-making
frameworks, cannot match.

Q-learning algorithms, while demonstrating robust
performance in discrete state spaces, face substantial scalability
challenges when applied to complex vehicle systems. Studies such
as those by Forootani et al. and Fang et al. highlight the increasing
shift toward deep reinforcement learning andmulti-agent systems to
handle more complex, continuous-state problems like microgrid
energy management and home energy optimization Forootani et al.
(2022); Fang et al. (2020).

Figure 15 depicts real-world applications of TD3 and
Q-Learning in hybrid electric vehicles. The visualizations
illustrate how these algorithms optimize energy usage by
adapting to different slope conditions, showcasing their capability
for real-time decision-making.

5.2.1 Deep Q-Network
Forootani et al. (2022) address some limitations of traditional

Q-learning through neural network function approximation,
enabling better handling of continuous state spaces common in
vehicle systems. However, our review indicates that DQN
implementations frequently encounter stability issues during
training, particularly when dealing with the stochastic nature of
real-world driving conditions. The introduction of experience replay
and target networks partially mitigates these issues, though at the
cost of increased computational overhead.

5.2.2 Twin delayed deep deterministic
policy gradient

Yan et al. (2023) emerges as a promising solution for continuous
control problems in energy management. Its dual critic architecture
demonstrates superior performance in preventing overestimation
bias, a common issue in Q-learning variants. Nevertheless,
TD3 implementations require careful hyperparameter tuning and
substantial computational resources for training, potentially limiting
their practical deployment in resource-constrained vehicle systems.

5.2.3 Other relevant algorithms
While the previous examples focused on a representative subset

of reinforcement learning algorithms—namely Q-learning, DQN,
and TD3—recent literature highlights several additional methods
that exhibit strong potential in electric vehicle (EV) applications.
Among them, Soft Actor-Critic (SAC), Proximal Policy
Optimization (PPO), and Asynchronous Advantage Actor-Critic
(A3C) stand out for their ability to handle high-dimensional,
continuous control problems under uncertainty and real-time
constraints.

Soft Actor-Critic (SAC) has become increasingly popular for its
stability and exploration efficiency in continuous action spaces. Its
core innovation lies in the entropy-augmented objective, which
encourages the agent to explore more diverse policies, often
leading to improved convergence and robustness. In EV-related
applications, SAC has shown excellent performance in managing
hybrid energy sources. For instance, it has been proposed a SAC-
based energy management strategy for a plug-in hybrid electric
vehicle, demonstrating a 4.37% fuel economy improvement over
conventional approaches (Li T. et al., 2022).

Proximal Policy Optimization (PPO) offers a compelling
balance between learning performance and implementation
simplicity. Its clipped objective function limits policy updates,
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preventing performance collapse while preserving gradient
efficiency. This has made PPO a go-to choice for a wide range of
control tasks, including those in EV contexts. A work employed PPO
to design an intelligent energy management system for plug-in
hybrid buses, explicitly incorporating battery thermal dynamics
and achieving improved energy efficiency and extended battery
life (Zhang et al., 2023). Another work employed PPO in an eco-
routing and charging optimization framework for electric logistics
fleets, yielding a notable 54% reduction in daily energy costs (Alonso
et al., 2023).

Asynchronous Advantage Actor-Critic (A3C) distinguishes
itself through its parallel training architecture, which allows
multiple agents to explore asynchronously and share gradients
in real time. This leads to faster convergence and better
generalization, especially in large, stochastic environments like
those encountered in autonomous driving and EV energy
optimization. It has been introduced a curiosity-driven A3C
framework for hybrid electric vehicle energy management,
achieving near-optimal performance without prior driving
profiles (Zhou et al., 2022).

5.3 Practical challenges

Practical challenges associated with implementing RL in the
context of energy management in electric vehicles are not
insignificant. Computational complexity and real-time decision-
making remain pressing issues, especially in scenarios involving
multiple agents or real-time data integration.

Studies like those by Fang et al. (2020) and Xu et al. (2020)
emphasize the difficulties in achieving equilibrium among agents in
a decentralized setting, a problem compounded by privacy concerns
and the need for fair energy distribution.

Moreover, Hu et al. (2023) offline RL approach illustrates how
data-driven methods can mitigate some of these challenges,
although at the cost of increased uncertainty in real-time
applications.

Similarly, Yan et al. (2023) work on TD3 highlights that while
RL excels at managing multiple objectives, fine-tuning reward
functions and state space representations can be time-consuming,
presenting a barrier to widespread deployment.

In general, computational complexity remains a central
challenge across all examined algorithms. Real-time energy
management decisions must be made within millisecond
timeframes, yet more sophisticated algorithms often require
longer processing times.

The integration of these algorithms into practical vehicle
systems faces additional challenges related to hardware
limitations and reliability requirements. While simulation studies
demonstrate impressive theoretical performance, real-world
implementation must contend with sensor noise, communication
delays, and hardware constraints. Future research directions should
focus on developing more efficient algorithmic implementations
that maintain performance while reducing computational demands.

5.4 Performance metrics

Performance metrics such as fuel consumption, battery life, and
energy efficiency offer valuable insights into the effectiveness of RL
algorithms across various applications. Papers like those by
Ahmadian et al. (2023), Li S. et al. (2022) show how RL can
optimize energy use in hybrid and plug-in hybrid electric
vehicles, while Mocanu et al. (2019) extend this analysis to
building energy optimization, highlighting RL’s broader
applicability.

FIGURE 15
Specific use cases of TD3 and Q-Learning in hybrid electric vehicle energy management, illustrating the decision-making process under varying
slope conditions. Source: Own elaboration.
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The inclusion of metrics like scalability and computational
efficiency, as seen in the work of Yan et al. (2023), ensures that
these algorithms can adapt to diverse operational environments.
Overall, these studies demonstrate that RL’s potential to
revolutionize energy management lies not only in its technical
superiority but also in its capacity to adapt to various energy
systems, provided the implementation challenges are
sufficiently addressed.

5.5 Limitations

This review has several limitations that should be acknowledged.
Our focus on open-access articles, while ensuring accessibility,
means that we may have missed valuable research published in
subscription-based journals. The use of Web of Science as our only
database could have excluded relevant papers indexed elsewhere.

The TF-IDF filtering method we used is relatively simple and
may have missed relevant papers that use different terminology to
describe similar concepts. Our citation-based weighting system
favors older publications that have had more time to accumulate
citations, potentially undervaluing recent innovative work.

Our final selection of only ten articles for detailed analysis, while
allowing for thorough examination, provides a limited view of the
field. Furthermore, by focusing solely on academic literature, we
may have missed important developments from industry that are
not publicly published.

Finally, the strong representation of Chinese institutions in
our analysis may reflect patterns in open-access publishing rather
than the true global distribution of research in this field. This
geographic bias, along with our exclusive focus on English-
language publications, could limit the comprehensiveness of
our findings.

5.6 Future works

Future research should prioritize developing lightweight RL
algorithms with lower computational demands, enabling real-
time deployment in embedded systems. Additionally, multi-agent
RL frameworks must incorporate fairness and autonomy to optimize
energy distribution in decentralized systems, such as smart grids
integrating EVs and renewable sources.

Overall, the comparative analysis suggests that RL-based
methods offer distinct advantages over traditional control and
heuristic optimization techniques. In particular, algorithms like
TD3 and SAC demonstrate strong adaptability to varying driving
conditions, outperforming classical approaches in scenarios with
non-stationary dynamics and limitedmodel knowledge.While some
methods require extensive tuning or offline training, their ability to
generalize and improve with experience positions them as promising
candidates for future EV energy management systems.

6 Conclusion

In this review, we have synthesized open-access studies from
2016 to 2024 on reinforcement-learning methods for electric-vehicle

energy management, identifying and comparing key
algorithms—including Q-learning, deep deterministic policy
gradient, twin delayed deep deterministic policy gradient, and
soft actor-critic—under a unified modeling framework.
Simulation results reported across the literature demonstrate that
model-free controllers can yield up to 12% improvements in overall
energy efficiency and extend battery life by 8% compared to rule-
based benchmarks, while model-predictive control remains valuable
for anticipative constraint handling. Bibliometric analysis reveals
that IEEE and MDPI journals dominate this field, with Chinese
institutions leading contributions. Remaining challenges include
reducing on-line computational overhead, validating policies in
hardware-in-the-loop and full-vehicle tests, and enhancing
generalization via transfer and multi-agent learning for vehicle-
to-grid integration. Future work should focus on developing
lightweight, transferable reinforcement-learning frameworks to
accelerate real-world deployment and support increasingly
complex electrified powertrains.
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