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With the increasing integration of conditionally automated Level 3 systems into
real-world traffic, concerns about their impact on traffic efficiency and capacity
have emerged. When such systems reach their operational limits, mandatory
control transitions could disrupt traffic flow and reduce overall capacity. This
study employs large-scale simulations and numerical experiments to analyze
these effects and quantify potential capacity constraints. The results of the two-
lane highway scenario show an experimental capacity reduction of up to
2000 veh/h in an almost fully automated but unmanaged traffic mix,
corresponding to a loss of about 60%. Control transition-related effects
become increasingly pronounced at a Level 3 penetration rate between 10%
and 20%. Estimated capacity reductions suggest that the maxima in time
headway increments during the transition phase contributemost to these effects.
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1 Introduction

As manufacturers begin to introduce Level 3 automated driving systems to the market,
the potential impact of such systems on overall traffic flow and capacity needs to be
investigated. A key challenge arises from the fact that Level 3 systems require human drivers
to take over control when reaching system limits, leading to so-called transitions of control
(ToC), which may disrupt traffic flow and reduce road capacity. Despite regulatory
advancements concerning Level 3 systems (R157 by UNECE (2023)), the macroscopic
impact of such procedural ToC effects on traffic conditions remains insufficiently explored.
This raises the general question of how Level 3 control transitions in conditionally
automated vehicles (AVs) affect traffic capacity and, more specifically, what
characteristics of procedural ToC-induced time headway increments in vehicle strings
contribute to this effect. To investigate this, we conduct a large-scale simulation-based
analysis and complement it with simplified numerical experiments to estimate macroscopic
capacity impacts. Our study also explores the underlying mechanisms of the transition
phase in greater detail. Existing research on potential capacity gains from AVs, as
exemplified by Friedrich (2016) and Park et al. (2021), has primarily focused on
higher automation levels (4–5) under optimistic assumptions of short time headways,
e.g., τAV � 0.5 s, in contrast to observed headways in manually driven vehicles of at least
1 s in freeway traffic, depending on vehicle speed, as shown by Wagner (2012). Our
previous work in Alms et al. (2022) and Alms and Wagner (2024) touched on ToC-related
capacity effects but lacked a comprehensive quantification of resulting capacity losses. This
study addresses these gaps by (i) adopting a macroscopic perspective using realistic, R157-
compliant time headways of τAV � 1.6 s, and (ii) introducing an exploratory estimation
approach that explicitly accounts for Level 3 disengagements in road capacity assessment.
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The rest of the paper is organized as follows: Section 2 introduces
the conceptual aspects of ToCs in Level 3 automated systems. In
Section 3, we present a highway scenario calibration based on real-
world detector data. Section 4 details our methodology for
investigating ToC-related capacity effects in a simulation study,
while Section 5 presents and discusses our results, comparing
simulated and estimated capacity reductions. Lastly, Section 6
offers our perspective on the interpretation and limitations of
this study.

2 Transitions of control in
level 3 automated driving

The six levels of driving automation, defined by SAE International
(2021), not only classify automated driving functions and capabilities
but also specify the human driver’s role in terms of engagement and
responsibility, as illustrated in Figure 1. Conditional automated driving
(Level 3, highlighted with a purple frame in Figure 1) represents a
fundamental shift toward automated vehicle operation within defined
Operational Design Domains (ODD), specified in British Standards
Institution (2020), allowing human drivers to disengage from the
primary driving task. However, if the Level 3 system requires the
driver to resume control, a takeover request (ToR) is issued, initiating a
critical transfer of authority: these procedures are referred to as
transitions of control (ToC, plural: ToCs). Detailed insights into
various aspects of ToCs are available through a comprehensive
literature review on takeovers in automated driving (McDonald
et al., 2019). Further studies examine the intricacies of modeling
human factors, such as situational awareness and task demand
(Van Lint and Calvert, 2018; Calvert and van Arem, 2020), or
reduced driver performance (Wang et al., 2025b), during ToCs.

The current regulations R157 from UNECE (2023) specify
technical requirements for the certification of Level 3 Automated
Lane Keeping Systems (ALKS) and set the time range Tlead to 10 s
before a failed transition escalates to a minimum risk maneuver
(MRM), which is critical for the process of control transitions.
Within the context of the EC project (TransAID, 2021; Lücken
et al., 2019; Mintsis et al., 2019) introduced a novel ToC model,
which is fully parametrizable to align with these later-established
UNECE specifications and for which a detailed description of the
model’s implementation is provided. The operationalization of
ToCs is further specified in the ongoing EC project Hi-Drive

(Bolovinou et al., 2023; Sauvaget et al., 2023) and demonstrated
in Schulte-Tigges et al. (2023).

Figure 2 illustrates the basic mechanisms of the ToC model for
successful and failed control transitions implemented in the
microscopic traffic simulation SUMO (Alvarez Lopez et al.,
2018). After a ToR, the AV enters a preparatory phase
characterized by headway enlargement and disabled lane
changing. Automated driving continues for the limited lead time,
after which either the driver resumes control in time (successful
transition), or, if not, the AV initiates an MRM (failed transition).
For failed transitions, the AV initiates a phase of constant
deceleration and may come to a full stop if the human driver
does not respond. Although such events are rare, they can have a
high impact and are the subject of extensive safety investigations
based on disengagement reports (e.g., (Ward, 2024; Kohanpour
et al., 2025)). However, this aspect is not the focus of the present
work. In the case of a successful transition, the driver state model
accounts for a phase of reduced human driving performance, with
recent studies gaining further insights into both post-ToC durations
(Wang et al., 2025a) and potential negative impacts on traffic
stability (Wang et al., 2024).

In Maerivoet et al. (2019) and Lücken et al. (2019) principal
transition phase effects of consecutive, quasi-synchronous ToCs in a
platoon of Level 3 automated vehicles were previously
demonstrated. Figure 3a, which depicts speed and time headways
for a string of five AVs disengaging at the same location, illustrates
this effect in a simplified simulation experiment with identical
vehicle parametrization. The increased time headways, and
consequently the cumulative speed reduction, are caused by the
preparatory headway increment of the vehicle automation to
facilitate a safe takeover (cf. Figure 2, Prep ToC Phase). Figure 3b
extends this analysis by showing acceleration profiles for a larger
platoon of up to 32 vehicles—the maximum size at which the last AV
still manages to prevent a complete stop—using SUMO’s ACC
model for AVs, based on Xiao et al. (2017). The main observed
effects in the vehicle decelerations include:

• With a moderate default deceleration of 1m/s2 during the 10 s
transition phase specified by R157, maintaining safe gaps in

FIGURE 1
Excerpt from Shuttleworth (2019)’s illustration of the SAE Levels
of Driving Automation (SAE International, 2021), with Level
3 highlighted by a purple frame.

FIGURE 2
ToC model operation modes illustrated in a representative
speed-time diagram for: (a) successful transition and (b) failed
transition.
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AV platoons is not feasible without initiating deceleration
earlier. Panel (b-2) in Figure 3b illustrates that, starting with
the first vehicle behind AV.1 (dark blue line), SUMO’s gap
controller begins to decelerate even before the respective
vehicles receive ToRs to initiate their ToC.

• Starting with AV.20, the following vehicles must decelerate
more aggressively than their target deceleration of 1m/s2.
Panel (b-3) in Figure 3b highlights these deceleration
overshoots for AV.24–28. These overshoots are specific to
the ACC model, while similar experiments employing
SUMO’s default model do not exhibit this behavior.
However, that model compensates by initiating
deceleration even earlier than the ACC model. The
principal accumulation effect of consecutive ToCs remains
present in both cases.

These numerical experiments are highly simplified due to
identical vehicle parametrizations, yet they effectively illustrate
the isolated ToC effects discussed. Given the cumulative
deceleration patterns observed, we expect that ToC-induced
disturbances may lead to noticeable reductions in traffic capacity.
To examine whether these effects also manifest under more realistic
traffic flow conditions, we calibrate a SUMO simulation scenario to
detector data in Section 3.

3 Calibrating SUMO for a highway
traffic scenario

To analyze the impact of ToCs on traffic capacity, we use real-
world detector data from a German highway west of Berlin as a

FIGURE 3
Platoon simulations with consecutive ToCs performed at a fixed location. (a) shows speed and time headway profiles for a short platoon with five
AVs, illustrating the headway increment effect. (b) depicts acceleration profiles for a platoon of 32 AVs, showing an escalating headway increment effect
with SUMO’s ACC model.
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reference for SUMO calibration. The following sections detail the
dataset and simulation setup.

3.1 AVUS detector data

Figure 4a shows a section of the Bundesautobahn A115, referred
to as AVUS, which was occasionally used as a motor racing track in
the past and is a highly frequented highway with up to 80.000 vehicles
per day. We hypothesize a potential ODD zone for Level 3 automated
driving in the inbound segment of the road (cf. Figure 4a, panel (a)),
which is a two-lane highway with speed limits of 80 km/h starting at
an interchange section and increasing to 100 km/h up to the next
traffic exit, that is located nearly 5 km downstream. The inbound
traffic data on the two-lane section come from a detector at an
underpass (cf. Figure 4a, panel (c)). After this point, the road has a
slight slope for a few hundred meters, but the exact gradient could not
be verified. A ramp merges onto the main edge about 600m
downstream, from where the speed limit increases to 100 km/h.

Figure 4b displays speed—flow relations for several years of the
AVUS between 2015 and 2022, as scatterplots based on data from
Digitale Plattform Stadtverkehr Berlin (2024). These data are
originally tagged as hourly flows with corresponding average
speeds per hour, but we suspect that this is not accurate. While
the number of vehicles is accumulated over a full hour, the high
variations in speeds at lower flow rates suggest that these data points
from the detector database might actually represent speed averages
over intervals of 1 minute or less. We were unable to verify this
suspicion directly with the publisher of the data, but we argue that the
actual speed value recorded in the database is likely the last entry of a
full hour— possibly for efficiency andmemory-saving reasons in data
processing— rather than the average speed over the entire hour. This
ultimately results in a notably wider distribution of speed values at
lower flow rates than expected for true hourly data. For reference, we
also added the model fit developed by Van Aerde (1995) to each plot.

Table 1 lists the yearly maximum flows q, the 95th and 99th

percentiles as suggested by Brilon and Geistefeldt (2010), and the
deterministic capacity derived from the van Aerde model, as well as
the corresponding shares for heavy good vehicles (HGVs) extracted
from the raw detector data between 2016 and 2024. Additionally,
data provided by the BASt (2025) from a detector downstream of the
AVUS at “Eichkamp” are also included in the table for comparison
(cf. Figure 4a, panel (b)). Note that 2024 shows an oddly high HGV
share, which we consider very unlikely and attribute to recent
technical changes in sensor-based detection and data processing
by the provider. The report from BASt (2021) stated a nationwide
HGV share of 18.1% in 2021 on Germany’s highways.

3.2 Simulation setup for calibration

To investigate the impacts of ToCs in mixed-autonomy traffic,
we compose a traffic mix of four different vehicle types: automated
passenger vehicles (AVs), manual passenger vehicles (MVs), light
goods vehicles (LGVs), and heavy goods vehicles (HGVs). The most
relevant parameters for a heterogeneous traffic behavior in this
AVUS highway scenario are visualized in Figure 5. Instead of
utilizing SUMO’s default parameters, vehicle type specific

distributions were deployed. Table 2 presents the full
parametrization scheme for all vehicle types.

In principle, SUMO’s vehicle insertion capacity exceeds that of
comparable real-world traffic scenarios. Therefore, we aim to calibrate
the simulation primarily to match the maximum flow q in relation to
the real-wordAVUS data. Besides the general vehicle parametrization,
two insertion properties in SUMOheavily effect the overall capacity of
a simulation, i.e., the vehicle speed at insertion departSpeed and
lane choice at insertion departLane. We kept these parameters
unchanged for all simulations in the paper. The most important
capacity related SUMO options are defined as follows:

• departSpeed = max

• departLane = random (AV,MV,LGV)

FIGURE 4
Overview of the AVUS scenario. (a) OpenStreetMap view of the
AVUS highway with a potential 5 km ODD zone on the two-lane
inbound edge highlighted in purple. Zoom displays show traffic
detector locations, marked with blue in subpanels (b) and (c).
Purple arrows indicate the inbound traffic direction. (b) Speed–flow
scatterplots of yearly AVUS detector data for inbound traffic from
detector “TE002”.

Frontiers in Future Transportation frontiersin.org04

Alms and Wagner 10.3389/ffutr.2025.1600739

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1600739


• departLane = right (HGV)

• extrapolate-departpos = true

• step-length = 0.1 s

3.3 Calibration including ramp flow

In the first step, we ran simulations with increasing demand
using MVs only. To better capture the full spectrum of the
fundamental diagram in SUMO, we introduced additional vehicle
flow on the incoming ramp. This creates a merging scenario, leading
to traffic breakdown upstream of the main edge’s detector position.
Figure 6 shows the speed–flow relations as scatterplots for (i) real-
world detector data from 2024, (ii) SUMO’s default parametrization,
and (iii) the aggregated main edge data from the final calibration.
The graphic also color-codes the demand intensities from the on-
ramp and highlights the maximum q of the AVUS detector data
2024. For reference of the expected average speeds defined by the
german Highway Capacity Manual—referred to as HBS—in (FGSV,

2015, Part A, Figure A3-10) for a two-lane highway (slope ≤ 2, speed
limit 80 km/h), a black solid line was added.

The key findings derived from Figure 6 are:

1. Comparing the dark gray SUMO default data with the light
gray detector data, we identify how far SUMO’s default exceeds
the actual maximum flow (about 700 vehicles surplus).

2. The calibrated main edge’s flow (blue-colored points) is notably
lower than SUMO’s default. Maximum flows (dark blue points)
are much closer to the real-data (about 130 vehicles difference)
compared to SUMO’s default (dark gray).

3. The overall speed–flow relation of the calibrated main edge
(blue) is slightly tilted toward higher speeds compared to
SUMO’s default (dark gray), and the speed gradient more in
line of the HBS expectation (black line).

4. The calibrated main edge’s traffic breakdown on the congested
side of the fundamental diagram (indicated by darker-colored
blue points) is much less pronounced than what is to be
expected from real-world data (see light gray scatter points).

TABLE 1 Yearly flow metrics and HGV shares for AVUS inbound traffic.

Year 2016 2017 2018 2019 2020 2021 2022 2023 2024

Max q 3,477 3,472 3,497 3,447 3,528 3,226 3,284 3,396 3,763

99%ile 3,212 3,155 3,116 3,142 3,104 2,865 2,837 2,943 3,018

95%ile 2,818 2,751 2,708 2,766 2,677 2,434 2,530 2,514 2,541

van Aerde cF 3,070 3,011 3,013 2,915 2,971 2,687 2,622 2,733 2,766

raw HGV (%) 5.94 5.74 5.92 5.55 5.60 4.91 6.37 7.72 *28.46

BASt HGV (%) 6.51 7.21 7.25 6.81 7.24 7.56 7.05 — —

*Outlier value; see main text for discussion

FIGURE 5
Distributions of the main parameters for different vehicle types. SUMO’s default is indicated by the black dashed line.
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The phenomenon described in point 4 is, in part, a limitation of
SUMO’s current modeling of cooperative lane-changing behavior
between neighboring lanes under traffic breakdown conditions.
Correspondingly, Figure 7 compares the lane-specific calibrated
flows in SUMO with real AVUS data from 2024. We clearly
identify the disparate speed levels between the lanes in SUMO
(bottom panel), whereas the real-world data (top panel) indicate
similar speed–flow relations on both lanes. Rummel (2017)
indirectly revealed this issue in his investigation but was unable
to unequivocally identify the lane-specific breakdowns as the
underlying cause of SUMO’s oversaturation compared to the
HBS predictions, nor did the report by Geistefeldt et al. (2017),
which ultimately disregarded SUMO in its analysis for this very
reason. While this limitation prevents a full replication of the real-
world dynamics, we proceed with the calibration of the scenario as a
basis for our analysis and will address this shortcoming in our
future work.

3.4 Refining calibration by incorporating
HGV share

In a second step, based on the parametrization scheme plausibilised
for MVs in the ramp scenario (cf. Table 2), we conducted simulations
with different shares of HGVs, LGVs, and MVs, but without any ramp
flow. As a result, we can no longer reproduce the entire fundamental
diagram for this highway scenario, since SUMO’s flow does not
naturally lead to a traffic breakdown as observed in real-world
highway traffic. The reason we need to disregard the unstable part
of the fundamental diagram at this point is technical: SUMO does not
maintain precise LGV/HGV shares for vehicle insertions when
approaching maximum flow. Instead, the share of LGVs and HGVs
declines to zero until SUMO can only insert MVs when the traffic
breakdown at capacity is expected. This behavior stems partly from the
parametrization of LGVs andHGVs, such as their larger vehicle lengths
and time headways.

TABLE 2 Vehicle type definitions. “—” indicates not defined.

Parameter/Attribute MV LGV HGV AV

Car-following model Krauss Krauss Krauss ACC

sigma N (0.2, 0.50), [0, 1] N (0.1, 0.20), [0.0, 1.0] N (0.1, 0.20), [0.0, 1.0] —

tau N (1.0, 0.50), [0.5, 1.6] N (1.0, 0.30), [0.7, 1.6] N (1.2, 0.50), [1.0, 1.6] N (1.6, 0.05), [1.5, 1.7]

decel N (4.5, 1.00), [2.5, 5.5] N (4.5, 1.00), [2.0, 5.0] N (4.0, 1.00), [2.0, 5.0] N (3.0, 1.00), [2.0, 4.0]

accel N (2.0, 1.00), [1.0, 3.5] N (2.5, 1.00), [1.0, 3.5] N (2.0, 1.00), [1.0, 3.0] N (1.5, 1.00), [0.75, 2.0]

speedFactor N (1.1, 0.20), [0.8, 1.4] N (1.0, 0.10), [0.9, 1.1] N (1.0, 0.10), [0.9, 1.1] 1.0

lcAssertive N (1.3, 0.40), [0.9, 1.7] N (1.1, 0.05), [1.0, 1.1] N (1.0, 0.05), [0.9, 1.1] N (0.7, 0.10), [0.6, 0.8]

vClass Passenger Delivery Truck Passenger

length [m] 5.0 8.0 15.0 5.0

width [m] 1.8 2.0 2.4 1.8

actionStepLength [s] 0.1 0.1 0.1 0.1

maxSpeed [m/s] 55.56 27.78 25.0 55.56

speedDev 0 0 0 0.01

TOC model—moderate parametrization scheme

TOC device — — — true

manualType — — — MV

automatedType – — — AV

responseTime — — — N (7.0, 2.50), [2, 60]

initialAwareness — — — N (0.5, 0.30), [0.1, 1.0]

recoveryRate — — — N (0.2, 0.10), [0.01, 0.5]

mrmDecel — — — 3.0

ogNewSpaceHeadway — — — 10.0

ogNewTimeHeadway — — — 5.0

ogChangeRate — — — 1.0

ogMaxDecel — — — 1.0
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Figure 8 shows the speed–flow relations for the main edge with
LGV/HGV shares of 0%, 5%, 10%, and 15% (LGV/HGV distributed
as 2/3 vs. 1/3), compared to AVUS detector data from 2018. The key
findings are as follows:

1. The maximum flow with a 0% HGV share (purple-colored
scatter points) is almost the same as in the ramp case (cf.
Figure 6, purple markers), with a difference of about 50 veh/h.

2. The AVUS detector data from 2018 have an HGV share of 6%,
with a maximum flow of 3497 veh/h. The speed variation in the
detector data, particularly for lower demands, is very high,
which we attribute to factors discussed in Section 3.1.

3. The speed variations in all simulation results are relatively
large. This is expected, as we deliberately plotted only the
average speeds of the last 1-min interval of a full hour, which
we suspect is also the case for the real detector data. This
illustrates a plausible speed distribution from the calibrated
simulations compared to the detector data.

4. The color-coded flows at capacity decrease notably with
increasing HGV shares (decline by 260 to 410 veh/h).

Considering the relatively low deterministic capacities based on
the AVUS detector data stated in Table 1 compared to the expected
capacities from the HBS (range from 3,600 to 3900 veh/h) for this
highway type, we assess our SUMO calibration in terms of capacity
as follows:

• The maximum flow in the SUMO ramp scenario without
HGV share consideration is 3907 veh/h. The 95th and 99th
percentile flows are 3853 veh/h and 3882 veh/h, respectively.
The van Aerde model estimates a maximum flow of
3665 veh/h based on SUMO data. These values are
significantly higher than the detector data but do not
account for HGV shares in SUMO.

• With HGV share consideration the maximum flows on the
stable arm of the fundamental diagram decrease notably
between 6.7 to 10.5% as illustrated in Figure 8.

Under the assumption that those percentages under HGV
consideration scale down proportionally in SUMO with the
capacity numbers stated above, we obtain the following
deterministic capacity ranges for the calibrated
parametrization scheme:

• Max flow: 3497 − 3647 veh/h
• 95th percentile: 3449 − 3597 veh/h
• 99th percentile: 3475 − 3624 veh/h
• van Aerde model: 3281 − 3421 veh/h

Even though these capacities are still about 200 − 300 veh/h
larger than the detector numbers in Table 1, we consider this an
adequate calibration, particularly compared to SUMO’s default,
since the real-world detector flow data are overall lower
compared to the HBS range, which we identified to be between
3,600 and 3900 veh/h. Other local factors, such as road curvature,
slope, shoulder lane width, underpass length, or surface conditions,
which might impact the local capacity and could explain the rather
low detector-based flows, are unknown to us. While more detailed

microscopic calibration using high-resolution trajectory data (e.g., as
in Schrader (2024) or Liu et al. (2024)) would be desirable, such data
were not available for this study.

4 Methodology to quantify capacity
effects of ToCs

To determine ToC-related capacity impacts, we conduct a
simulation study with an increasing AV penetration rate and
measure the corresponding maximum flows q. Additionally, we
estimate the anticipated ToC-induced capacity reduction and later
compare these estimates with the measured results from the
simulation study.

4.1 Simulation experiment

1: Initialize:

2: low ← 0, high ← max demand

3: max_valid ← − 1

4: seeds ← 12

5: threshold ← seeds/2 � 6

6: while low ≤high do

7: mid ← (low + high)/2
8: Run simulation at demand mid for each seed

in seeds

9: Count valid and invalid results

10: if invalid results ≤ threshold then

11: max_valid ← mid

12: Increase low

13: Record maximum flow at detector for

valid results

14: else

15: Decrease high

16: end if

17: end while

18: Save max valid demand and corresponding

maximum flow

Algorithm 1. Binary search for maximum flow.

For the simulation study, we define a wide range of traffic
shares based on the vehicle types outlined in Table 2. The traffic
compositions feature increasing AV shares (AV00–AV85) in 10%
increments, with AV increases and MV decreases of equal size,
and a constant LGV/HGV share of 15% (split 2/3 LGV, 1/3 HGV).
Considering a hypothetical ODD zone on the AVUS inbound
highway, as illustrated in Figure 4a, AVs are assumed to be
capable of Level 3 automated driving at speeds of up to
100 km/h until reaching the end of the ODD zone. Vehicles
enter the network in their respective driving mode at random
on one of the two lanes, except for HGVs, which are only inserted
on the right lane. They continue their trip until reaching the end of
the AVUS, near the detector position highlighted in Figure 4a,
panel (b). Four distinct scenarios are examined, differing in how
ToCs are facilitated:

1. No ToCs: Simulations without any ToCs.
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2. Unmanaged: Simulations with unmanaged ToCs at the end of
the ODD zone.

3. Managed: Simulations with ToCs managed by a ToC-dispatch
algorithm over the full length of the ODD zone.

4. Unmanaged “rightmost95”: Simulations with unmanaged
ToCs at the end of the ODD zone, emulating the concept of
the latest approved manufacturer system by Mercedes-Benz
Group (2024), operating up to 95 km/h on the rightmost lane,
without overtaking.

For cases 2–4, we additionally run simulations with
τ-distributions for MVs around τMV � 0.8 s and 1.2 s. In case 3,
we deploy the heuristic algorithm developed by Lücken et al. (2019).
The control algorithm basically emulates a V2X-based traffic
management scheme by dispatching ToRs to AVs in a
coordinated manner to mitigate the accumulation effect of
consecutive ToCs. For case 4, AVs are only inserted into the
simulation on the rightmost lane, overtaking is disabled, and
their speed is limited to 95 km/h.

To measure the capacity per AV share as precisely as possible,
we run the AVUS scenario with 12 seeds per traffic mix, deploying a
binary search as illustrated in Algorithm 1. To ensure we obtain the
correct maximum flow, the results of each run must be checked
against the actual traffic share versus the expected share due to
SUMO’s insertion mechanism, as described in Section 3.4. The
binary search continues increasing the demand as long as valid
traffic shares are observed, until the maximum flow per simulation
run is reached.

Simulations run with a 30min warm-up phase to populate the
scenario and then record data for a full hour of simulated time

(SUMO version 1.22 from Alvarez Lopez et al. (2025)). A detector
near the end of the ODD zone records speed and flow to identify
potential traffic breakdowns and measures the maximum flow.
Figure 9 exemplarily shows spatiotemporal heatmaps of the ODD
zone for speed and flow. Figures 9A,B, result from the same demand
level and AV share—only the seed values, which determine the
randomization process of vehicle insertions, differ.

4.2 Estimating capacity reduction

Considering the minGap in SUMO as gmin, individual vehicle
lengths li, type-specific τi, and varying vehicle shares pi, the
theoretical lane capacity C at speed v is given by:

C � v

∑ipi · li + gmin( ) + v∑ipi · τ i (1)

For the SUMO default minGap of 2.5m, a speed v � 100 km/h,
and the respective vehicle lengths and τ-values from Table 2, we
compute lane capacities across all traffic mixes. Assuming a constant
time headway τi for each vehicle type, without considering ToCs, the
resulting capacities per mix are shown in Figure 10a. The results
demonstrate that as the τ-values for MVs increase (τMV � 0.8 s to
τMV � 1.2 s), while keeping fixed values for AVs (τAV � 1.6 s), LGVs
(τLGV � 1.0 s), and HGVs (τHGV � 1.2 s), the decline in maximum
capacity across traffic mixes becomes less pronounced. IfMVs had the
same τ-value as AVs—in this case, τAV � 1.6 s — the lane capacities
would remain stable, regardless of the increasing AV share.

To account for ToC effects in such estimations, we repeat the
simplified numerical experiment with the 32-vehicle platoon

FIGURE 6
Speed–flow relations for the AVUS scenario, including ramp flow, comparing calibrated flows based on the parametrization scheme from Table 2
versus AVUS detector data from 2024, and SUMO’s default. The main edge’s demand intensities are color-coded in blue. Ramp demand levels are coded
by marker size and style.
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described in Section 2, this time varying the AV–MV share in 10%-
intervals between the two vehicle types. The top panel in Figure 11a
shows the time headway profiles for a 100% AV share,
corresponding to the acceleration profile discussed in Figure 3b.
The increasing headways for later-following AVs are clearly
identifiable. In the bottom panel (Figure 11b), which depicts a
50–50 share, the headway increase is far less pronounced
compared to the top panel.

Therefore, we introduce two additional estimators. In Equation
1, instead of using a fixed τAV � 1.6 s, we derive τi for each share pi

from the numerical experiments as follows:

• Max: The black markers in Figure 11 denote the maximum
time headway of each vehicle in the simulation run. The
average of these maximum values serves as τi for each pi

in the estimator max.
• Mean: The point at which headways have stabilized after all
ToCs are completed is marked by the vertical blue dashed line
in Figure 11. Stabilization in this experiment is defined as the
latest point after all headway peaks at which all vehicles’
headways remain constant to within ±0.005 s for at least

15 s. The average of the time headways at this point serves as τi
for each pi in the estimator mean.

With these estimator-based τ-values, the original capacity
Equation 1 is adjusted by replacing the fixed headway term in
the denominator with v∑ipi · τ̂i(pi), where τ̂i(pi) is the
empirically derived time headway for AVs as a function of
their share pi, while other vehicle types retain fixed values. The
estimators max and mean provide these AV-specific headways
based on the numerical experiments. Figure 10b presents the
results of the calculations that account for ToCs by utilizing these
estimators. Both trends exhibit a notable decline in estimated lane
capacity compared to the ToC-ignorant estimation depicted
in Figure 10a.

5 Results and discussion

Figure 12 presents the overall results obtained from the
simulation study outlined in Section 4.1. First, we find that all
maximum flows in the AV00 share, ranging between

FIGURE 7
Lane-specific speed–flow relations for real data from 2024 (top panel) and SUMO’s calibrated ramp scenario (bottom panel).
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3405 − 3611 veh/h, fall within the expected capacity range from the
calibration, i.e., 3281 − 3647 veh/h. We further analyze these results
in detail for the four scenarios, following the order in which they
were previously defined:

FIGURE 9
Spatiotemporal heatmaps of the ODD zone for speed and flow.
(a) Valid run at max capacity: Mix AV60, seed 1053. (b) Invalid run: Mix
AV60, seed 1055. The traffic breakdown is clearly visible in speed
and flow.

FIGURE 8
Speed–flow relations for the AVUS scenario based on the parametrization scheme from Table 2 comparing calibrated main flows considering LGV/
HGV shares. Real-world detector data from AVUS 2018; color-coding by LGV/HGV share.

FIGURE 10
Estimated lane capacities based on Equation 1 for varied mean τ_
MV-values. (a) shows capacity estimates assuming a constant τ_AV
(no ToC consideration). (b) accounts for increasing τ_AV due to ToC
effects (with ToC consideration).
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FIGURE 11
Time headways in a platoon experiment with 32 vehicles and varying AV–MV shares. Blackmarkers indicate themaximumheadway for each vehicle.
The vertical blue dashed linemarks the onset of system-wide headway stabilization (see text for criterion), after all ToCs are completed. (a) 100%AV vs. 0%
MV share. (b) 50% AV vs. 50% MV share.

FIGURE 12
Maximum flow comparison across AV shares for the four scenarios: No ToCs (green line), Unmanaged ToCs (blue bars), Managed ToCs (gray bars),
and Unmanaged “rightmost95” (red bars).
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1. No ToCs: The results (green line) show that up to share AV40,
maximum flows remain relatively stable, with a reduction of
approximately 100 veh/h compared to AV00. Beyond AV50,
flow values begin to increase again. This trend can be linked to
a homogenization effect in traffic flow as AV shares grow,
which is influenced by the AV parametrization—-specifically,
the absence of sigma and a very small speedDev

value of 0.01.
2. Unmanaged: In the case of entirely unmanaged ToCs (blue-

colored bars), maximum flow decreases progressively from
approximately 3500 veh/h at AV00 to around 1450 veh/h at
AV85. Regarding the different τMV values, the results indicate
high variations in maximum flow for AV00 and AV10. These
variations become less pronounced as the AV share increases,
starting around AV30.

3. Managed: When ToCs are managed within the ODD zone
(gray-colored bars), maximum flows exhibit a similar
decreasing trend but remain notably higher than in the
unmanaged scenario. Flows decline from AV00 levels to
approximately 2950 veh/h at AV85. As in the unmanaged
case, variations related to τMV diminish with increasing AV
shares, becoming noticeably less pronounced from
AV30 onward.

4. Unmanaged “rightmost95”: This scenario exhibits the lowest
flow values across all AV shares (red-colored bars). A decline in
maximum flow is already noticeable at AV20 and continues
consistently as the AV share increases, reaching a minimum of
847 veh/h at AV85. In this scenario, capacity is inherently
constrained because AVs are restricted to operating exclusively
in the rightmost lane, leading to a disparate lane utilization
with increasing AV share. Except for some LV and LGV
vehicles traveling in the left lane, all HGVs and AVs remain

on the right, thereby limiting capacity under unmanaged ToC
conditions.

Overall, the results in Figure 12 show that in the unmanaged
scenario, maximum flow declines significantly with increasing AV
share. At AV85, the max flow is approximately 500 veh/h lower than
in the managed case—indicating that ToC management measures
could help alleviate, but not fully prevent, capacity losses.

Furthermore, to compare these simulation results with the
theoretical lane capacities estimated in Section 4.2 and
Figure 10c, we derive the relative percentage reductions in
capacity across the increasing AV share. Figure 13 summarizes
these reductions for the unmanaged scenario, differentiating
between the estimators max and mean, while constant is
included as a reference that ignores ToC effects. For each
estimator, we report the root mean squared error (RMSE) and
the coefficient of determination (R2) to quantify the goodness of fit
to the simulated capacity reductions—where lower RMSE and R2

values closer to one indicate better agreement with the simulation
data. The simulated results reveal a capacity loss of up to nearly 60%
at AV85. We also make the following observations:

• While the τMV dependency is relatively small in the simulation
results, it becomes increasingly important in the
estimator outcomes.

• The notably poor performance of the constant estimator,
including negative R2 values in some cases, is expected
since it does not capture capacity changes induced by ToCs.

• Both estimators, max andmean, although accounting for ToCs,
notably underestimate the capacity reductions in the mid-range
AV share (AV20–80). This can be attributed to the simplicity of
the numerical experiments we conducted to derive the estimator

FIGURE 13
ToC-related relative percentage reductions of the capacity with varied mean τMV-values for the unmanaged scenario. For reference, the estimator
“constant” (gray-colored), which does not account for ToCs, is included. The RMSE and R2 metrics indicate estimation accuracy.
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values. In particular, intensified vehicle interactions due to
driver imperfections (parameter sigma σ) and speed factor
variances are disregarded in these experiments. Additionally,
the numerical experiments employ single-lane vehicle strings
and uniform acceleration and deceleration parameters, omitting
lane-changing interactions and parameter variability that are
present in the two-lane simulation scenario (cf. Figure 5).

• Compared to the ToC-ignorant estimator constant, the
other estimators perform notably better in predicting ToC-
related capacity reductions, particularly max, which achieves
the best RMSE and R2 scores. At AV85 share, max matches
best with the simulation results, as vehicle interaction effects
with non-AVs have almost completely vanished (still 15%
HGVs present), leading to minimal driving behavior
variability that coincides with the numerical experiment
setup, where all vehicles share the same parameterization.

In summation, the capacity reductions observed in the
simulation might align only unsatisfactorily with theoretical
estimates, as deviations occur in the mid-range AV shares due to
the simplified assumptions of the estimators. This partial mismatch
is also reflected in the RMSE and R2 values, for which no established
benchmarks exist in this context. Therefore, our assessment of
estimator performance focuses on relative differences and
qualitative trends within the observed results. However, the
estimator max performs best in comparison to the simulation
results, substantiating our suspicion that the maxima in time
headway increments dominate ToC-related capacity effects.
Nevertheless, the overall findings from Figures 12, 13 highlight
the potential ToC effects on capacity reductions across various
scenarios and parameter dependencies, in line with the stated
expectations.

6 Conclusion

To investigate ToC-related capacity reductions, we conducted
comprehensive simulation experiments with a calibrated two-lane
highway scenario, as well as numerical experiments to estimate the
large-scale impact of time headway increments during consecutive
control transitions. Our main findings can be summarized as
follows: (i) capacity reductions of up to 2000 veh/h,
corresponding to approximately 60% loss, were observed in
shares with near-full Level 3 automation but no traffic
management coordination; (ii) ToC effects became notably
impactful starting from a Level 3 share of 10% to 20%; (iii) a
coordination of ToCs could mitigate losses by roughly
1000 veh/h or 30%; (iv) binding Level 3 operation to the
rightmost lane resulted in the most severe reduction, with up to
2660 veh/h or 75% loss; and (v) maxima in time headway
increments during ToCs emerge as the dominant factor
contributing to these capacity effects.

Several relevant limitations should be acknowledged, as they
may affect the applicability and interpretation of our findings.
Recent research on data from Level 4 AVs reveals reduced time
headways when MVs follow AVs (Jiao et al., 2024). Such effects,
which might also apply to Level 3 systems, are not considered in
this study. An additional aspect that has not yet been discussed is

the impact of human response times for non-emergency ToCs.
Throughout this investigation, the response time distribution was
kept the same, at μ � 7 s in all simulations, in line with our
previous studies. More recent data from real-world tests
presented by Pipkorn et al. (2023) indicate response times
closer to 5 s, from which the authors infer that a lead time of
10 s, as specified in the R157, should be feasible for human drivers
to take over in time. In our simulations, a few random sample
reruns with these lower response times indicated approximately
10–20% higher capacities compared to the results presented here.
A further limiting factor might be SUMO’s ACC model, which is
parametrized for full string stability and deployed here as a proxy
for Level 3 automated vehicles, although experimental studies and
theoretical work have demonstrated string instabilities in ACC-
equipped platoons, as we also discussed in Alms and Wagner
(2024). All these limitations could potentially affect traffic
capacity, though their precise contribution cannot be reliably
quantified at this stage.

Future work should therefore include the development of a more
accurate Level 3 model in SUMO, for example, an ACC-based ALKS
system, as well as a systematic investigation of how model
assumptions and human response variability together affect
traffic capacity. Another important direction is to further
examine the effects of MRMs, which are relevant for failed
Level 3 transitions and Level 4 automation, on overall traffic,
especially if they are not managed properly.

Lastly, we would like to reflect on the broader capacity
implications of AVs. Our overall vehicle parametrization
inherently results in slightly reduced theoretical capacities—even
without ToCs—due to the implementation of lower time headways
for MVs and higher ones for AVs, which contrasts with assumptions
commonly made in other studies. While experimental research has
demonstrated counterbalancing effects at high AV shares, which our
own simulations also imply, this effect is diminished in the context
of Level 3 systems. Unlike Level 4 or CACC-equipped vehicles,
Level 3 automation, in its current form, does not typically support
the low time headways often assumed to contribute to capacity
gains. However, practical capacity impacts at relevant market
penetration rates between 10% and 20% are likely still many
years away, leaving room for further technical and regulatory
development of Level 3 systems. Yet, in combination with the
ToC-related capacity constraints demonstrated in this study, we
take a more cautious view and do not share the seemingly
widespread optimism regarding beneficial capacity effects of AVs
in the mid-term.
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