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The fault records of traction power supply equipment contain rich historical fault
processing experience, which is of great significance to the fault handling of traction
power supply equipment. However, the fault records of TPSE are unstructured text
data, and manual processing of them is time-consuming, labor-intensive, and
inefficient. Therefore, the fault records have long been left idle in data systems,
lacking exploration and application. In view of this situation, this paper proposes an
entity information recognitionmethod for fault records based on the BERT-BiLSTM-
CRF algorithm, achieving automated and efficientmining of fault record information.
Subsequently, based on the recognized entity information from fault records, a
knowledge graph for traction power supply equipment fault handling is constructed.
Finally, the retrieval capability of the knowledge graph is improved through an entity
similarity-based fast retrieval algorithm, and a decision-making method for fault
handling in traction power supply equipment is proposed. This method can quickly
associate and recommend similar historical fault handling cases for current
equipment faults, thus facilitating knowledge sharing and assisting in enhancing
the efficiency and intelligence level of fault handling for maintenance operators.
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1 Introduction

From the completion and commissioning of China’s first electrified railway in 1961 to the
end of 2022, the total operatingmileage of China’s electrified railways has reached 114,000 km,
ranking first in the world. This remarkable expansion underscores the increasing reliance on
traction power supply equipment (TPSE), which forms the backbone of railway electrification
systems. In recent years, with the continuous construction of electrified railways, especially the
rapid development of high-speed rail, the number of TPSE units along the railway network
has continued to grow. Over time, the traction power supply system inevitably experiences
equipment failures and faults during its continuous operation. Efficient handling of these
faults is crucial for ensuring the reliability and safety of railway operations. Consequently,
corresponding maintenance and repair measures are undertaken, along with the
documentation of these occurrences. The number of TPSE fault records continues to
grow with ongoing construction and operations. With the gradual advancement of
digitalization, most TPSE fault records, both historical and current, are recorded in
natural language by operation and maintenance personnel. These textual records form a
large corpus of “textual big data” for fault diagnosis and handling, encompassing the historical
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fault conditions and remedial measures for all TPSE. These fault
records constitute a valuable data asset, offering critical insights into
fault diagnosis, failure patterns, and effective handling measures.

There are many types of TPSE, including substation equipment,
overhead lines and telecontrol systems. According to the estimation of
a maintenance sector in southern China, the annual accumulated
number of TPSE fault records for about 2000 km of railway under its
jurisdiction has reached nearly 300 entries. Based on this rough
estimate, the accumulated TPSE fault records in 24 maintenance
and management sections across the country in 1 year will exceed
17,000 entries. These massive TPSE fault records are all unstructured
text data, and currently the on-site information system cannot directly
understand and process them. The classification and statistical
analysis of these records mainly rely on manual processing.
Manual handling not only imposes a significant labor burden but
also limits the efficiency and precision of fault data analysis.
According to on-site estimates, the equipment fault records
accumulated in a single maintenance sector over a year require a
professional technical management personnel to spend 8–10 days to
complete statistical classification. At the same time, these historical
equipment fault records are real samples generated during actual
operations, containing rich information that cannot be simulated in
the laboratory. They provide insights into various aspects such as
types, phenomena, causes, and corresponding remedial measures of
equipment faults over extended periods. However, due to the lack of
information processing methods and the time-consuming nature of
manual handling, it is currently challenging to conduct in-depth
mining and application of this data at the site.

In response to the aforementioned on-site issues and requirements,
numerous studies have been conducted to investigate text information
processing and mining. Nouns or phrases with specific meanings in the
text are typically identified and extracted using entity information
recognition (EIR) methods (Maggini et al., 2020). The traditional
method for EIR relies on dictionaries and rules (Wang et al., 2021;
Wang et al., 2022). While it has simple principles and is easy to
implement, it requires experts to develop rule templates. However,
when dealing with complex and diverse text formats, it becomes
challenging to exhaust all possible rules, resulting in difficulties in
rule compilation. Similarly, entity information methods based on
hidden Markov models (HMM) (Morwal et al., 2012), conditional
random fields (CRF) (Lei et al., 2014), and other machine learning
algorithms depend on the precision of feature templates. These
templates need to be written and formulated by domain experts,
limiting their generalizability.

As a result, these methods struggle to achieve high precision and
efficiency in practical applications.

In contrast, the EIR method based on deep learning can
automatically model and extract text features without manual feature
selection, making it highly relevant in practical applications. Recent
advances in deep learning, such as the bidirectional encoder
representations from transformers (BERT) (Jacob et al., 2018) model,
offer promising solutions by capturing contextual semantic information
more effectively. Yang et al. (2025) proposes a primary equipment fault
diagnosis method based on language models such as BERT. Dai et al.
(2021) introduced a BiLSTM-CRFmodel by combining the bidirectional
long short-term memory (BiLSTM) network with CRF to recognize
specified entity information. The inclusion of BiLSTM enhances the
extraction of text features, leading to significant improvements in
recognition performance compared to the CRF model. Wang et al.
(2024) proposes a novel data-driven dynamic predictive maintenance
strategy using a CNN-BiLSTM ensemble for RUL prediction, which
uniquely incorporates uncertain system mission cycles into
maintenance, order, and stock decisions. Jin et al. (2025) employed a
CRF layer combined with a BiLSTM network to model label
dependencies and achieve high-accuracy entity recognition (92.49%
F1 score) for constructing the composite insulator knowledge graph.
Scholars have also utilized BERT pre-trained language models (Liu et al.,
2022), which integrate contextual semantic information and train word
vectors capable of expressing semantic features more accurately. Despite
these advancements, the application of deep learning methods to TPSE
fault records remains underexplored, and the potential for leveraging this
data to improve fault handling decision-making is yet to be fully realized.

Regarding the application of text information mining, Meng
et al. (2023), Stephen et al. (2020) have utilized deep learning or topic
modeling methods to mine text information and achieve power text
classification. Qiu et al. (2016) have classified circuit breaker fault
texts using the one-hot model and the K-Nearest Neighbors (kNN)
algorithm. Rudin et al. (2012) have mined information from tens of
thousands of cable fault records in New York City, predicting the
fault risk of components and systems, thus providing assistance for
cable maintenance well inspections. Sun et al. (2016) have proposed
a probability framework for identifying power outage-related social
data in the social software Twitter, offering insights for power grid
outage management. However, these applications primarily focus on
the overall features of fault texts and do not fully explore the specific
entity information present in these texts. When various types of
entity information extracted from text are stored in conventional
relational databases such as Structured Query Language (SQL)
Server (Menasce and Gomaa, 2000) or Oracle (Jahangirova et al.,
2021), the expansion of the database size can significantly reduce
data operation and query speed. In contrast, a knowledge graph
enables the comprehensive organization and utilization of text
information. It visually represents entity information and their
relationships in the form of a graph and allows for rapid data
operations and queries (Ji et al., 2022; Sawant et al., 2019; Shang
et al., 2021). Gao et al. (2020) have developed a logic scheme for line
tripping fault processing by constructing a knowledge graph of
power system dispatching, which assists dispatchers in on-site
handling. Wang et al. (2021) have built a knowledge graph of
power grid fault disposal based on the fault plan, applying it to
support decision-making in fault disposal. However, this method
only matches historical fault cases that are identical to the current

Abbreviations:Q, Query vector in self-attention mechanism; S(x, y), Score of
a label sequence for a given input in CRF; K, Key vector in self-attention
mechanism; ~y, The true label sequence of the input; V , Value vector in self-
attention mechanism; Y , Set of all possible label sequences for the input; dk ,
Dimension of input vector (columns of Q and K) y*, Optimal label sequence
predicted by CRF (via Viterbi algorithm); WO , Weight matrix used to linearly
map concatenated heads to output vector; P, Precision: ratio of correctly
identified entities to all identified entities; headi , Output of the attention
operation in the i-th head; R, Recall: ratio of correctly identified entities to
all true entities; xt, Input vector at time t to the BiLSTM; F1, F1 score: harmonic
mean of precision and recall; ht , Hidden state vector at time t output by
BiLSTM; vi, Word vector of the i-th word in an entity phrase; A, Transition score
matrix for adjacent labels in CRF; ent, Entity vector obtained by summingword
vectors of an entity phrase; P, Label score for a specific character and entity
type in CRF; sim(a,b), Cosine similarity between vectors a and b.
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faults, disregarding parts with high similarity. Consequently, the
recommendation information may be incomplete, and the decision-
making function is limited.To address these challenges, this paper
proposes an entity information recognition method for fault records
based on the BERT-BiLSTM-CRF algorithm, achieving automated
and efficient mining of fault record information. By automating the
extraction and analysis of fault information, this method aims to
alleviate the burden of manual processing and enhance the overall
intelligence of fault handling. Subsequently, based on the recognized
entity information from fault records, a knowledge graph for TPSE
fault handling is constructed. This knowledge graph serves as a

structured repository of fault knowledge, facilitating efficient
retrieval of historical fault cases and supporting informed
decision-making. Finally, the retrieval capability of the knowledge
graph is improved through an entity similarity-based fast retrieval
algorithm, and a decision-making method for fault handling in
TPSE is proposed. This comprehensive approach not only
streamlines fault handling processes but also promotes knowledge
sharing among maintenance operators, ultimately enhancing the
efficiency and reliability of railway operations. The specific
organizational framework of this paper is illustrated in
Figure 1 below.

FIGURE 1
The overall framework diagram of the paper.
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1.1 Analysis and organization of TPSE
fault records

This study analyzes and categorizes the characteristics of fault
records pertaining to TPSE. By examining historical fault records
collected from real-world on-site scenarios, this study identifies
common issues they contain. This analysis forms the basis for
selecting appropriate methods for recognizing entity information.

1.2 Proposed method for EIR

The study introduces a method for recognizing entity
information in TPSE fault records, utilizing the BERT-BiLSTM-
CRF algorithm. This approach enables automatic and accurate
recognition and extraction of fault record information.

1.3 Construction of a knowledge graph for
fault handling

The research includes the development of a knowledge graph
specifically designed for managing and handling TPSE faults.
Additionally, the paper presents a decision-making method for
fault handling based on an entity similarity fast retrieval
algorithm. This innovative approach facilitates efficient mining of
historical fault record information and promotes the sharing of
handling experiences. By leveraging this knowledge graph and
decision method, the proposed framework enhances the
efficiency and intelligence of fault management processes.

The remainder of this paper is organized as follows. Section 2
analyzes the characteristics of TPSE fault records and identifies key
challenges for entity recognition. Section 3 presents the proposed
BERT-BiLSTM-CRF-based method for entity information
recognition, including its structure and evaluation metrics. Section 4
introduces the construction of the TPSE fault handling knowledge

graph and details the entity similarity-based fast retrieval algorithm for
decision-making. Section 5 demonstrates case studies and experimental
results to validate the effectiveness of the proposed approach. Finally,
Section 6 concludes the study and outlines potential future work.

2 Analysis of characteristics of TPSE
fault records

The TPSE fault record corpus employed in this study was
collected from three representative railway maintenance and
management sections across different regions, encompassing more
than 4,500 km of railway lines and over 20 types of traction power
supply equipment. This corpus contains 2,412 historical fault records
accumulated over multiple years, which reflect the actual working
conditions andmaintenance scenarios of electrified railways in China.
Each fault record typically includes multi-level information such as
time, line, substation, equipment, fault phenomenon, cause, type, fault
class, and handling measures. These nine entity types vary greatly in
their length and expression, ranging from simple terms to complex
phrases spanning multiple words. For instance, as shown in Table 1,
some handling measures may be as short as a single action word like
“replace” or extend to a complete procedural description involving
multiple steps. Additionally, the records frequently contain
professional vocabulary specific to the traction power supply
domain—for example, “curfew maintenance” refers to scheduled
maintenance windows outside train operation hours, and
equipment identifiers such as “214DL” may indicate circuit
breakers but differ in notation from standard equipment names.
This results in semantic variations and inconsistent naming, which
present significant challenges for accurate entity recognition.
Moreover, the corpus includes examples where certain entity
information, such as fault causes, may be absent or implicitly
described, adding further complexity to automated text mining.
Overall, the corpus is rich, diverse, and highly representative of
real-world scenarios, providing a robust basis for analyzing the

TABLE 1 Examples of typical TPSE fault records and their characteristics analysis.

Number Historical TPSE fault records

1 On 20 December 2020, the communication of a 214 protection device in Kunshan Substation of Jinghu Line was interrupted. On 20 December
2020, it was found that the communication plug-in of 214 protection device was damaged, belonging to the class B fault of integrated automation
equipment, and it recovered to normal after replacement

2 On 24 December 2020, a 2153 GK temperature measurement in Chunshen Substation of Hukun Line found that the temperature was too high,
belonging to other faults of class B. On 28 December 2020, strengthened the temperature measurement, contacted the overhead lines work area,
and recovered to normal after handling in combination with the skylight

3 On 1 January 2021, the 2312 GK optocoupler terminal block of the Chang’an Town Section Post on the Hukun Line was damaged, belonging to
class C fault of component damage. On 12 January 2021, replaced the 2312 GK optocoupler terminal

4 On 10 January 2021, the 211DL control circuit of Chang’anji Substation of Hewu Line was broken, which belongs to other faults of Class A. On
10 January 2021, it recovered automatically

5 On 19 March 2021, the 219 circuit breaker of Chang’anji Substation of Ningxi Line reported a control circuit broken, and the 219DL panel and
cabinet on-off light did not light up. On 19 March 2021, it was found through inspection that 2 conductors with distinctive thicknesses were
linked to the identical end, causing a false joining and being classified as a B level fault due to poor insulation. Separated the two wires and shorted
them with short connectors to restore normal operation

6 On 5 July 2022, the telecontrol channel of Qiaosi Substation, Genshanmen Switching Post, Nanxingqiao Subsection Post and Switching Post of
Hukun Line was interrupted, which is a Class B fault of poor telecontrol channel. From 5 July 2022 to 18 July 2022, it interrupted every night, and
would resume in the early morning. After the interruption, personnel would be arranged to be on duty. Several devices are replaced in the
substations including routers and cables. After the 18th, no fault occurred, and the main cause is considered as the performance degradation with
the accumulation of operation time
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difficulties of named entity recognition in TPSE fault records and for
developing an efficient, generalizable extraction method.

To achieve automatic and effective extraction and analysis of
TPSE fault records, its characteristics need to be analyzed first. After
several years of on-site inspection and research, a total of 2,412 fault
record samples were collected from three maintenance and
management sections, covering over 4,500 km of lines and more
than 20 types of TPSE. Due to space limitations, here are several
typical historical TPSE fault records, as shown in Table 1.

It can be seen from Table 1 that the fault record of TPSE is a
description of the equipment fault situation and handling measures
during the previous fault process, which is similar to the universality
involved in the power system field and rich in strong characteristics
of the traction power supply field. Specifically, the TPSE fault
records exhibit several features:

2.1 TPSE fault records contain a large
amount of information

A fault record usually contains nine key entity types, including
time, line, substation, equipment, phenomenon, cause, type, class,
and handling measures. Compared to other types of text, it contains
more types of information. In addition, these nine entity types have
diverse formats and varying lengths. For example, fault records
1 and 6 in Table 1 contain handling measures that range from a
single word to 58 words, respectively. Therefore, to achieve high-
precision recognition of all entity types, more robust and
generalizable entity recognition methods are required.

2.2 The fault record contains some
professional vocabulary in the area of
railway power supply, which differs from
their commonly used meanings

In the second record of Table 1, the term “skylight,”which is also
commonly referred to as “curfew maintenance,” (Lin et al., 2023)
refers to the time period from midnight to 4 a.m. when the catenary
system is powered off to allow on-site inspection andmaintenance of
railway traction power supply equipment. This time period is used to
ensure the safe and normal operation of the railway system the
following day.

Similarly, in everyday language, “up” and “down” generally mean
upward and downward movement, whereas in railway power supply
they refer to two distinct train running directions as well as the
corresponding power supply sections. In addition, there are other
specialized terms. For example, “cross zone” refers to “cross zone
power supply,” which is a standby mode where an adjacent traction
substation temporarily supplies power when a traction substation
cannot operate normally due to unexpected faults or maintenance.

2.3 There are numerous types of TPSE and
diverse recording methods

In TPSE fault records, the equipment name is often not recorded
using its standard name, such as “circuit breaker,” “isolation switch,”

or “transformer.” Instead, operators add specific identification
numbers and directional information. For example, in Table 1,
“211DL,” “219DL,” and “219 circuit breaker” all refer to circuit
breakers, but their numbering and representations vary. The term
“circuit breaker”may be used directly, or the code “DL”may be used
instead. In addition, the ways of recording transformer names are
even more diverse, such as “02B,” “03B,” “4#B,” and “1# main
transformer.” This variation may lead to identical equipment being
recognized as different devices, resulting in deviations or even errors
in interpreting fault records. This places higher demands on the
semantic understanding capability of the entity recognition model.

2.4 The format of fault record text is not
fixed, and some key entity information may
be missing

In Table 1, records 1 and 5 contain the cause, while fault records of
the others lack the cause entity information. Moreover, while fault
causes are similarly absent in these records, the context differs: For Log
Entries 2 and 3, the described phenomena inherently indicate the root
cause, hence maintenance personnel did not document causal details
separately; Fault record 4 is due to the fact that the equipment has
automatically recovered to normal before the fault can be processed, so
the cause of the fault has not been explored; However, fault record
6 lacks both the fault equipment and cause, which is because the cause
has not been found after inspection. From the above analysis, it can be
seen that the types of information contained in fault records are
different from each other, and the format is not completely the
same, which poses certain difficulties in semantic understanding.

3 A method to fault record entity
information recognition based on
BERT-BILSTM-CRF algorithm

To extract structured information from unstructured TPSE fault
records, we formulate entity recognition as a sequence labeling task.
In this formulation, each word in the fault record is assigned a label
that identifies whether it belongs to a named entity and, if so, its
position within that entity. We adopt the widely used Begin-Inside-
Outside (BIO labeling scheme), where:

• B (Begin) indicates the first word of an entity,
• I (Inside) denotes a word that is part of an entity but not at
the beginning,

• O (Outside) represents words that do not belong to any entity.

This labeling format allows the model to identify both the
boundary and type of each entity within fault texts, such as
equipment names, causes, or handling measures. An example of
BIO labeling is illustrated in Table 2.

Based on this labeling framework, we propose a deep learning-
based method combining BERT, BiLSTM, and CRF to recognize
multiple entity types in fault records automatically. The overall
architecture is shown in Figure 2, and the workflow consists of three
main stages: text vectorization with BERT, label sequence prediction
with BiLSTM, and global optimization with CRF.
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As depicted in Figure 2, the TPSE fault records are first fed into the
BERTmodel at the sentence level, and eachword is vectorized as input
embeddings. Subsequently, the BiLSTM model is used to extract
bidirectional textual features and to generate an initial label
sequence for the fault records. Finally, the CRF model determines
the globally optimal label sequence by applying the Viterbi algorithm
for optimal sequence decoding. The recognized entities are then
extracted by mapping the final labels back to each word.

3.1 BERT text vectorization

As a deep bidirectional language representation model, BERT
consists of four layers: the first layer is the input layer; the second
and third layers are Transformer encoder layers; and the fourth layer
generates the output. The structure is illustrated in Figure 3, where N
denotes the total number of words in the input fault record.

TABLE 2 Demonstration of entity labeling.

Word Label Word Label

The O a O

272 B-Equipment class O

circuit I-Equipment A B-Class

breaker I-Equipment fault O

refused B-Phenomenon of O

to I-Phenomenon poor B-Type

operate I-Phenomenon remote I-Type

O control I-Type

which O channel I-Type

is O O

FIGURE 2
EIR process of BERT-BiLSTM-CRF mode.
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In the first layer, the input layer of the BERT model consists of
three parts: word vector, sentence vector, and position vector.

There is a total of 12 transformer encoding modules in the
second and third layers. Its core is the self-attention mechanism,
which maps each word with its context, then assign weights to each
word in the context, and update the current word vector based on
the weights. The word vector obtained through this training consists
of both the meaning of the word and the contextual semantic
information. The calculation method for the output of the self-
attention mechanism is shown in Formula 1. Among them, Q, K,
and V represent the query vector, key vector, and value vector,
respectively, while dK represents the input vector dimension, which
is the number of columns of the query vector Q and key vector K.

Attention Q,K ,V( ) � Softmax
QKT��
dk

√( )V (1)

Due to the fact that the self-attention mechanism can only
capture one-dimensional information, transformer adopts a multi-
head attention mechanism to obtain multi-dimensional information
of fault records. It first performs h different linear map of Q, K and
V, then calculates the Attention matrix and splices them according
to the mapping results of each time, and finally maps the spliced
word vector to the same dimension as the input word vector through
matrix WO. The calculation formula is shown in Formulas 2, 3.

MultiHead Q,K ,V( ) � Contact head1,/ , headh( )WO (2)
headi � Attention QWQ

i ,KW
K
i ,VWV

i( ) (3)

Finally, the fourth layer is the output word vector, which integrates
the meaning and contextual information of the words and can more
appropriately express the semantic features of fault records.

3.2 BILSTM label sequence prediction

To improve the precision of final EIR, this paper connects
BiLSTM after the BERT model to further extract contextual
semantic information from word vectors, thereby obtaining more
comprehensive global semantic features.

As shown in Figure 4, BiLSTM model can achieve the
transmission of textural information towards both ways. At the
moment of t, inputting vector xt generates vector ht

→
at the forward

LSTM while ht
→

at the backward LSTM. Combining the above two
yields the label vector ht. Each value of ht represents the probability
of the word classified into the particular type of entity. Therefore, the
dimension with the largest value in ht is considered as the label for
the specific word.

3.3 CRF label sequence optimization

After BiLSTM predicts the label sequence, CRF is used to
accommodate the constraints and interconnections among
various entity labels and optimize the original label sequence.

Each word in the known fault record obtains the result ht after
undergoing BiLSTM operation. Firstly, CRF give scores to the
annotation results of fault records by interating the scores of
various entity labels in a single word ht and the transfer scores
between adjacent word labels, which is calculated as follows

S x, y( ) � ∑n
i�1

Ayi−1 ,yi + Pi,yi( ) (4)

In Formula 4, Ayi−1,yi indicates the transfer score of nearby labels
of two words within a fault record, Pi,yi represents the score of the yi
label of the ith word in the fault record, and n represents the number
of words.

Secondly, for a given fault record X, the conditional probability
formula of any label sequence y is:

P y X|( ) � eS X,y( )
∑~y∈Ye

S X,~y( ) (5)

In Formula 5, ~y represents the real label sequence of X, and Y
represents all possible label sequences of X.

Finally, when CRF is used to predict the final fault record label
sequence, Viterbi algorithm is used to obtain the global optimal
solution, and the solution formula is:

y* � argmaxS X, ~y( ) (6)

FIGURE 3
Schematic diagram of BERT model.

FIGURE 4
Schematic diagram of BERT model.
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In Formula 6, y* represents the fault record label sequence with
the highest score. Each word in each fault record is labeled with an
entity label. By identifying the corresponding label for each word,
entity information can be extracted.

3.4 Labeling methods and evaluation
indicators

To distinguish entities from non-entities. The BIO labeling
scheme, as introduced above, is applied for the annotation of
fault records.

In order to observe the effectiveness of the EIR model, three
indicators, P, R, and F1 value, are used to evaluate from the entity
level. The calculation formula is shown in (Equations 7–9).

P � Entities correctly identified
Entities identified

(7)

R � Entities correctly identified
Entities annotated

(8)

F1 � 2PR
P + R

(9)

According to (Equations 7–9), the precision P is aimed at all
entities identified using the proposed method, while the recall R
is aimed at all entities annotated in the sample. The two assess
the performance of the proposed method from varying
perspectives. The harmonic mean of the two, denoted as F1,
can show the effect of the EIR. A larger F1 depicts a better result
of the EIR model.

4 Method to fault record information
mining rested on entity similarity fast
retrieval algorithm

After completing the automatic recognition and extraction of
entity information from the TPSE fault records, further
management and retrieval of this information are required for
direct application in on-site practice. Therefore, this paper
constructs a TPSE fault handling knowledge graph to store
and manage fault record information and proposes a
corresponding decision-making method. The proposed method
recommends historical fault cases most similar to the current
fault as references for operation and maintenance personnel,
thereby enhancing the efficiency and intelligence of
fault handling.

4.1 Construction method of knowledge
graph of TPSE fault handling

Since the entity types and relationships in TPSE fault records
are relatively stable, this paper uses a top-down approach to
construct the TPSE fault handling knowledge graph. First,
schema links are defined and the schema layer is constructed.
Then, relevant entities are extracted from the text based on the
schema layer to build the data layer. The specific construction
process is illustrated in Figure 5.

4.1.1 Construction of pattern layer
The Pattern Layer is used to describe the entity types and the

relationships between entities, serving as the organizational
framework of the knowledge graph. In this study, by
summarizing the entity types and relationships, a Pattern Layer
for the TPSE fault handling knowledge graph has been constructed,
as shown in Figure 6.

First, Figure 6a illustrates the overall structure of the knowledge
graph. As depicted, the knowledge graph for fault handling in
traction power supply equipment centers around the “Traction
Power Supply Equipment” node, with “Faultive Equipment” and
“Fault Phenomenon” as key nodes radiating outward, forming a
centralized graph structure that gradually diverges from the core.

Second, Figure 6b presents a local subgraph centered on a single
traction power supply equipment node. For each equipment, eight
categories of entity information were selected: time, line, substation,
phenomenon, cause, type, level, and handling measures. These
constitute the basic entity types of the knowledge graph nodes.

4.1.2 Construction of data layer
There are three steps to construct the data layer: extracting

knowledge, fusing knowledge, and updating knowledge.
Firstly, knowledge extraction involves extracting 9 types of entity

information from fault records, including fault equipment, fault
phenomena, fault causes, and handling measures through the BERT-
BiLSTM-CRF EIR model.

Secondly, for the extracted entity information, knowledge fusion
is necessary to improve precision and reduce redundancy. It involves
entity disambiguation and coreference resolution. Entity
disambiguation refers to distinguishing entities that may be
ambiguous or have multiple meanings, while coreference

FIGURE 5
Establishing the knowledge graph of TPSE fault handling.
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resolution involves merging entities that refer to the same concept in
the knowledge graph. Due to clear terminology specifications in the
traction power supply domain, ambiguity is rare in fault records;

therefore, entity disambiguation is unnecessary. However, because
there are often multiple ways to record a device in fault logs (e.g.,
“214DL”, “217DL”, “214 circuit breaker”, “217 circuit breaker”),

FIGURE 6
(a)Overall Structural Diagram of the Traction Power Supply Equipment Fault Handling Knowledge Graph. (b) The pattern layer of knowledge graph
of TPSE fault handling.
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all of these refer to circuit breakers. Therefore, coreference issues are
common in fault records, and it is necessary to perform coreference
resolution on equipment names so that all variations referring to the
same device type are replaced with a unified name.

Finally, with the ongoing intelligent development of traction
power supply systems, both the types of TPSE and the complexity
of fault conditions continue to increase. Therefore, the TPSE fault
handling knowledge graph must be continuously updated to
ensure its timeliness and comprehensiveness. A detailed
technical description of the dynamic updating mechanism is
provided below.

New fault records are first preprocessed using entity recognition
methods (e.g., BERT-BiLSTM-CRF) to extract key entity information
and structure them in a format consistent with the existing data in the
knowledge graph. The extracted entities are then categorized into
predefined categories (e.g., “Equipment,” “Fault Phenomenon,”
“Cause”) and their relationships are identified. For entities matching
existing ones, a fusion process updates the knowledge graph while
resolving ambiguities using techniques like coreference resolution. If
new entities or relationships are introduced, they are dynamically added
to the knowledge graph, expanding its content. After updates, the
system validates the integrity and consistency of the data, ensuring no
redundancy or conflicts. As the knowledge graph evolves, a feedback
loop—via expert reviews or automated detection—continuously
improves entity recognition and relationship extraction, enhancing
precision and adaptability over time.

4.2 Decision-making method for TPSE
fault handling

Once the TPSE fault handling knowledge graph has been
constructed, if it relies solely on its basic retrieval function, only
historical faults that are exactly identical to the current fault can be
retrieved, which limits its practical usefulness. Therefore, this study
enhances the retrieval capability of the knowledge graph by introducing
an entity similarity-based fast retrieval algorithm and proposes a
decision-making method for TPSE fault handling. The main steps of
the entity similarity-based fast retrieval algorithm are as follows.

4.2.1 Text preprocessing
Both the fault phenomenon nodes in the knowledge graph and

the descriptions of the current fault are unstructured textual data.
First, these texts need to be preprocessed. They are then segmented
into separate word sequences. At the same time, irrelevant or
redundant words, such as auxiliary words and modal particles,
are removed using a stop-word list.

Notably, traction power supply equipment fault records contain a
large number of technical terms, and ambiguities or variations in these
terms may interfere with information extraction. The system ensures
the precision and consistency of term processing through several
methods. First, it applies term standardization to map terms with
different forms or spellings into a unified standard, such as
consolidating “switch,” “breaker,” and “isolator” into a standardized
term. Second, it handles term variants by recognizing synonyms,
ensuring consistent identification of similar terms, such as treating
“circuit breaker” and “electric circuit breaker” as synonyms. For
ambiguous terms, the system determines their specific meaning

through contextual analysis; for example, it distinguishes whether
“bus” refers to an “electric bus” or a “communication bus” based
on the context. Additionally, as equipment and fault types evolve, the
system regularly updates its dictionary by extracting new terms from
equipment documentation, fault records, and industry reports to
maintain its recognition capability for emerging terms. Finally, the
system eliminates redundancy and optimizes information processing,
preventing duplication caused by different formats of equipment IDs
(e.g., “214DL” and “214-DL”), thus ensuring both efficiency and
precision in the recognition process.

4.2.2 Entity vectorization
After preprocessing, as for the current faultive equipment,

match the same fault equipment node in the knowledge graph,
and vectorize the corresponding fault phenomenon node and the
input fault phenomenon, so as to calculate the entity similarity. Both
the fault phenomenon node and the input fault phenomenon are
fault phenomenon entities, belonging to short text and composed of
single or multiple words. Therefore, by adding the word vectors
corresponding to all the words it contains, the vectorized
representation of the fault phenomenon entity is obtained.

Due to the fact that fault phenomenon entity is a part of the
TPSE fault record text, the words that constitute the fault
phenomenon entity must also be included in the fault record.
Therefore, vectorization tools can be used to train the word
vectors corresponding to all words based on the fault record.
This paper uses word2vec Word embedding model as a fault
record vectorization tool. It can learn the relationships between
various words from a large amount of corpus, achieve distributed
representation of word features, avoid one-to-one mapping between
words and vectors, and represent the actual meaning of words in
abstract vector form (Yu et al., 2018).

After preprocessing the fault record corpus set, the preprocessed
corpus set is trained based on the word2vec word embedding model.
The training algorithm selects Skip-Gram model, the word vector
dimension is set to 100 dimensions, and the minimum word
frequency is set to 1. After training, 2141 words and their
corresponding distributed word vectors were ultimately obtained.
Some words and their corresponding word vectors are shown
in Table 3.

After implementing word vectorization, the word vectors
corresponding to the words contained in the fault phenomenon
entity are added to form the fault phenomenon entity vector. For
example, for a fault phenomenon entity ent, if it is composed of p
words and vi (i = 1, . . . ,p) is the word vector corresponding to each
word, then its corresponding fault phenomenon entity vector is
ent = (v1+. . .+vp).

4.2.3 Entity similarity calculation
The cosine similarity algorithm is a commonly used similarity

calculation method that evaluates the similarity between two vectors
by calculating the cosine value of the angle between them. Based on
the word2vec word vectors obtained through training, the cosine
similarity algorithm can calculate the similarity between two word
vectors. Similarly, the cosine similarity algorithm can also be used to
calculate the similarity between two fault phenomenon entities.
Here, the cosine similarity between any two vectors a and b is
defined as sim (a,b).
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Therefore, for the two preprocessed fault phenomenon entities
ent1 and ent2, which are respectively composed ofm and n words, ai
and ej are the word vectors corresponding to each individual word,
and ent1 and ent2 are the entity vectors corresponding to the two
fault phenomenon entities. Therefore, ent1 = (a1+. . .+am), ent2 =
(e1+. . .+en), and the calculation formula for the entity similarity
between the two is shown in (Equation 10):

sim ent1, ent2( ) � cos θ � ent1•ent2
ent1‖ ‖ ent2‖ ‖

� a1 +/ + am( ) • e1 +/ + en( )
a1 +/ + am‖ ‖ e1 +/ + en‖ ‖

(10)

In Equation 10, θ is the angle between vectors ent1 and ent2.
Then, based on the calculated entity similarity between the input

fault phenomenon and each fault phenomenon node, the top-
ranked historical fault cases in the knowledge graph are
recommended in descending order of similarity. This provides
assistance and guidance for the diagnosis and handling of the
current fault.

4.2.4 Process of decision-making of TPSE
fault handling

In summary, the process of the decision-making method for
TPSE fault handling based on entity similarity fast retrieval
algorithm is shown in Figure 7.

As shown in Figure 6, the specific processes are described
as follows:

a. When operation and maintenance personnel discover a new
fault of TPSE, input the current fault equipment and fault
phenomenon;

b. According to the input fault equipment, match the same fault
equipment node in the knowledge graph, and return all fault
phenomenon nodes connected by this node;

c. Preprocess the content of all fault phenomenon nodes and
obtain the entity vectors of each fault phenomenon node based
on the word2vec word vector;

d. Preprocess the input fault phenomenon and obtain the entity
vector of the input fault phenomenon based on the word2vec
word vector;

e. Calculate the entity similarity between each fault phenomenon
node and the input fault phenomenon separately, and return

the historical fault cases corresponding to the top n entity
similarity rankings;

f. Output fault information and handling measures of the top n
historical fault cases, assist and guide the operation and
maintenance personnel in handling current fault.

g. To improve the completeness and adaptability of the
knowledge graph, a user feedback loop is introduced,
allowing newly handled fault cases to be incorporated into
the graph when no prior matching cases exist. This mechanism
enables continuous updates with real-world data, gradually
enhancing retrieval precision and system robustness.

Among them, word2vec word vectors refer to the word vectors
trained based on fault records; n is the number of final output cases,
and this paper sets n = 5, which is the fault information and
processing measures corresponding to the top 5 fault cases in the
similarity ranking of the final output fault phenomenon.

5 Case study

5.1 EIR of TPSE fault record

A total of 912 TPSE fault records were selected to verify the
effectiveness of the fault record NER method and the fault
processing decision-making method. These data were collected
from a railway power maintenance administration department in
South China, covering the period from 2019 to 2022. The dataset
was randomly divided into a training set and a test set in a 4:1 ratio.
The training set contains 730 fault records with 63,226 words, and
the test set contains 182 fault records with 17,560 words. Table 4
summarizes the entity types and their counts in the dataset.

5.1.1 Effect of EIR of BERT-BILSTM-CRF model
Using the BERT-BiLSTM-CRF model to recognize the entity

information of the dataset, the results in terms of different types of
entity information are presented in Table 5.

From Table 5, it shows that, several entities can achieve a 100%
harmonic mean, e.g., Time, Line, etc. It can be attributed to the
relatively standard format and it is easy to extract features.
Therefore, it achieves better precision. However, several entities
experience low precision: e.g., Equipment, Phenomenon, Cause, and
Measure. That is because the recorded information is not unified.
Different forms and lengths of information makes it difficult for
feature extraction, resulting in relatively low recognition precision.

5.1.2 Comparison of EIR performance with
other models

Compare the proposed method with manual recognition,
dictionary plus regular matching, and word2vec-BiLSTM-CRF
model in terms of recognition precision and recognition speed.
Perform EIR on 182 historical fault records in the test set, and the
results are shown in Table 6.

It shows that in terms of F1 value, the method proposed in this
paper is the highest, reaching 94.66%, while the dictionary plus
regular matching method is the lowest, only about 65%. This is
because the format of fault records is complex and diverse, making it
difficult to fully summarize the text format of fault records by

TABLE 3 Example of entity labeling of fault record.

Word Word vector

transformer (0.090765, -0.023804, . . . . . . , 0.203654, 0.108283)

circuit breaker (0.091566, -0.027322, . . . . . . , 0.220106, 0.110428)

isolating switch (0.083842, -0.027324, . . . . . . , 0.228602, 0.107575)

relay (0.139087, 0.056287, . . . . . . , 0.220191, 0.067056)

fault (0.234055, 0.319761, . . . . . . , 0.366489, 0.079654)

replace (0.243218, 0.161711, . . . . . . , 0.205377, 0.044075)

alarm (0.139772, 0.116520, . . . . . . , 0.258859, 0.048609)

trip (0.100268, 0.006582, . . . . . . , 0.225062, 0.063269)
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exhaustion. Meanwhile, compared to the word2vec-BiLSTM-CRF
model with the F1 value of 91.92%, the method proposed in this
paper achieves better EIR performance. That can be attributed to
that the BERT model has trained a dynamic word vector including

both the information per se and context semantic information,
which avoids the problem of word semantic loss caused by the
inability to consider the specific context when using word2vec word
embedding model.

FIGURE 7
Process of decision-making method for TPSE fault handling.
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In terms of recognition speed, although the method proposed in
this article is slightly slower than the two traditional methods, it
saves 98.5% of time compared to manual recognition and can
achieve automated and efficient processing of TPSE fault records.
Due to the highest EIR precision of the proposed method, the EIR
method based on the BERT-BiLSTM-CRF model is still the
optimal choice.

To enhance clarity, the space complexity terms in Table 6 are
further explained as follows. For the regular matching method,
dictionary storage requires O(N × L), where N is the number of
dictionary entries and L is the average entry length; matching
operations require O(T), where T is the input text length. For the
word2vec-BiLSTM-CRF model, word vector storage requires O(V ×
D), BiLSTM parameters O(H × (H + D)), and CRF components
O(F × C + T × C), where V, D, H, F, and C represent vocabulary size,
vector dimension, hidden layer size, number of features, and
number of labels, respectively. The BERT-BiLSTM-CRF model
includes BERT parameters O (L × H2+V × D), embedding
storage O (T × D), BiLSTM and CRF components as above,
leading to a higher but manageable complexity that balances
performance with resource consumption.

5.2 Decision-making for TPSE fault handling

5.2.1 Knowledge graph of TPSE fault handling
Based on the presented BERT-BiLSTM-CRF EIR model, after

extracting the entity information of 912 TPSE fault records, entities
and relationships are inputted into Neo4j graph database for storage
and representation, and the knowledge graph for TPSE fault
handling is constructed, which includes 8646 nodes and
8645 relationships.

TABLE 4 Distribution of entity types and their frequency in the dataset.

Entity types Examples No. of entities in
training set

No. of entities in
test set

Time 7 January 2020, 17 February 2021, etc 1451 362

Line XX Line 730 182

Substation XX substation, XX section post, XX switching post, etc 730 182

Equipment 101DL, 214 protection device, Measurement and control device, etc 729 182

Phenomenon Communication interruption, High control bus voltage, Remote operation
rejection, etc

730 182

Cause Loose bolts, Damaged insulation monitoring unit, Air switch tripping, etc 320 74

Type Parts damage, Poor insulation, Poor contact, etc 730 182

Class A (urgent), B (major), C (general) 730 182

Measure Turn the air switch on, Uncover the switch, Turn the fuse on, etc 720 179

Overall 6870 1707

TABLE 5 Effect of EIR for different entity information.

Entity type P/% R/% F1 value/%

Time 100 100 100

Line 100 100 100

Substation 100 100 100

Equipment 84.24 85.16 84.70

Phenomenon 83.42 85.71 84.55

Cause 83.54 89.19 86.27

Type 100.00 100.00 100.00

Class 100.00 100.00 100.00

Measure 84.32 88.64 86.43

Overall 94.09 95.25 94.66

TABLE 6 Comparison of EIR effects of different methods.

Method F1 value/% Average recognition time/s Space complexity

Manual recognition 90 10 ——

Dictionary plus regular matching 64.57 0.031 O(N × L) + O(T)

word2vec-BiLSTM-CRF 91.92 0.046 O(V × D) + O(H × (H × D))
+ O (T × H) + O(F × C) +

O (T × C)

BERT-BiLSTM-CRF 94.66 0.151 O (L × H2 + V × D) +
O (T × D)+ O(H × (H × D))
+ O (T × H) + O(F × C) +

O (T × C)
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The fault case knowledge graph of isolating switch is displayed as
shown in Figure 8. It can be seen that this knowledge graph contains
a total of 9 nodes and 8 relationships, which corresponds to all fault
information of this fault and the relationships between various
entities. According to the knowledge graph of the fault case, the
following information can be learned: the fault of the isolating switch
occurred on 19 May 2020 in Jinzhai substation of Hewu line. The
fault phenomenon is “refused to open”. Through inspection, it is
found that the cause of the fault is “mechanism stick”, which belongs
to the fault of parts damage type. The severity of the fault is class B.
The handling measure is to “replace the buffer pad and apply
engine oil”.

5.2.2 Case analysis of decision-making process of
isolation switch fault handling

Taking an isolation switch as an example, the feasibility of the
decision-making method for fault handling is verified. As shown in
Figure 9, when an isolation switch has a fault, the alarm signal is
analyzed, and two key pieces of information—fault equipment and
fault phenomenon—are extracted. These are matched in the TPSE
fault handling knowledge graph as search conditions to output the
top five most similar historical fault cases as references to assist
operation and maintenance personnel in completing fault
handling quickly and accurately. Finally, the details of the
current fault are added to the knowledge graph after handling
is completed, ensuring that the fault handling knowledge remains
up to date.

Then, operation and maintenance personnel should refer to
the fault causes in historical cases and inspect the current
isolation switch in the following order: whether the air switch
has tripped; whether the mechanism is stuck; whether the

control power air switch inside the mechanism box is
damaged; whether the wire on the back of the motor has
fallen, preventing it from opening; and whether the opening
contactor is damaged. If any of these conditions are confirmed,
as shown in Figure 10, the current fault should be addressed
using the corresponding historical handling measures.

Conversely, if inspection reveals that the fault cause of the
isolation switch does not match any of the above conditions,
maintenance personnel should refer to the maintenance
regulations or consult experts to address the current fault.

5.2.3 Case analysis of decision-making process of
circuit breaker fault handling

In addition, taking a circuit breaker as an example, when
the fault equipment is identified as a circuit breaker and the fault
phenomenon is “control circuit was broken,” the top five
most similar historical fault cases recommended by the
knowledge graph are shown in Figure 11. It can be seen that
the fault phenomenon corresponding to these five cases is
identical to the input fault phenomenon after preprocessing,
with both being “control circuit was broken.” Thus, the entity
similarity between the input fault phenomenon and each fault
phenomenon node is 1.0. This indicates that for circuit
breakers, “control circuit was broken” is a common fault
phenomenon. However, examining the fault causes reveals
that, although the fault phenomenon is identical, the
underlying causes vary.

Then, operation and maintenance personnel should refer to the
fault causes in historical cases and inspect the current circuit breaker
in the following order: whether the opening coil is damaged with
infinite resistance; whether the closing and locking electromagnet is

FIGURE 8
Knowledge graph of a historical fault case.
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damaged; whether the opening coil is damaged; and whether the
closing coil is damaged. If any of these causes are confirmed, the
current fault should be addressed using the corresponding historical
handling measures.

Conversely, if inspection reveals that the fault cause of the circuit
breaker does not match any of the above causes, maintenance
personnel should refer to the maintenance regulations or consult
experts to address the current fault.

FIGURE 9
Example of decision-making process of isolation switch fault handling.
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6 Conclusion

This study proposes a data-driven framework for extracting and
organizing fault information from traction power supply equipment
(TPSE) records, aiming to enhance the efficiency and intelligence of
fault diagnosis in railway systems. Based on the insights gained from
extensive historical data, the following key conclusions can be drawn:

1. The integration of deep learning and structured knowledge
modeling enables accurate and scalable fault information
extraction. By combining BERT-BiLSTM-CRF for named
entity recognition with a domain-specific BIO labeling
scheme, the proposed method effectively captures complex
fault attributes in unstructured text records. Empirical results
show that the model achieves high precision and recall across
multiple entity types, laying a solid foundation for the
downstream construction of a TPSE knowledge graph.

2. The use of a knowledge graph coupled with entity similarity
retrieval supports intelligent decision-making in fault handling.
The structured fault knowledge graph allows for efficient storage
and query of historical cases, while the similarity-based retrieval
mechanism enables the recommendation of relevant prior solutions
based on current fault features. This approach reduces reliance on
manual searches, promotes knowledge reuse, and improves the
consistency and timeliness of field-level maintenance actions.

7 Future work and outlook

Looking ahead, the proposed framework can be extended to support
more intelligent and proactive maintenance applications within traction
power supply systems. For real-time faultmonitoring, on-site deployment
of sensors such as surveillance cameras, infrared temperature detectors,
and position sensors at key substations and equipment nodes may enable
continuous state tracking of critical infrastructure. By evolving the current
static knowledge graph into a dynamic, spatiotemporal matching
mechanism, real-time equipment anomalies can be automatically
correlated with historical fault patterns, allowing timely maintenance
alerts and response suggestions based on past cases.

Furthermore, the original fault records used in this study are in
Chinese. While the processing language is Chinese, the core unit of
our algorithm is the “word,” and Chinese words have a one-to-one
correspondence with English words in the modeling framework.
Therefore, the proposed method is equally applicable to English text,
assuming proper segmentation and vectorization are performed. In
future research, exploring the applicability of this framework to
other languages—particularly those with different morphological or
syntactic structures—will be an important direction for broadening
its generalizability and robustness across multilingual environments.

In terms of predictive maintenance, future work may explore the
application of temporal graph neural networks (TGNN) and frequency-
based entity trend modeling to anticipate potential equipment failures.
For example, faults in catenary components such as the messenger wire
or cantilevermay statistically precede specific pantograph issues.Mining
such latent correlations will enable data-driven maintenance scheduling
and risk prevention. Furthermore, with ongoing advancements in large
language models (LLMs) and multimodal AI, future systems are
expected to autonomously generate fault reports based on voice,
imagery, or sensor data, thereby minimizing reliance on manual
annotations. This trajectory points toward a gradual shift from AI-
assisted tools to semi-autonomous maintenance agents, fundamentally
reshaping field operations in railway infrastructure management.
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