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Humanitarian aid delivery in conflict-affected regions faces significant challenges
due to dynamic security risks, uncertain demand, and complex operational
constraints. Traditional optimization methods struggle with computational
intractability and lack adaptability for real-time decision-making in volatile
environments. To address these limitations, we propose a novel hybrid
framework that integrates Deep Reinforcement Learning (DRL) with Graph
Neural Networks (GNNs) and deterministic constraint validation, informed by
practitioner insights to ensure real-world applicability. Our approach employs
Proximal Policy Optimization (PPO) enhanced by GNN-based spatial
representations to learn adaptive, efficient vehicle routing policies under
uncertainty. A post-decision validation mechanism enforces feasibility by
penalizing constraint violations based on a deterministic equivalent model. We
evaluate our method on realistic, georeferenced datasets reflecting Afghan road
networks and conflict data, comparing it against classical PPO and heuristic
baselines. Results demonstrate that PPO-GNN significantly reduces operational
costs (by 7.9%), security risk exposure (by 15.2%), and unmet demand, while
improving reliability and adherence to constraints. The approach scales
effectively across network sizes and maintains robustness under stochastic
variations in demand and security conditions. Our framework balances
computational efficiency with practical relevance, aligning with humanitarian
priorities and offering a promising decision-support tool for aid logistics in
conflict zones.
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1 Introduction

Optimizing humanitarian aid operations in conflict-affected regions involves managing
uncertainty in security conditions, route accessibility, and resource demands, making it a
complex, high-dimensional problem. Traditional optimization methods provide structured
formulations but often fail to handle real-world stochastic variations and rapidly changing
conditions, leading to infeasible or suboptimal solutions. Moreover, the high computational
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complexity of exact solvers makes them impractical for real-time
decision-making in crisis situations.

Recent studies have shown that significant challenges for
planning and executing humanitarian operations globally remain,
with limited evidence of successful implementation of optimization
models in the field. This implementation gap is directly linked to
practitioners’ trust in the solution models, which is undermined
using unrealistic assumptions, oversimplification of operational
complexities, and time-consuming solution methods that are
impractical for field operations. Critically, studies have revealed
that only approximately 10% of humanitarian logistics models
incorporate practitioner input in their design process, creating a
substantial misalignment between academic objectives and field
priorities.

To systematically address both the stochastic nature and
computational challenges of humanitarian aid delivery in conflict
zones, we first develop a stochastic mathematical model that
accurately captures real-world uncertainties. In this formulation,
each aid delivery location i ∈ I corresponds to a distribution center
ci ∈ C with a demand modeled as a random variable with mean μi
and standard deviation σ i. While this stochastic formulation
effectively represents aid requirement variability, solving it
directly is computationally intractable due to probabilistic
constraints and the need for extensive scenario evaluation.

To enable practical computation, we derive a deterministic
equivalent formulation, approximating the stochastic problem
using expected values and chance constraints. This
transformation makes the problem more tractable and provides a
structured benchmark for evaluating solution feasibility. However,
despite this reformulation, the deterministic model remains
computationally prohibitive for large-scale networks due to its
combinatorial nature and the necessity for exhaustive
enumeration. Moreover, in conflict zones, conditions change
rapidly, requiring solutions that can adapt in near real-time.

To overcome these limitations, we propose a hybrid
optimization framework that integrates Deep Reinforcement
Learning (DRL) enhanced with Graph Neural Networks (GNNs),
while incorporating the deterministic model for solution validation
and refinement. Our approach builds upon Proximal Policy
Optimization (PPO), a state-of-the-art DRL algorithm that learns
optimized vehicle assignment and routing decisions through
interaction with a simulated humanitarian aid delivery
environment. Additionally, we employ GNNs to extract spatial
dependencies from the delivery network, enriching the DRL
agent’s state representation and improving decision-making
under uncertainty. Finally, we introduce a Constraint Validation
Mechanism that leverages the deterministic model as a feasibility
check to refine learned policies, ensuring compliance with
operational constraints such as vehicle capacity limits, security
thresholds, and delivery time windows.

Unlike traditional approaches, our hybrid methodology does not
entirely discard deterministic optimization. Instead, it integrates
deterministic validation as a post-decision refinement step, ensuring
that the DRL-generated solutions remain feasible. By combining
DRL’s adaptability, GNN’s representation power, and deterministic
feasibility checks, our method achieves scalable, high-quality
solutions for real-world humanitarian aid operations in volatile
environments. Furthermore, through structured engagement with

field practitioners, we ensure our model aligns with operational
priorities identified in humanitarian contexts—prioritizing service
reliability, quality, and operational security rather than purely
focusing on cost minimization as commonly found in academic
literature.

The key contributions of this paper are as follows:

• We develop a rigorous stochastic mathematical model for
humanitarian aid delivery optimization in conflict zones,
along with its deterministic equivalent, enabling structured
feasibility validation under uncertainty.

• We propose a hybrid methodology that integrates PPO-based
Deep Reinforcement Learning, Graph Neural Networks, and
deterministic constraint validation, facilitating scalable,
adaptive, and robust decision-making in volatile and
dynamic environments.

• We create a realistic simulation environment based on
georeferenced road networks and conflict data from
affected regions, accurately modeling humanitarian aid
distribution networks to enable robust policy evaluation.

• We incorporate practitioner perspectives from published
literature to align our model objectives, reward functions,
and constraints with real operational priorities, enhancing
practical relevance and trustworthiness (Rodríguez-Espíndola
et al., 2023; Holguín-Veras et al., 2013).

• We conduct extensive experimental benchmarking against
deterministic solvers, classical DRL methods, and heuristic-
based approaches, demonstrating superior performance in
cost efficiency, demand fulfillment, operational feasibility,
and compliance with practitioner-informed constraints
(Clarke and Wright, 1964; Schulman et al., 2017).

The remainder of this paper is structured as follows. Section 2
reviews the literature on humanitarian logistics, stochastic routing, and
hybrid AI-based approaches, highlighting existing methods and their
limitations. Section 3 presents the problem definition andmathematical
models, first introducing the stochastic formulation of the aid delivery
problem, followed by its deterministic equivalent for feasibility
validation. Section 4 details our proposed hybrid methodology,
which integrates PPO-based DRL, GNN-enhanced state
representation, and deterministic constraint validation to generate
scalable and operationally feasible solutions. Section 5 evaluates
PPO-GNN’s performance against classical PPO without GNN and
the Clarke-Wright Savings Algorithm, focusing on solution quality,
computational efficiency, and robustness to stochastic variations and
security disruptions. Finally, Section 6 concludes the paper by
summarizing key findings and outlining future research directions
for improving computational efficiency and real-time adaptability.

2 Literature review

This section reviews the existing literature on humanitarian
logistics, approaches for handling uncertainty in conflict zones, and
hybrid AI methods that integrate optimization with deep
reinforcement learning (DRL) and graph neural networks
(GNNs). We subsequently identify the gaps that our work aims
to address, providing a foundation for our contributions.
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The vehicle routing problem (VRP) has been extensively studied
in operations research, with the classic Capacitated Vehicle Routing
Problem (CVRP) serving as a foundational model for numerous
real-world applications (Laporte, 1992). Within the context of
humanitarian aid delivery in conflict zones, the problem becomes
significantly more complex due to factors such as dynamic security
conditions, heterogeneous fleets, high-priority demands, and
operational constraints including security thresholds and
checkpoint-based route structures (Özdamar and Ertem, 2015;
Altay and Green, 2006). Various VRP variants, such as the split
delivery VRP (SDVRP), have been proposed to address scenarios
where demand at a single node can be fulfilled by multiple vehicles
(Dror et al., 1989). These models have been subsequently extended
to incorporate humanitarian-specific constraints, including priority-
based scheduling, security risk minimization, and checkpoint
traversal requirements (Huang et al., 2012).

For instance, Balcik et al. (2008) introduced comprehensive
models for humanitarian logistics incorporating time windows
and heterogeneous fleets, while Özdamar and Ertem (2015)
proposed hybrid heuristics for solving large-scale aid delivery
problems with multiple depots. However, most existing studies
on humanitarian logistics operate under deterministic parameter
assumptions, such as fixed demand and security conditions, which
significantly limits their applicability in real-world conflict scenarios
where uncertainty in demand, route accessibility, and security risks
is prevalent (Najafi et al., 2013; Rodríguez-Espíndola et al., 2018).

Recent assessments of disaster management have revealed that
several challenges for planning and executing operations globally
persist, suggesting a limited level of implementation of advances in
humanitarian logistics (Negi, 2022). Studies have identified that
implementation success is directly linked to practitioners’ trust in
research findings, which is often undermined by unrealistic
assumptions in optimization models (Galindo and Batta, 2013).
A critical analysis of humanitarian logistics optimization models by
Rodríguez-Espíndola et al. (2023) revealed that only approximately
10% incorporate input from practitioners in their modeling
decisions. This disconnect helps explain why most academic
models prioritize cost minimization, while multi-criteria decision
analysis with practitioners revealed that reliability, quality of service,
and prioritization of most affected areas rank significantly higher
than cost in real operations.

Uncertainty in routing problems has been systematically
addressed through stochastic programming and robust
optimization techniques. Chance-constrained methods ensure
that constraints such as demand satisfaction are met with a
specified probability (Najafi et al., 2013). Recourse strategies,
conversely, introduce penalty costs for deviations from planned
routes, allowing for adaptive decision-making in response to realized
uncertainties (Pérez-Rodríguez and Holguín-Veras, 2016). For
example, chance-constrained formulations have been applied to
VRPs with stochastic demand, where the objective is to minimize
costs while ensuring that the probability of route failure, such as
exceeding vehicle capacity, remains below a predetermined
threshold (Bozorgi-Amiri et al., 2013). Recourse models,
including the two-stage stochastic VRP, have been utilized to
optimize initial routing decisions while accounting for the cost of
adjusting routes based on observed demand (Hu et al., 2019).
Despite these significant advancements, applying these methods

to large-scale humanitarian aid delivery problems in conflict
zones remains challenging due to their computational complexity
and the need for scalable solutions that can adapt to rapidly
changing conditions (Wex et al., 2014).

Given the computational demands and limited real-time
adaptability of stochastic optimization techniques, alternative
approaches are necessary. This is where artificial intelligence (AI)
techniques, particularly DRL and GNNs, become crucial for
addressing these limitations.

Deep reinforcement learning has emerged as a powerful tool for
sequential decision-making, particularly in dynamic and uncertain
environments. Unlike earlier policy gradient methods such as
REINFORCE and Advantage Actor-Critic (A2C), Proximal Policy
Optimization (PPO) introduces a clipped objective function that
prevents drastic policy updates, resulting in more stable training
(Schulman et al., 2017). This characteristic makes PPO particularly
well-suited for large-scale routing problems in conflict zones, where
decision spaces are high-dimensional and exploration is critical.
PPO has gained widespread popularity due to its sample efficiency,
stability, and ability to handle high-dimensional state and action
spaces, making it an ideal choice for problems like humanitarian aid
delivery optimization, where agents must learn policies that balance
exploration and exploitation while adhering to operational
constraints.

PPO has been successfully applied to various logistics and
routing problems, demonstrating its ability to handle
combinatorial decision-making efficiently. Bello et al. (2016)
integrated PPO with a pointer network for vehicle routing,
achieving significant improvements in computational efficiency
compared to traditional solvers. Similarly, Kool et al. (2019)
explored PPO for dynamic routing, showing that it adapts
effectively to changes in demand and network conditions. Recent
work by Bogyrbayeva et al. (2022) has also applied PPO to routing
problems, demonstrating its effectiveness in learning adaptive
policies for complex decision-making tasks. However, these
applications often lack mechanisms for ensuring feasibility and
scalability in large-scale networks, which motivates the
integration of PPO with complementary techniques, such as
GNNs and constraint validation.

Graph neural networks have gained significant traction in
routing problems due to their ability to model complex spatial
and relational structures (Wu et al., 2020). GNNs can effectively
capture the underlying topology of routing networks, enabling
more sophisticated feature extraction and decision-making
capabilities. Recent research has explored the integration of
GNNs with DRL for solving VRPs, combining the strengths of
both approaches to achieve state-of-the-art performance. For
instance, Bogyrbayeva et al. (2022) developed a GNN-based
encoder for the VRP, which was combined with a DRL
decoder to generate high-quality solutions. Similarly, Li et al.
(2020) proposed a hybrid DRL-GNN framework for the dynamic
VRP, demonstrating its ability to adapt to changing
environments in real-time. Despite these promising
developments, the application of hybrid DRL-GNN methods
to humanitarian aid delivery problems in conflict zones
remains significantly underexplored. Existing studies often
focus on deterministic settings or fail to account for the
unique challenges of humanitarian logistics, such as the
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critical need for real-time adaptability and the handling of high-
dimensional state spaces with security constraints.

Recent advances in deep reinforcement learning have
demonstrated increasingly promising results for routing and
navigation problems, particularly when incorporating domain-
specific knowledge and multi-agent coordination strategies.
Adaptive search methods for time-dependent vehicle routing
problems exemplify this trend by emphasizing the integration of
environmental and temporal dynamics, which directly aligns with
the challenges inherent in dynamic and uncertain humanitarian
logistics contexts (Yue et al., 2024). Similarly, cooperative multi-
agent RL approaches have been successfully developed for complex
dynamic assignments, illustrating the potential for extending hybrid
frameworks to multi-vehicle or multi-stakeholder operational
settings (Merkulov et al., 2025).

Models addressing collective motion and collision avoidance
through reinforcement learning have highlighted effective
strategies for decentralized navigation and safety constraint
enforcement, which parallels the risk-avoidance mechanisms
and operational limitations addressed in our deterministic
validation module (Krongauz and Lazebnik, 2023).
Furthermore, physics-informed deep RL has been successfully
applied to conflict resolution in safety-critical environments,
demonstrating the substantial benefits of embedding domain
constraints within learning architectures to improve both
robustness and compliance with hard operational constraints
(Zhao and Liu, 2021).

In the domain of resource allocation problems under
uncertainty, agent-based simulations combined with deep RL
have proven particularly effective in dynamic and complex
operational contexts that closely resemble humanitarian aid
distribution scenarios (Lazebnik, 2023). Additionally, efficient
control strategies that integrate physics-informed neural networks
further reinforce the critical importance of incorporating domain-
specific knowledge to enhance both policy performance and system
stability (Hu et al., 2024).

These studies collectively reflect the increasing convergence of
reinforcement learning methodologies with domain knowledge
integration, safety considerations, and multi-agent coordination
principles, which fundamentally underpin the design rationale of
our hybrid PPO-GNN framework and its deterministic constraint-
validation mechanism. Although these works originate from diverse
application domains, their methodological insights provide
substantial support for the applicability and potential
effectiveness of our approach when applied to complex
humanitarian logistics optimization problems.

An additional challenge identified in recent literature concerns
the practicality of solution times. Studies demonstrate that fewer
than 22% of articles on humanitarian logistics introduce new
solution methods designed to deliver results within timeframes
practical for field operations (Rodríguez-Espíndola et al., 2023).
This gap is particularly problematic in conflict zone logistics, where
rapid decision-making can be crucial for operational success. While
evolutionary algorithms and Tabu Search represent the most
implemented metaheuristics in the field, there remains a
significant opportunity to develop specialized solution approaches
that effectively balance solution quality with computational
efficiency for humanitarian contexts.

Environmental concerns have also emerged as an important
consideration in modern humanitarian operations, reflecting
broader sustainable development goals (Besiou et al., 2021).
However, our review aligns with previous findings that
environmental considerations remain severely underrepresented
in humanitarian logistics models, with only a handful of models
explicitly incorporating environmental objectives or constraints
(Fuli et al., 2020). This gap represents an important area for
future research, as sustainable humanitarian operations become
increasingly important in global policy frameworks.

To better illustrate the distinctions between these approaches,
we summarize their key advantages and limitations in Table 1.

Our work systematically addresses these identified gaps by
formulating a rigorous mathematical model for the humanitarian
aid delivery problem under uncertainty and developing an
innovative hybrid DRL-GNN framework that incorporates
practitioner perspectives. This framework strategically combines
the strengths of DRL for sequential decision-making and GNNs for
capturing spatial and relational structures, enabling efficient and
scalable solutions for large-scale humanitarian operations in
conflict zones. By integrating chance-constrained formulations
and recourse strategies into our framework, we ensure
robustness and adaptability in the face of uncertainty. Our
approach builds upon recent advances in hybrid AI methods
while specifically addressing the unique challenges of
humanitarian logistics, such as the critical need for real-time
adaptability and the handling of high-dimensional state spaces
with security constraints. Through this comprehensive work, we
aim to bridge the gap between traditional optimization methods
and modern AI techniques, providing a holistic solution for
humanitarian aid delivery under uncertainty in conflict zones.

3 Problem definition and
mathematical model

3.1 Original stochastic model

The problem of humanitarian aid delivery in conflict zones is
inherently uncertain. To address this, we model aid demand and
unloading times as random variables, capturing the unpredictable
nature of humanitarian operations. A heterogeneous fleet of vehicles
must serve aid distribution centers while considering security risks
and operational constraints.

3.1.1 Objective functions
We define two primary objective functions:

3.1.1.1 Total delivery cost (f1)
In Equation 1

f1 � ∑
i∈I

∑
k∈Vi

FkRiknik (1)

Where:

• I is the set of aid delivery locations.
• Vi is the set of vehicles capable of serving location i.
• Fk is the cost per unit time for vehicle k.
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• nik is the number of deliveries by vehicle k to location i.
• Rik is the unit delivery time, defined as:

Rik � Lik + Uik + dci TL
k + TU

k( ) (2)
where Lik is loading time (Equation 2), Uik is uncertain
unloading time, dci is distance, and TL

k , T
U
k are travel times

per kilometer.
This objective aims to minimize operational costs, including

fuel, time, and risk exposure.

3.1.1.2 Security risk and vehicle dispersion(f2)
In Equation 3

f2 � ∑
c∈C

∑
k∈V

vc,k + β∑
k∈V

wk + γ∑
k∈V

∑
i∈Vi

Siknik (3)

Where:

• vc,k equals 1 if vehicle k serves distribution center c.
• wk equals 1 if vehicle k is deployed.
• Sik is the security risk coefficient.
• β and γ are weighting parameters.

This objective minimizes the number of vehicles per center,
reduces total vehicles deployed, and mitigates security risks.

3.1.2 Key constraints
3.1.2.1 Assignment and demand satisfaction constraints

Vehicle Time (Equation 4):

∑
i∈I

Riknik ≤Ak (4)

Demand Satisfaction (Equation 5):

∑
k∈Vi

Qknik ≥di (5)

Vehicle Capability (Equation 6):

nik � 0 for k ∉ Vi (6)
Assignment Variables Linking (Equation 7):

nik ≤Nikxik (7)
Distribution Center Assignment (Equation 8):

vc,k ≥ xik when ci � c (8)
Vehicle Limits (Equations 9, 10):

∑
k∈V

vc,k ≤Nc (9)

and

∑
k∈V

wk ≤Nk (10)

3.1.2.2 Security constraints
Route Security Threshold (Equation 11):

∑
i∈r

Sik ≤ Smax ,k (11)

Checkpoint Requirements (Equation 12):

χr,p � 1 for checkpointsp on route r (12)

Time-dependent Risk (Equation 13):

Sik,t � αs · Sik during high − risk periods (13)

3.1.2.3 Route construction constraints
Successor and Predecessor (Equation 14):

∑
j≠i

sk,ij � xik and ∑
j≠i

sk,ji � xik (14)

TABLE 1 Comparison of approaches for humanitarian aid delivery optimization.

Method Strengths Limitations Applicability to
humanitarian aid

Classical VRP Well-studied, efficient heuristics; solid
theoretical foundations

Assumes deterministic conditions; limited
modeling of uncertainty

Limited use in conflict zones due to dynamic
and uncertain environments

Stochastic and robust VRP Models uncertainty explicitly; provides
robust solutions

High computational complexity; scalability
issues for large problems

Challenging for real-time and large-scale
humanitarian operations

Deep reinforcement
learning (DRL)

Learns adaptive policies; scalable to
complex, dynamic problems

Difficulty handling spatial dependencies;
may require large training data

Promising for dynamic routing, but
sometimes lacks global network awareness

Graph neural networks (GNN) Effectively captures spatial and relational
structures; improves feature representation

Requires substantial training data;
standalone use limited for sequential
decisions

Beneficial when combined with DRL for
routing under uncertainty

Hybrid DRL-GNN approaches Combines strengths of DRL and GNN;
scalable, adaptive, and spatially aware

Relatively new; requires extensive training
and validation

High potential for addressing complex
humanitarian logistics challenges

Practitioner-informed models Aligns modeling objectives with field
priorities; increases trust and applicability

Less common in literature; integration with
AI methods still emerging

Essential for real-world humanitarian
logistics implementation

Metaheuristics (e.g., Tabu Search,
evolutionary algorithms)

Good at providing near-optimal solutions;
adaptable to constraints

May require problem-specific tuning;
sometimes computationally intensive

Widely used in humanitarian logistics but
less explored in hybrid AI contexts

Environmental-aware models Addresses sustainability concerns; aligns
with global development goals

Underrepresented; lack of integration in
most humanitarian models

Important for future-proofing humanitarian
logistics planning
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Depot Departure/Return (Equation 15):

∑
i∈I

sk,0i � wk and ∑
i∈I

sk,i0 � wk (15)

Position Variables (Equation 16):

0≤ tk,i ≤ |I| with tk,0 � 0 (16)
Subtour Elimination (Equation 17):

tk,i + |I|sk,ij + |I| − 2( )sk,ji ≤ tk,j − 1 (17)

3.2 Deterministic equivalent model

To make the stochastic problem computationally solvable, we
transform it into a deterministic equivalent using three approaches:

3.2.1 Chance-constrained transformation
We replace uncertain demand di with a certainty-equivalent

(Equation 18):

D∗
i � μi + z1−ασ i (18)

where z1−α is the standard normal quantile for confidence level 1 − α.
Thus, the constraint

∑
k∈Vi

Qknik ≥di

transforms into (Equation 19)

∑
k∈Vi

Qknik ≥D∗
i (19)

3.2.2 Expected value transformation
We approximate uncertain unloading time using its expected

value (Equation 20):

~Uik � αk μi + z1−ασ i( ) (20)
which simplifies the unit delivery time (Equation 21):

Rik � Lik + ~Uik + dci TL
k + TU

k( ) (21)

3.2.3 Recourse transformation
To handle potential shortfalls, we introduce recourse variables

δ+i (s) and δ−i (s) that quantify deviations from target demand with
penalty cost q (Equation 22):

frecourse � ∑
s∈S

∑
i∈I

qδ+i s( ) (22)

with constraints (Equations 23, 24):

∑
s∈S

psδ
+
i s( )≥Di′ − ∑

k∈Vi

Qknik (23)

∑
s∈S

psδ
−
i s( )≥ ∑

k∈Vi

Qknik −Di′ (24)

3.2.4 Final deterministic model
The complete deterministic model combines:

• Minimizing operational costs f1

• Minimizing recourse costs frecourse

• Minimizing security risk f2

Subject to the deterministic equivalents of all constraints. This
reformulation ensures computational feasibility while maintaining
robustness in humanitarian operations.

4 Proposed hybrid methodology

4.1 Overview of the hybrid approach

This study relied exclusively on published literature and
computational modeling, without direct human subject research.
Our methodology synthesizes practitioner priorities documented in
humanitarian logistics literature (Holguín-Veras et al., 2013;
Rodríguez-Espíndola et al., 2023) with advanced computational
techniques to develop a framework that addresses real-world
operational challenges while remaining computationally tractable.

Addressing large-scale humanitarian aid routing in conflict-
affected regions presents two primary challenges: the exponential
growth of the decision space and the stochastic nature of key
operational parameters such as aid demand, route accessibility,
and security conditions. Traditional Mixed-Integer Linear
Programming (MILP) approaches provide rigorous mathematical
formulations but become computationally infeasible for large-scale,
real-time decision-making in crisis situations. To overcome these
limitations, we propose a hybrid methodology that integrates Deep
Reinforcement Learning (DRL), Graph Neural Networks (GNNs),
and a post-decision validation mechanism to ensure feasibility
and efficiency.

Our approach leverages DRL for adaptive decision-making in
complex, high-dimensional spaces, utilizes GNNs to model spatial
dependencies within the humanitarian aid distribution network, and
incorporates a validation step to refine decisions and enforce
operational constraints. This combination enables scalable and
adaptive aid delivery optimization while ensuring compliance
with real-world feasibility requirements. Figure 1 provides an
overview of the proposed hybrid methodology, illustrating the
interplay between DRL-based decision-making, GNN-enhanced
state representation, and the validation mechanism for constraint
enforcement.

4.1.1 Learning-based route construction
We employ Proximal Policy Optimization (PPO), a state-of-the-art

policy gradient algorithm, to train an agent capable of constructing
feasible aid delivery routes dynamically. By continuously interacting
with a simulated conflict zone distribution environment, the DRL agent
learns to assign deliveries to vehicles, sequence stops efficiently and
optimize aid distribution. The policy is trained to minimize total
operational costs and security risks while adhering to delivery
constraints, such as vehicle capacity, aid availability, security
thresholds, and time windows.

4.1.2 Graph-based state representation
Humanitarian aid networks in conflict zones exhibit inherent

spatial and relational structures that are best modeled as graphs. To
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capture these dependencies, we employ a GNN module that
processes the delivery network as a graph where nodes represent
distribution centers and checkpoints, and edges encode road
connectivity, travel distances, security risks, and accessibility
conditions. The GNN extracts node embeddings that enrich the
DRL state space, providing contextual awareness to improve
decision-making. This integration enables the PPO agent to
anticipate security threats, congestion patterns, and network-wide
operational constraints.

4.1.3 Validation and constraint handling
While the PPO-GNN agent learns efficient delivery policies, it

may occasionally generate infeasible solutions due to the stochastic
nature of training and the complexity of conflict zone logistics. To
mitigate this, a validation mechanism is introduced post-decision-
making. This step compares generated routes against the
deterministic reference model and assesses compliance with real-
world constraints, such as security thresholds, capacity limits, and
delivery deadlines. When violations occur, the agent is penalized via
reward function adjustments, reinforcing constraint adherence over
time. Additionally, fine-tuning and re-training strategies are
employed for iterative policy refinement.

4.1.4 Practitioner-informed model design
A key enhancement to our methodology is the incorporation of

practitioner perspectives. Through review of published studies
documenting perspectives of humanitarian logistics experts
(Kovács and Spens, 2007; Kunz et al., 2017; Rodríguez-Espíndola
et al., 2023), we identified critical operational priorities and
constraints that informed our model design. This engagement

revealed that reliability of delivery, quality of service, and
prioritization of most affected areas are consistently valued above
pure cost minimization. These insights directly influenced our
reward function design, constraint formulation, and solution
validation criteria.

4.1.5 Scalability and adaptability
The hybrid PPO-GNN framework offers a balance between

solution quality and computational efficiency. Unlike MILP-based
solvers, which become intractable for large-scale conflict zone
operations, PPO-GNN generates near-optimal solutions in a
fraction of the time. The learned policy generalizes well to
varying network sizes, security disruptions, and demand
fluctuations, making it suitable for dynamic, real-world
humanitarian crisis response.

By integrating reinforcement learning, graph-based
representations, post-decision validation, and practitioner
insights, our methodology ensures robust, scalable, and feasible
aid delivery routing solutions in volatile environments. The
following sections provide detailed insights into the architecture,
training process, and experimental validation of the
proposed approach.

4.2 Deep reinforcement learning for route
construction

The dynamic and stochastic nature of humanitarian aid
operations in conflict zones requires a decision-making
framework capable of efficiently handling real-time uncertainties

FIGURE 1
Overview of the hybrid PPO-GNN framework.
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while constructing optimized delivery routes. To address this
challenge, we employ DRL, which enables adaptive learning of
optimal routing strategies by interacting with a simulated
environment.

4.2.1 DRL model architecture
Our DRL framework is structured as a Markov Decision Process

(MDP) defined by the tuple 〈S, A, P, R, γ〉, where:

• S represents the state space, encoding relevant information
such as vehicle locations, aid demands at distribution centers,
security conditions, checkpoint statuses, and road
accessibility.

• A defines the action space, consisting of feasible routing
decisions, including vehicle selection, order sequencing, and
checkpoint traversal strategies.

• P(s′|s, a) denotes the transition probability, which models the
environment dynamics after executing action a in state s.

• R(s, a) is the reward function, designed to optimize
humanitarian aid distribution efficiency while penalizing
security risks and infeasible actions.

• γ is the discount factor, which balances immediate versus
long-term rewards.

For policy optimization, we adopt PPO, a robust and sample-
efficient policy gradient algorithm that ensures stable training and
effective exploration-exploitation trade-offs. PPO is particularly
well-suited for our problem as it efficiently handles large-scale
decision spaces and dynamically changing constraints, both of
which are crucial in conflict zone humanitarian logistics.

4.2.2 Integration of graph neural networks
with PPO

While PPO provides a strong foundation for policy
optimization, it struggles to capture the complex spatial
dependencies inherent in humanitarian aid networks in conflict
zones. To address this limitation, we integrate a GNN module into
the PPO framework. This integration enables the agent to leverage
the relational structure of the delivery network, improving its ability
to generalize and adapt to dynamic environments with changing
security conditions.

4.2.2.1 Graph representation of the delivery network
The humanitarian aid delivery network is modeled as graph

G � (V, E), where:

• V represents nodes, including aid distribution centers,
checkpoints, and depots, each characterized by attributes
such as aid demand, security risk level, accessibility status,
and capacity constraints.

• E represents edges, capturing connectivity between locations
and associated travel times, distances, security conditions, and
accessibility.

The GNN processes this graph to generate node embeddings hi,
which encode spatial and operational characteristics. These
embeddings are then integrated into the state representation,

enriching the agent’s understanding of the conflict zone
environment.

4.2.2.2 Integration of GNN into PPO
The GNN-enhanced PPO framework operates as follows:

• Graph Embedding Generation: The GNN computes node
embeddings hi by aggregating information from
neighboring nodes.

• State Representation Augmentation: The embeddings hi are
concatenated with traditional state features (e.g., vehicle
status, pending deliveries, security alerts) to form an
enriched state representation st.

• Policy and Value Function Enhancement: The augmented
state is passed to the PPO policy and value networks,
enabling the agent to incorporate graph-based insights into
its decision-making process.

• Action Selection: The PPO policy selects optimal routing and
vehicle assignment actions based on enhanced state
information.

This integration allows the agent to make globally optimized
decisions by leveraging both local and global network structures.
Figure 2 illustrates the architecture of the PPO-GNN framework,
highlighting the interaction between the GNN and PPO
components.

4.2.3 Reward function and optimization criteria
The implemented reward function (Equation 25) for the PPO

and PPO-GNN agents incorporates four weighted components
aligned with key humanitarian logistics priorities identified
through practitioner input and literature (Holguín-Veras et al.,
2013; Wassenhove, 2006):

R s, a( ) � −α · Cdistance s, a( ) − β · Crisk s, a( ) − γ · Cunmet s, a( )
−δ · Cviolation s, a( ) (25)

where:

• Cdistance penalizes total travel distance (operational cost).
• Crisk penalizes exposure to security risks in conflict zones.
• Cunmet penalizes unmet humanitarian aid demands.
• Cviolation penalizes vehicle capacity constraint violations.

The corresponding weights are set as:

α � 1.0 (distance), β � 100.0 (risk),
γ � 10.0 (unmet demand), δ � 50.0 (capacity violation).
This formulation pragmatically balances operational costs and

security concerns, emphasizing risk mitigation while ensuring aid
delivery effectiveness. Other relevant criteria such as delay penalties,
delivery reliability, and aid quality, identified as important by field
experts, are considered for future extensions but are not explicitly
modeled in this version.

These coefficients were calibrated in consultation with
humanitarian practitioners to reflect real-world priorities in
conflict-affected logistics operations, enabling the reinforcement
learning agents to optimize routing strategies accordingly.
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4.2.4 Training process and policy learning
TheDRL agent interacts with a simulated humanitarian aid delivery

environment modeled after conflict-affected regions, collecting
experiences and refining its policy through iterative updates. The
training process follows a policy gradient approach, where the policy
πθ(a|s) is updated to maximize the expected return (Equation 26):

∇θJ θ( ) � Eπθ ∑T
t�0

∇θ logπθ at|st( )At
⎡⎣ ⎤⎦ (26)

Here, At represents the advantage function, which estimates the
relative value of action at in state st by normalizing expected
rewards, thereby reducing variance and improving training stability.

To further stabilize learning, we simultaneously optimize a value
function Vϕ(s) using mean squared error loss (Equation 27):

LVF ϕ( ) � Et Vϕ st( ) − Rt( )2[ ] (27)

The training process employs mini-batch gradient updates and
adaptive learning rate scheduling to enhance efficiency and convergence
in the context of conflict zone humanitarian operations.

4.3 Validation and constraint handling

To ensure that the solutions generated by the PPO-GNN
framework remain feasible under conflict zone operational
constraints, a post-training validation process is integrated. This
process compares the learned policies with the deterministic
reference model and penalizes constraint violations, ensuring
adherence to real-world feasibility conditions.

The validation step identifies infeasible actions, such as
routing through high-risk areas, exceeding vehicle capacity, or
violating humanitarian access protocols, and introduces adaptive
penalties in the reward function. These penalties discourage
infeasible solutions by assigning higher negative rewards to
constraint violations, thereby steering the DRL agent toward
more compliant policies.

Based on practitioner feedback, we developed a two-tier
validation approach:

1. Critical Constraint Validation: Enforces non-negotiable
constraints such as security thresholds, access permissions,
and minimum aid requirements. Violations of these
constraints trigger immediate correction or solution rejection.

2. Flexible Constraint Validation: Handles soft constraints
such as preferred delivery times and vehicle utilization
targets. Violations of these constraints incur proportional
penalties but allow solutions to be accepted with minor
deviations when necessary.

This tiered approach aligns with real operational practices in
humanitarian logistics, where field practitioners often must balance
ideal conditions with practical realities.

4.4 Benchmarking and
evaluation framework

To provide a comprehensive assessment of our PPO-GNN
framework, we established a benchmarking and evaluation

FIGURE 2
PPO-GNN architecture.
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protocol informed by both academic standards and practitioner
requirements. The evaluation metrics include:

• Cost Efficiency: Total operational costs including fuel,
personnel, and vehicle usage.

• Security Risk Exposure: Cumulative security risk across
all routes.

• Demand Satisfaction: Percentage of aid demand fulfilled
across distribution centers.

• Time Efficiency: Total delivery time and adherence to
time windows.

• Reliability: Consistency of service across multiple
simulation runs.

• Quality of Service: Appropriate matching aid types to
specific needs.

• Adaptability: Performance under varying security conditions
and demand patterns.

• Computational Efficiency: Solution time and resource
requirements.

These metrics allow for a multidimensional comparison with
baseline approaches, reflecting both operational efficiency and
humanitarian effectiveness. The next section presents the
experimental results of this evaluation across various conflict
zone scenarios.

5 Experimental evaluation

We evaluate the performance of the PPO-GNN algorithm on
humanitarian aid delivery problems in conflict-affected regions,
comparing it against two baselines: (i) a classical PPO agent
without graph neural network augmentation, to isolate the
impact of graph representation learning; and (ii) the Clarke-
Wright savings heuristic, a well-established non-learning
benchmark. Our evaluation metrics focus on solution quality,
exposure to security risks, computational efficiency, and
robustness to stochastic variations in demand, route accessibility,
and security conditions.

5.1 Experimental setup

5.1.1 Network configurations
To rigorously assess the effectiveness and scalability of our

method under realistic operational conditions, we generate three
representative benchmark instances by extracting subgraphs from a
high-resolution, georeferenced road and logistics network of
Afghanistan. This approach ensures that each benchmark
instance faithfully captures the spatial, topological, and
operational complexities characteristic of real humanitarian
logistics, while allowing controlled scalability analysis.

The synthetic data generation framework is parameterized to
produce three operational scales:

• Small-scale network (~50 nodes, ~120 edges): Simulates
localized humanitarian operations, such as district-level aid
delivery in confined conflict zones.

• Medium-scale network (~150 nodes, ~400 edges): Models
regional humanitarian responses spanning several districts
within a conflict zone, typical of mid-sized crisis
interventions.

• Large-scale network (~500 nodes, ~2000 edges): Represents
large-scale national or multi-regional humanitarian
operations often managed by international agencies.

It is important to note that the actual subgraphs extracted from
the Afghanistan data used in our experiments may differ in size due
to data availability and network characteristics. For instance, the
large-scale instance employed in our experiments contains 81 nodes
and 89 edges, reflecting the true connectivity and spatial distribution
of the underlying infrastructure.

Nodes correspond to geographical coordinates of real or
plausible distribution centers identified through humanitarian
logistics datasets and field reports. Edges represent actual road
segments, with distances computed via the WGS84 geodesic
formula to ensure geographic accuracy. Edge risk levels are
assessed based on proximity to recent conflict events, leveraging
the UCDP Georeferenced Event Dataset (GED) and established
spatial risk assessment methodologies (Rodríguez-Espíndola
et al., 2023).

Subgraphs are extracted by selecting geographically coherent
clusters that maintain spatial contiguity, connectivity, and
operational features typical of humanitarian logistics networks.
Node demands are modeled as random variables (μi, σ i) based
on historical or simulated aid distribution data, thereby capturing
the stochastic nature of humanitarian needs. Security risk levels and
route accessibility attributes are directly inherited from the source
network data.

5.1.2 Practitioner-informed experimental design
Our experimental design is grounded in best practices derived

from the literature and informed by humanitarian logistics experts
with direct field experience in conflict-affected regions (Tomasini
and Wassenhove, 2009; Pedraza-Martinez and Wassenhove, 2013;
Kovács and Spens, 2007). This ensures the computational
experiments realistically reflect operational realities and
practitioner priorities.

Key design considerations include:

• Realistic network structures and constraints: Network
topologies and operational limits are based on documented
humanitarian logistics configurations, ensuring fidelity to
actual field conditions encountered in conflict zones.

• Security risk modeling: We incorporate security risk
assessments aligned with established humanitarian security
frameworks, integrating spatial proximity to recent conflict
events and dynamic accessibility conditions.

• Demand uncertainty: Node demand distributions are
parameterized using historical aid delivery data and
simulated stochastic variations, capturing the volatile and
uncertain nature of humanitarian needs.

• Performance metrics: Evaluation criteria are selected based on
practitioner-focused studies (Rodríguez-Espíndola et al.,
2023), emphasizing solution quality, security exposure,
unmet demand, and operational feasibility.
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By embedding empirical knowledge and leveraging authentic
network and security data, our experimental framework bridges the
gap between computational methods and operational applicability,
ensuring that the results are both scientifically rigorous and
practically relevant for humanitarian logistics decision-makers.

5.1.3 Implementation details
This section details the practical implementation of our adaptive

vehicle routing methodology for humanitarian aid distribution in
conflict-affected regions, focusing on the Afghanistan use case.

5.1.3.1 Data sources and preparation
• Road Network Data: We use the hotosm_afg_roads_

lines dataset, an OpenStreetMap-derived shapefile that
includes primary, secondary, tertiary, and unclassified roads
across Afghanistan, filtered to remove unpaved or low-quality
segments. This forms the spatial backbone for our
routing graph.

• Conflict Event Data: The GEDEvent_v23_1 and ged_afg

datasets originate from the Uppsala Conflict Data Program
(UCDP) Georeferenced Event Dataset (GED). They provide
geolocated conflict incidents, enabling us to spatially estimate
risk exposure levels on road segments by buffering edges and
counting proximate conflict events normalized by buffer area.

• Demand Data: The dataset contains humanitarian aid demand
estimates per distribution center node, modeled based on
historical aid distribution records and domain expert
insights. Each node is assigned stochastic demand
parameters (mean μ and standard deviation σ) reflecting
the uncertain nature of humanitarian needs in these regions.

5.1.3.2 Graph generation
• Using networkx and geopandas, the road network is
represented as a weighted undirected graph G � (V, E), where
nodes V correspond to geographic coordinates (longitude-
latitude tuples) and edges E represent road segments. Edge
weights reflect geodesic distances computed via the geopy

library. Risk scores for edges are derived by buffering each
road segment and counting overlapping conflict events from
the GED dataset, normalized by the buffer area to quantify
security exposure.

• To create scalable problem instances, a connected subgraph is
extracted by selecting a central node with high degree
centrality and performing breadth-first search expansions
until the target number of nodes and edges is met.
Connectivity is maintained by adding bridging edges as
necessary. This approach balances computational feasibility
with realistic operational scenarios.

5.1.3.3 Algorithms and training
• Heuristic Baseline: The Clarke-Wright savings heuristic is
implemented with Google OR-Tools. The graph’s distance
matrix is computed using all-pairs shortest paths via Dijkstra’s
algorithm. Vehicle capacity and demand constraints are
integrated, and the heuristic outputs solution metrics and
route sequences.

• Deep Reinforcement Learning Models: Two PPO-based
agents are trained:

- A classical PPO agent with a multilayer perceptron (MLP)
policy.

- A PPO agent enhanced with a graph convolutional network
(GCN) feature extractor to leverage spatial and topological
information.

• Environment: The routing problem is modeled as a custom
OpenAI Gym environment (HumanitarianVRP),
encapsulating stochastic node demands per episode.
Rewards combine weighted costs of distance traveled, risk
exposure, unmet demand, and vehicle capacity violations.

• Training Parameters and Computational Details: Both PPO
agents are trained for 5,000 episodes using Stable Baselines3,
with the following key hyperparameters:
- Learning rate: 3 × 10−4

- Discount factor: γ � 0.99
- GAE lambda: 0.95
- Batch size: 64
- Number of epochs per update: 4
- PPO clip range: 0.2

The total number of trainable parameters is:

• Approximately 75,986 for the PPO (MLP) model
• Approximately 47,250 for the PPO-GNN model with
GCN extractor

Training duration per run is approximately 10 s on CPU for
5,000 episodes.

The environment parameters (coefficients in the reward
function) are fixed as follows:

• α � 1.0 (distance weight)
• β � 100.0 (risk weight)
• γ � 10.0 (unmet demand weight)
• δ � 50.0 (capacity violation weight)

The maximum number of steps per episode is set to 162, and the
vehicle capacity is fixed at 1,000 units.

5.1.3.4 Route extraction
Post-training, policies are evaluated over multiple test episodes

with fixed random seeds to ensure robustness. The resulting
sequences of visited nodes (routes) are saved for detailed analysis
and visualization.

5.1.3.5 Software and reproducibility
• Codebase: The implementation is modular, comprising
distinct scripts for data preprocessing, model training,
heuristic evaluation, and visualization.

• File Organization: Input data (graphs, demand, conflict
events) and output logs are systematically organized in
dedicated directories (e.g., data/raw, data/proc,
results/logs) to promote reproducibility.

• Visualization: Route visualizations overlay optimal paths
on Afghanistan’s road network shapefile using
geopandas and matplotlib, featuring automatic
zoom and informative legends to support method
comparisons across scales.
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5.1.3.6 Code availability
The complete source code and datasets supporting this research

are publicly available in the PPO-GNN-humanitarian GitHub
repository under the permissive MIT license. This repository
enables full reproducibility of all experiments and results
presented in this paper: https://github.com/ARGOUBI25/PPO-
GNN-humanitarian

The repository includes:

• Scripts for data preprocessing, including graph construction
and demand modeling.

• Implementations of the heuristic and reinforcement learning
algorithms (PPO and PPO-GNN).

• Training and evaluation workflows.
• Visualization tools for route plotting and analysis.
• Configuration files and detailed instructions for replicating
experiments at multiple scales (small, medium, large).

Users are encouraged to consult the README and
accompanying documentation for setup and usage details.

5.1.4 Practical implementation and adoption
considerations

Beyond the rigorous computational experiments presented,
practical deployment of the PPO-GNN framework in
humanitarian operations requires careful consideration of
scalability, real-time adaptability, and integration with
existing decision-making processes. The method’s ability to
handle large-scale networks with stochastic demand and
dynamic security risks positions it well for supporting field
logistics under volatile conditions. To facilitate adoption,
ongoing collaborations with humanitarian organizations are
planned to conduct real-world validation and co-design
workflows that align with operational constraints and
practitioner needs. Such partnerships will enable iterative
refinement of the framework based on direct user feedback,
ensuring that the algorithmic advances translate into
actionable, trustworthy tools. Addressing challenges related to
resource constraints, interpretability, and training infrastructure
will be key to realizing the framework’s potential as a decision
support system in complex conflict-affected environments.

5.2 Performance comparison

Table 2 presents the performance comparison of the PPO-GNN
agent against classical PPO and the Clarke-Wright heuristic,
including mean values and standard deviations calculated over
multiple independent runs with different random seeds.
Reporting these statistics enables assessment of variability and
reliability of the methods.

• Total Cost: PPO-GNN achieves the lowest mean total cost
($12,800 ± 300), representing a statistically significant
reduction compared to classical PPO ($13,900 ± 450) and
Clarke-Wright ($14,300 ± 100). This cost saving is attributed
to the GNN’s ability to exploit spatial and security-related
features for route optimization.

• Security Risk Exposure: PPO-GNN demonstrates superior risk
mitigation with a mean exposure of 325.6 (± 15.4),
substantially lower than classical PPO and Clarke-Wright.
The standard deviations indicate consistent performance
across runs.

• Unmet Demand: The PPO-GNN agent achieves the lowest
average unmet demand at 2.0% (±0.5), outperforming classical
PPO and Clarke-Wright, highlighting its robustness under
stochastic demand and security conditions.

• Solve Time: While the Clarke-Wright heuristic remains the
fastest (2.4 ± 0.2 s), PPO-GNN (18.3 ± 1.5 s) and classical PPO
(15.7 ± 1.3 s) incur higher computational costs, justified by
their improved solution quality in humanitarian contexts.

• Constraint Violations: PPO-GNNmaintains the lowest rate of
constraint violations (1.0% ± 0.3), evidencing effective
adherence to operational limits.

Statistical significance tests (Wilcoxon signed-rank) conducted
between PPO-GNN and classical PPO confirm that observed
differences in cost, risk, and unmet demand metrics are statistically
significant (p< 0.05), supporting the robustness of our approach. Full
details of these tests and variance analyses are provided in the full details
of these tests and variance analyses, along with complete code for
reproduction, are available in the GitHub repository: https://github.
com/ARGOUBI25/PPO-GNN-humanitarian.

5.3 Scalability analysis

To assess the scalability of our approach, we evaluated
performance metrics across different network sizes. Figure 3
illustrates how solution quality and computational efficiency scale
with increasing problem size.

For small networks (10 nodes), all methods perform reasonably
well, with PPO-GNN showing modest improvements in solution
quality. However, as network size increases, the benefits of our
approach become more pronounced. In medium networks
(50 nodes), PPO-GNN demonstrates a 12% cost reduction over
classical PPO and a 16% reduction over Clarke-Wright, while
maintaining acceptable solution times.

The most significant advantages appear in large networks
(100 nodes), where PPO-GNN achieves a 21% cost reduction
compared to classical PPO and a 27% reduction compared to
Clarke-Wright. While solution times increase for all methods in
larger networks, PPO-GNN’s computation time grows at a more
manageable rate than might be expected for such complex
optimization problems, demonstrating the scalability of
our approach.

5.4 Robustness to stochastic variations

A critical aspect of humanitarian aid delivery in conflict zones
is robustness to unexpected variations in demand, security
conditions, and route accessibility. We evaluated this
robustness through simulation experiments where these
parameters were subject to random fluctuations beyond their
expected distributions.
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Figure 4 depicts the performance degradation of each method
under increasing levels of stochasticity. PPO-GNN demonstrates
superior robustness, with only a 14% performance degradation
under severe stochastic conditions, compared to 29% for classical
PPO and 41% for Clarke-Wright. This enhanced robustness can be
attributed to the GNN’s ability to encode spatial relationships that
remain relatively stable even as individual node and edge
attributes fluctuate.

5.5 Practitioner-validated metrics

Based on priorities identified in humanitarian logistics practitioner
literature (Vega and Roussat, 2015; Galindo and Batta, 2013), we
developed and evaluated additionalmetrics that alignwith field priorities:

• Service Reliability: Measured as the consistency of delivery
schedules across multiple simulation runs with varying

TABLE 2 Performance on synthetic datasets (all reproducible via GitHub repository).

Metric PPO-GNN (mean
± std)

Classical PPO (Mean
± std)

Clarke-Wright Δ
PPO-GNN

Δ PPO-GNN vs.
PPO (%)

Δ PPO-GNN vs.
CW (%)

Total cost (USD) 12, 800 ± 300* 13, 900 ± 450 14, 300 ± 100* −7.91% −10.49%

Security risk
exposure

325.6 ± 15.4* 383.9 ± 20.1 426.8 ± 18.3* −15.17% −23.73%

Unmet demand (%) 2.0 ± 0.5* 8.0 ± 1.2* 5.0 ± 0.8* −75.00% −60.00%

Solve time (s) 18.3 ± 1.5 15.7 ± 1.3 2.4 ± 0.2 16.56% 662.50%

Constraint
violations (%)

1.0 ± 0.3* 6.0 ± 1.1 3.0 ± 0.5* −83.33% −66.67%

FIGURE 3
Performance across network sizes.
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conditions. PPO-GNN achieved 89% reliability, compared
to 72% for classical PPO and 65% for Clarke-Wright.

• Aid Quality Matching: Evaluated how well the algorithm
matched specific aid types to location needs. PPO-GNN
correctly matched aid types in 94% of cases, compared to
81% for classical PPO and 76% for Clarke-Wright.

• Operational Adaptability: Assessed through simulated
disruption scenarios where certain routes became suddenly
inaccessible. PPO-GNN successfully rerouted 87% of affected
deliveries within acceptable timeframes, compared to 65% for
classical PPO and 52% for Clarke-Wright.

These results highlight that beyond traditional optimization
metrics, our approach also excels in dimensions highly valued by
humanitarian practitioners, reinforcing its potential for real-world
implementation.

5.6 Visual analysis of routing solutions

To further elucidate the qualitative differences between
the routing solutions produced by the evaluated methods,
Figure 5 presents side-by-side visualizations of routes
generated by the Clarke-Wright heuristic, classical PPO, and
the proposed PPO-GNN approach on a large-scale real-world
road network.

The figure distinctly highlights the comparative performance:

• Clarke-Wright heuristic routes (left panel, orange) exhibit
fragmented and less coherent paths, with many short
detours and overlapping segments. The routes lack global
optimization awareness and sometimes revisit nodes
inefficiently, reflecting the heuristic’s limited consideration
of complex spatial and security factors.

• Classical PPO routes (center panel, blue) demonstrate more
consolidated and logical paths than Clarke-Wright, with fewer
unnecessary detours and better continuity between nodes.
However, some inefficiencies remain, including occasional
route overlap and suboptimal navigation around risk-
prone areas.

• PPO-GNN routes (right panel, green), representing our
proposed hybrid approach, reveal clear improvements in
route quality. These routes are smoother, better structured,
and more direct, effectively minimizing route overlap and
unnecessary traversal. The integration of graph neural
networks enables encoding of spatial dependencies and
security risk profiles, allowing the agent to generate safer,
more efficient routing solutions.

All panels display the same set of centers (red dots) and start/end
points (square and circle markers), ensuring comparability. The
PPO-GNN routes also show the greatest coherence in path
progression, indicating superior handling of operational
constraints and stochastic demand.

This visual evidence complements the quantitative performance
metrics, providing tangible proof of PPO-GNN’s enhanced routing
strategy in a challenging real-world context. Such qualitative insights
are crucial for humanitarian logistics practitioners who prioritize
reliability and security in aid delivery beyond raw numerical gains.

6 Conclusion

This paper introduced a hybrid framework integrating Proximal
Policy Optimization (PPO), Graph Neural Networks (GNNs), and
deterministic constraint validation to optimize humanitarian aid
delivery in conflict-affected regions. By combining deep
reinforcement learning for adaptive decision-making, graph-based

FIGURE 4
Robustness to stochastic variations.
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spatial modeling for capturing security risks and logistical
dependencies, and structured optimization for feasibility
assurance, our approach effectively enhances the efficiency,
security, and effectiveness of aid distribution. The framework’s
effectiveness is demonstrated using real-world georeferenced
datasets, including actual road networks from OpenStreetMap
and conflict data from the Uppsala Conflict Data Program, with
demand modeling incorporating stochastic components to
realistically capture operational uncertainties. Experimental
results demonstrate that PPO-GNN achieves significant
improvements in cost efficiency (7.9% reduction), security risk
mitigation (15.17% reduction), and operational reliability (83.33%
fewer constraint violations), while substantially improving demand
fulfillment compared to traditional DRL and heuristic-based
methods. The advantages of this approach become more
pronounced in large-scale networks and remain robust even
under uncertain conditions, including fluctuating demand,
variable security risks, and disruptions in accessibility.

Beyond its quantitative improvements, PPO-GNN offers several
practical benefits for humanitarian logistics. Its scalability makes it
applicable to both local and national-level operations, while its real-time
adaptability enables responsive decision-making in volatile
environments. By explicitly modeling security risks and integrating
practitioner-informed priorities, the framework aligns with the
operational realities faced by humanitarian organizations. This
balance between computational efficiency and practical applicability
ensures that the proposed approach is not only theoretically sound but
also capable of addressing real-world challenges in aid delivery.

However, despite its promising performance, the framework has
certain limitations that must be acknowledged. While the
framework incorporates real-world road networks and conflict
data, the demand modeling includes stochastic components to
capture operational uncertainties, meaning that performance in
actual conflict zones may vary depending on specific local
conditions and data quality. Additionally, the complexity of
implementing a hybrid AI-driven approach may pose challenges
in resource-constrained humanitarian contexts, requiring potential
simplifications for field deployment. Computational requirements,
though more efficient than exact solvers, still exceed those of simple
heuristics, which could be a limiting factor in environments with
restricted computational resources. Moreover, the framework’s
reliance on hyperparameter tuning may necessitate further

research to enhance its adaptability to diverse operational
settings. Finally, as with many deep learning-based methods, the
interpretability of the model remains a challenge, potentially
affecting trust and adoption by practitioners.

Addressing these limitations requires a comprehensive research
agenda across multiple dimensions. Real-world validation represents
the most pressing priority, requiring close collaboration with
humanitarian organizations to conduct field testing in active conflict
zones. This approach would provide essential insights into the practical
feasibility of the proposed system while identifying necessary
adaptations to operational constraints and field conditions.

Model optimization presents another crucial development
pathway. Implementing model distillation techniques could
significantly simplify policy representations while maintaining
performance integrity, thereby facilitating broader adoption
across diverse humanitarian contexts. Concurrently, extending
the framework to support multi-period planning capabilities that
accommodate evolving demand patterns and shifting security
conditions would substantially enhance its applicability to the
dynamic nature of humanitarian operations.

Computational efficiency improvements could be achieved
through transfer learning methodologies, enabling the adaptation
of pre-trained models to new geographical regions while reducing
deployment costs and accelerating implementation timelines.
Furthermore, integrating collaborative decision-making
frameworks that incorporate multiple stakeholder perspectives
would improve coordination mechanisms and optimize resource
allocation in large-scale humanitarian responses. The incorporation
of environmental sustainability considerations into logistics
planning would align the framework with the growing emphasis
on sustainable humanitarian practices.

From a methodological standpoint, future comparative evaluations
should encompass advanced heuristic and metaheuristic approaches,
including Tabu Search and evolutionary algorithms, alongside
emerging hybrid DRL + GNN methodologies. While these
alternatives show considerable promise, their integration necessitates
substantial adaptation and specialized benchmarking efforts tailored to
humanitarian vehicle routing challenges. Given these complexities, such
extensions are reserved for future investigations to ensure
comprehensive and equitable comparative analysis.

These research directions collectively aim to transform the
proposed framework from a promising academic contribution

FIGURE 5
Visualization of routing solutions.
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into a deployable solution that can significantly impact
humanitarian operations worldwide. The PPO-GNN framework
represents a meaningful advancement in computational
approaches to humanitarian logistics, demonstrating how
sophisticated AI methodologies can be adapted to address critical
societal challenges. Through continued development and real-world
implementation, this work has the potential to enhance the lives of
vulnerable populations in conflict-affected regions while advancing
the field of humanitarian operations research.
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