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Trust is a crucial factor that influences human-automation interaction in surface
transportation. Previous research indicates that participants tend to display higher
levels of subjective trust toward lower-level automated systems compared to
high-level automated systems. However, administering subjective trust measures
via questionnaires can interfere with primary task performance, limiting
researchers’ ability to measure trust continuously in a real-world manner. The
current study investigated whether objective and subjective measures of trust
exhibit similar patterns across different levels of automation in a simulated driving
environment. Twenty-five drivers using an automated driving system (ADS) were
randomly assigned to either an active (L2) or passive (L3) automated driving
condition. Participants experienced eight near-miss driving scenarios with or
without obstructions in a distributed driving simulator and rated their subjective
trust before and after navigating the scenarios. Additionally, we coded hand
positions from recorded video footage of the participants’ in-vehicle behavior.
Hand placements were coded on a predefined five-point system near the time of
the simulated connected vehicle technology’s collision alert. Results showed that
drivers progressively lost trust in the automated system as they approached and
passed the projected collision point in each scenario. Furthermore, drivers in the
active condition displayed lower levels of trust than those in the passive condition.
This finding contrasts with previous research suggesting that subjective trust
ratings are comparable between Level 2 and Level 3 vehicle automation groups.
These findings highlight a dissociation between subjective and behavioral
measures of trust, suggesting that self-report methods may overlook
important aspects of drivers’ trust that can be captured through behavioral
measures.
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Introduction

Motor vehicle accidents are the second leading cause of death due to unintentional
injuries in the U.S., accounting for 42,514 deaths in 2022 with an estimated annual
economic impact of $340 billion (IIHS, 2024). Despite a gradual decline of vehicle
crash deaths per 100 million miles traveled since 1975, total vehicle deaths have not
shown the same decline (IIHS, 2024). Additionally, a major factor in 94 percent of all
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crashes is human error (NHTSA, 2008; National Highway Traffic
Safety Administration, 2017). Human errors include but not limited
to turning into an intersection, failing to stay in the proper lane, and
failing to maintain control of the vehicle. However, with the
development of automated vehicle technology, modern vehicles
are beginning to rely less on human intervention and more on
emerging technologies such as advanced sensors, automation, and
connected vehicle technologies (Yamani et al., 2024a).

The current taxonomy of vehicle automation, as defined in the
Society of Automotive Engineering (SAE) J3016, defines six levels of
vehicle automation. Level 0 provides momentary driving assistance
(e.g., lane departure and collision alerts, or emergency safety
interventions) while the driver remains fully in control of the
vehicle. Level 1 automation still requires the driver to be
responsible for the vehicle, but the automated system can
perform either steering or acceleration/braking. Level
2 automation provides continuous assistance with both
acceleration/braking and steering while the driver needs to be
prepared to take over at any time. In level 3 automation, the
system handles all aspects of the driving task within its
operational design domain (ODD) while the driver monitors the
system. In level 4 automation, the system is fully responsible for
driving tasks, operating the vehicle within its ODD while the driver
only acts as a passenger and does not need to be engaged in the task.
Level 5 automation is the last level, and when engaged, the system
can operate the vehicle autonomously under all roadways and road
conditions.

Even though automated vehicles are expected to decrease
accident rates (Wang et al., 2020), road accidents still occur
when an automated system is implemented in a vehicle (Kuehn
and Bende, 2019). Between July 2021 and May 2022, 367 accidents
occurred that involved a Level 2 automated vehicle (NHTSA, 2022).
Of the 98 accidents where injury information was reported,
11 resulted in serious injuries or fatality. Furthermore, Honda
vehicles accounted for the second most accidents across makes
with 90, and Tesla accounted for the most with 273. It is worth
noting that this higher crash count may be due to the greater number
of Level 2 automated vehicles on the road, resulting in increased
exposure. Thus, these crash numbers may not accurately reflect
relative risk associated with automated vehicles.

One accident that was especially eye-opening was the fatal Tesla
crash on 7 May 2016. While being operated in autopilot mode, a
Tesla Model S struck a tractor trailer that was crossing an
intersection on a highway, causing fatal injuries to the Model S
operator (NTSB, 2016). An investigation surrounding the accident
found that the emergency brake system had not attempted to stop or
provide any warnings to the driver. Human error was deemed to be
the cause of the accident, but it was argued that the design of the
autonomous system played a significant role (Banks et al., 2018).
Accidents that involve automation can impact many factors of
human-automation interaction, and one factor that drives
human-automation interaction is trust.

Trust is a critical determinant for successful interaction between
a human operator and automation (Hoff and Bashir, 2015;
Karpinsky et al., 2018; Lee and See, 2004; Muir, 1994; Muir and
Moray, 1996; Yamani et al., 2020). Research on automation trust
emerged from studies on interpersonal trust, which has been defined
as an attitude (e.g., Rotter, 1967), a willingness to be vulnerable (e.g.,

Mayer et al., 1995), and a state of perceived risk (e.g., Kramer, 1999).
Lee and See (2004) defined trust as “an attitude that an agent will
help achieve an individual’s goal in a situation characterized by
uncertainty and vulnerability” (p. 51), drawing on Ajzen and
Fishbein’s (1980) original theoretical framework. According to
Ajzen and Fishbein (1980), an attitude shapes behavioral
intention based on beliefs and contextual information. In
accordance with Lee and See’s (2004) definition, the present
study defines trust as an attitude that influences the willingness
to rely on automation when automation is not perfectly reliable.

Muir and Moray (1996) conducted an empirical study that
aimed to examine whether automation trust grows similarly to
interpersonal trust (Barber, 1983; Rempel et al., 1985).
Specifically, they tested that automation trust is governed by
predictability (i.e., consistency of automation behaviors), then
dependability (i.e., dependence on automation), and finally faith
(i.e., certainty of future state of automation) as operators interacted
with automation. However, their results indicated the opposite
pattern such that faith governed trust at the beginning of their
interaction with automation, followed by dependability and then
predictability (but see Lee et al., 2021; Long et al., 2022). Together,
the results suggest that 1) automation trust is a multifaceted
construct as interpersonal trust and 2) automation trust tends to
evolve in a different trajectory than interpersonal trust. Expanding
upon Muir and Moray (1996), Lee and See (2004) proposed three
bases of trust development including performance (i.e., observable
behavior of automation), process (i.e., underlying algorithm that
automation operates on), and purpose (i.e., system designer’s
intention for developing automation). Hoff and Bashir (2015)
further extended this theoretical framework by introducing
additional dimensions of trust such as dispositional (e.g., age and
gender) and contextual factors (e.g., system transparency and
anthropomorphism). These theoretical frameworks imply that
automation trust is indeed a multifaceted construct, and a single
measure is unlikely to be able to comprehensively capture the
complexities of the construct.

Trust is often measured using subjective (e.g., Chancey et al.,
2017; Jian et al., 2000), physiological (e.g., Hergeth et al., 2016; Lu
and Sarter, 2019) and/or behavioral measures (e.g., Yu et al., 2021).
On subjective measures, researchers ask participants to provide
subjective ratings on questionnaire items for a specific scale that
aims to measure trust. Jian et al.’s (2000) trust scale was empirically
developed and aims to measure trust and distrust toward
automation. More recently, Chancey et al. (2017) proposed a
scale, adapted from Madsen and Gregor’s (2000) trust scale, that
rests on the triad theory of automation trust by Lee and See (2004) to
assess three attributions of trust--performance-, process-, and
purpose-based trust. While both scales often show high internal
consistency, the two scales likely measure two weakly related aspects
of automation trust (Yamani et al., 2025). Second, some
physiological measures have been shown to predict the human
operator’s trust (Hergeth et al., 2016; Lu and Sarter, 2019; Sato
et al., 2023b). Some studies demonstrated a negative correlation
between eye movements and trust in automation in a simulated
flight environment (Sato et al., 2023a) and in automated driving
(Hergeth et al., 2016).

Finally, certain behaviors predict automation trust. These
include human-automation response agreement, compliance to
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and reliance on automation (Chancey et al., 2017; Dixon et al.,
2006), and hand placement on the steering wheel (Yu et al., 2021).
Often, researchers characterize response patterns of human
participants when automation issues are either congruent or
incongruent from decisional recommendation in a decision-
making task (Bartlett and McCarley, 2019; Chancey et al., 2017;
Dixon et al., 2006; Meyer, 2001; Meyer et al., 2014; Yamani and
McCarley, 2016). Unlike the analysis of response patterns, Yu et al.
(2021) demonstrated that trust in automation can be assessed by
examining the driver’s hand position on the steering wheel. In the
study, drivers who rated low, medium, and high trust levels
exhibited top (i.e., placing at least one hand on the top of the
steering wheel), mid (i.e., placing one hand on the middle of the
steering wheel while other hand is hovering, resting, or on the
bottom or middle of the steering wheel), and low (i.e., placing one
hand on the bottom of steering wheel while other hand is hovering,
resting, or on the bottom of the steering wheel) hand position,
respectively.

The literature on automation trust has collected mounting
evidence that driver trust toward a partially automated vehicle
(Gold et al., 2015; Yamani et al., 2024b; Yu et al., 2021) and a
fully autonomous vehicle (Lee and Kolodge, 2020; Li et al., 2023) can
influence driver takeover performance. However, few works directly
compared trust across different levels of automation in a driving
environment (Kircher et al., 2013; Verberne et al., 2012). Findings
from these studies supported Hoff and Bashir’s (2015) prediction
that drivers display lower trust towards systems with greater levels of
automation due to higher levels of automation taking human
operators “out of the loop” and lower levels of automation
keeping operators “in the loop.” For example, Kircher et al.
(2013) demonstrated that participants rated lower trust towards
adaptive cruise control (ACC) systems that can follow a lead vehicle
(i.e., high automation level) compared to ACC systems with no such
capability (i.e., low automation level). Also, Verberne et al. (2012)
demonstrated that participants rated higher trust towards ACC
systems that provide instructions for driving a vehicle (i.e., low
automation level) compared to ACC systems that can take over
control of the vehicle (i.e., high automation level). Yet, it is uncertain
whether behavioral measures of trust follow similar patterns across
different levels of automation in a driving environment where
drivers may need to anticipate for a road hazard.

This short communication reports a result of analysis of hand
position data and subjective trust ratings from drivers of either L2 or
L3 SAE vehicle automation in a distributed driving simulator as
reported in Yamani et al. (2024a). The driving simulator study
examined driving performance in several risky scenarios according
to pre-crash scenario typology by NHTSA (2025a). In a distributed
driving simulator environment, multiple simulators are connected
via a local network, which allows researchers to examine driving
behaviors in near-miss scenarios closely replicated across
participants. The present analysis of hand position data of drivers
in Yamani et al. (2024a) followed the protocol of Yu et al. (2021), in
which trust was measured by participants’ hand positions on the
steering wheel at critical points-- 1.5 s before, 1 s before, 0.5 s before,
at the onset, and 0.5 s after the onset of an alert. Hands positioned
higher on the steering wheel were indicative of lower trust in the
automated system while hands positioned lower on the steering
wheel were indicative of higher trust. We hypothesized that

participants in the L2 group would display more trust in the
automated system than those in the L3 group, as measured by
hand position on the steering wheel and subjective trust ratings.

Methods

A fuller description of the method is in Yamani et al. (2024b).
Briefly, a distributed driving simulation platform (Realtime
TechnologiesInc, 2023) was used for this study. Four high-risk
driving scenarios selected from the NHTSA Pre-Crash Scenario
Typology (NHTSA, 2025a) were modeled using SimCreator for
driving simulation. These included two intersection scenarios and
two highway merging scenarios, each modeled both with and
without visual obstruction that occluded the entry of a conflict
vehicle, resulting in a total of eight scenarios. In the present study,
we analyzed video data available from 25 licensed drivers (4 females;
mean age = 31.00 years, SD = 6.03 years, range = 22–46 years; mean
years since obtaining a license = 12.04 years, SD = 7.99 years) of a total
of 48 drivers recruited fromOld Dominion University for Yamani et al.
(2024a). None of the 25 drivers included in the current analysis showed
symptoms of simulator sickness. Each participant was randomly
assigned to either active (L2) or passive (L3) automated driving
system (ADS) group. The partial-cab simulator (Real-Time Inc.,
Figure 1.) behaved the same for both groups, but the type of
instruction given to participants was manipulated.

Following Samuel et al. (2020), the level of vehicle automation
was manipulated by the framing of the driver’s responsibility.
Participants in the active and passive ADS groups were given
different instructions on how to operate the automated vehicle
and how to take over the vehicle if a warning is issued. The
participants in the active ADS driving group were told: “You are
expected to have your hands on the steering wheel and foot over the
brakes even though the simulator will handle the maneuvering
(steering, braking, acceleration, and other vehicle control
parameters) aspects of your driving throughout the entire
simulation. You are also expected to pay attention to the forward
roadway even though the vehicle handles your navigation in
autonomous driving.” Participants in the passive ADS driving
group were told that “All aspects of your drive will be handled
by the simulation, but you need to be ready to take over if requested
to do so by the system.” Participants completed a 5-min practice
drive in the RDS-1000 to familiarize themselves with the driving
simulator. During the practice session, participants were instructed
to obey all traffic laws including traffic lights, signs, and signals for
the practice and experimental trials. In addition, participants were
informed about the function of the ADS. After practice drives,
participants navigated a series of the eight scenarios presented
randomly across participants. During each experimental drive, a
trained experimenter drove in the networked simulator. The
experimenter approached the predetermined collision point by
manually controlling the vehicle’s speed and traveling direction.
The experimenter controlled the vehicle based on the participant’s
behavior as viewed in the top-down scenario map on the master
control display. In the experimental drive, participants were asked to
abide by speed limit signs and obey all traffic rules. In addition,
participants were briefed on how and where warning signs would
appear on the display.
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Each participant rated their subjective trust toward the ADS in
Chancey et al. (2017) and Jian et al. (2000) trust scales before
experiencing a series of driving scenarios in the simulator. Each
participant filled out Chancey et al. (2017) and Jian et al. (2000) trust
scales for a second time after the completion of their scenarios.
Chancey et al. (2017) reported high internal consistency for their
scale (Cronbach’s alpha = 0.97). Previous research has shown similar
reliability for Jian et al.’s (2000) trust scale (Cronbach’s alpha = 0.94;
Chavaillaz et al., 2016). Participants were either given course credit
or were paid $20 at the conclusion of the study. Each experimental
session took about 1 h to complete.

Data coding for hand placement on the steering wheel followed
the protocol from Yu et al. (2021). Five levels of hand placement
were coded as below.

Level 1 (Resting): both hands were at rest below the wheel, on
participant’s lap, or beside participant’s body;

Level 2 (Hovering): one hand was hovering over the wheel, and
the other hand was hovering or resting;

Level 3 (Low): one hand was in the low area of the wheel, and the
other hand stayed resting, hovering, or in the low area of
the wheel;

Level 4 (Mid): one hand was in the middle area of the wheel, and
the other hand stayed resting, hovering, or in the low or middle
area of the wheel;

Level 5 (Top): at least one hand was in the top position of
the wheel.

Hand placement data were coded at five different time intervals
for each scenario -- 1.5, 1.0, and 0.5 s before the onset of the collision
alert, at the onset of the alert, and 0.5 s after the onset of the alert.

To examine how different levels of vehicle automation (L2 vs.
L3) impact behavioral measure of trust during near-collision events,
hand position data were analyzed using a mixed analysis of variance
(ANOVA) with Time (−1.5s, -1s, -.5s, 0, vs. +.5s from the onset of
the takeover request) as a within-subject factor and Group (L2 vs.
L3 ADS) as a between-subject factor. Due to an eye tracker failure,
5.5% of the hand position data were lost, resulting in 955 valid data
points included in the analysis. Assumption checks revealed no
violations of normality. However, Mauchly’s test indicated a
violation of the sphericity assumption. As a result, the
Greenhouse-Geisser correction was applied to adjust the degrees
of freedom where necessary. To further investigate the relationship
between driver hand position and subjective trust, a series of
Spearman rank correlation analyses were conducted as hand
position data were measured on an ordinal scale. Specifically, we

FIGURE 1
Distributed Driving Simulator Platform at Old Dominion University. A partial-cab driving simulator (RDS-1000; left) and a desktop simulator (RDS-
100; right).

FIGURE 2
Mean hand position as a function of time to the onset of
collision alert.
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assessed whether hand position was associated with each dimension
of Jian et al. (2000) and Chancey et al. (2017) trust scales. These
analyses were based on trust questionnaire responses collected after
participants completed the driving task. Post-task ratings were used
because they were more likely to reflect participants’ trust after
experiencing near-collision events rather than their initial trust.

Results and discussion

Results indicated that drivers generally maintained hand
positions on the lower area of the steering wheel across the time
points but progressively moved their hands to higher positions as
they approached and received the takeover request (Figure 2), F
(1.69, 39.01) = 2.86, p = 0.03, η2G = 0.0006. Although the effect size
was small, this pattern suggests that drivers increasingly lose trust in
the automated system as the hazardous scenarios unfolded,
regardless of the level of vehicle automation. The upward shift in
hand position may reflect an anticipatory response, in which
participants subtly adjusted their hands in preparation for
resuming manual control, potentially signaling early signs of
automation disuse. Most important, drivers in the L2 ADS
averaged a higher score on the Yu et al. (2021) hand position
scale than drivers in the L3 ADS group, M = 3.60 vs. 2.45, F
(1,23) = 8.78, p = 0.007, η2G = 0.28, indicating lower trust than
the L3 ADS group (cf. Yu et al., 2021). This contrasts with the
findings on subjective trust ratings reported in Yamani et al. (2024b)
that the drivers reported trust ratings comparable between the
L2 and L3 groups, M = 3.56 vs. 3.70, t < 1, n. s. On Jian et al.
(2000) trust scale; M = 6.88 vs. 8.53, t(23) = 1.33, p = 0.19 on
Chancey et al. (2017) trust scale. Additionally, this finding contrasts
with Hoff and Bashir’s (2015) theoretical prediction that trust
decreases as the level of automation increases. One possible
explanation is that the near-collision events heightened
attentional demand and perceived risk, which may have led to
increased trust in the L3 ADS. Prior research suggests that trust
in automation can actually increase under conditions of high task
load and elevated risk (Sato et al., 2020).

The results from Spearman rank correlation analyses indicated
no significant associations between hand position and any
dimension of Jian et al. (2000) or Chancey et al. (2017) trust
scales (−0.38 < r < 0.16, n. s.) except that a significant negative
correlation was found between Distrust on Jian et al. (2000) scale
and Yu et al. (2021) hand position scale in the L3 condition,
r = −0.65, p = 0.02. This suggests that drivers in the L3 group
tended to place their hands higher on the steering wheel when they
reported lower levels of distrust. Taken together, the results largely
suggest a dissociation between subjective and behavioral (objective)
measures of trust. One possible reason for this discrepancy is the
temporal delay between the development of trust during the task and
the point at which it is reported. By the time participants completed
the trust questionnaires, sufficient time may have passed for
memory decay to occur, potentially dampening the trust levels
experienced during the driving task and masking condition
differences. Indeed, Yeh and Wickens (1988) reported that
discrepancies between subjective and objective measures may be
attributed differences in working memory demands. Moreover,
subjective measurement techniques are inherently intrusive, as

they typically must be administered after the target task.
Completing a questionnaire often requires respondents to either
temporarily suspend the ongoing task or divide their attention
between task execution and subjective reporting.

The present study suggests that discrepancies between subjective
and objective measures of trust may be attributed to differences in
working memory demands. In contrast to Yu et al.’s (2021)
behavioral trust scale, which revealed differences across
experimental conditions, Yamani et al. (2024a) found that trust
ratings were comparable across both the Jian et al. (2000) and
Chancey et al. (2017) scales. Their findings support the idea that
these questionnaires capture only weakly related aspects of trust.

A growing body of evidence indicates that trust in automation is
dynamic, evolving in response to factors such as user disposition,
situational context, system familiarity (Hoff and Bashir, 2015),
perceived system capabilities (Sato, 2024), and attentional
demand of the environment (Sato, 2024). ADS operate in
inherently dynamic, unpredictable, and complex environments,
making it likely that driver trust fluctuates accordingly. As such,
there is a need for continuous and sensitive measurement technique
to support effective integration of human drivers and automated and
connected vehicle technologies.

Several limitations should be acknowledged in the present study.
First, the manipulation of vehicle automation levels may have
inadvertently introduced compliance effects. Participants in the
passive ADS group were instructed to ‘be ready to take over if
requested to do so by the system,” which may have encouraged
direct compliance–where participants followed system prompts
regardless of perceived system capability. As a result, observed
differences in objective trust may partially reflect variations in
compliance rather than trust alone. Future studies should
manipulate automation levels in ways that isolate compliance
effects to distinguish trust-related behaviors from compliance-
driven responses. Second, the study’s relatively small sample size
may have limited the statistical power to detect subtle effects.
Therefore, results should be interpreted with caution. Future
research should replicate the current findings with a larger
sample to improve generalizability and statistical robustness.
Third, while hand position served as a behavioral proxy for trust,
it remains unclear whether this measure is more valid than
physiological indicators. Future research should comprehensively
evaluate the properties of different trust assessment methods
including behavioral, subjective, and physiological techniques.
Each method likely exhibit a unique combination of
characteristics such as sensitivity, intrusiveness, diagnosticity,
transferability, and implementation demands (Wierwille and
Eggemeier, 2012). Identifying these attributes would help
researchers and system designers better estimate driver trust in
evolving automated and connected vehicle technologies. Fourth,
although hand position data were originally coded on a five-point
ordinal scale, they were treated as continuous to satisfy ANOVA
assumptions. This decision may have introduced analytic
limitations. Future research should consider appropriate methods
for ordinal data, such as ordinal logistic regression (Harrell, 2015).
Fifth, the present study recruited undergraduate students from a
single university, which may limit the generalizability of the
findings. To enhance external validity, future research should
include participants from more diverse educational backgrounds.
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Sixth, while the dissociation between objective and subjective trust
measures is consistent with theories of memory decay (Yeh and
Wickens, 1988), the present study does not provide direct evidence
to support this explanation. Although plausible, this hypothesis
should be explicitly tested in future research. Finally, the present
study did not analyze hand position transition probabilities, which
could provide insights into the temporal dynamics of trust during
near-miss events. Future work should aim to collect more granular
behavioral data around critical moments to better understand
fluctuations in driver trust.

Conclusion

The present study compared subjective and behavioral trust
measures across different levels of automation in a series of high-risk
driving scenarios. Results showed that drivers progressively placed
their hands higher on the steering wheel in hazardous scenarios,
irrespective of the levels of automation. This adjustment reflects a
gradual decline in driver’s trust in automation during high-risk
situation. Furthermore, drivers demonstrated lower trust in L2 ADS
compared to L3 ADS, contrasting with Yamani et al.’s (2020)
findings on drivers’ subjective trust rating. This dissociation
between the subjective and behavioral trust measures indicates
that behavioral measures may capture important aspects of
drivers’ trust that subjective measures overlook. Our findings
suggest that designers and practitioners incorporate objective and
subjective trust measures to gain a comprehensive understanding of
drivers’ trust, thereby informing design strategies that enhance
safety in automated driving.
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