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Traffic monitoring is a critical aspect of urban infrastructure management. With
the advancement of technologies, traditional surveillance methods based on
fixed sensor network systems could be potentially replaced by adaptive and easily
redeployable systems, such as those based on drones. This paper wishes to
contribute to the development of drones-based traffic monitoring and
management systems by describing and evaluating a simulated swarm of
drones monitoring traffic and communicating traffic data to adaptive traffic
lights which adapt their green light duration to the current volume of traffic
using the SPSA optimisation algorithm. A cell transition model (CTM) is used to
simulate the behaviour, flow, and interactions of vehicles within a road network
larger thanmost of networks used in similar studies. Evaluation tests compare the
effectiveness of adaptive traffic unit with data generated by drones with a system
of fixed duration signal traffic lights, and with an adaptive traffic unit with data
generated by fixed cameras. The results shows that the optimised traffic lights
system with data generated by drones is more effective than both the fixed
signalling duration and the optimised system with data generated by fixed
cameras in resolving traffic congestion due to a high volume of cars entering
the road network. Further post-evaluation tests illustrate the limits of the adaptive
traffic unit system with data generated by drones under a progressively higher
volume of traffic entering the road network. We conclude the paper by discussing
the current limitations of our model and by pointing to the most interesting
directions for future work.
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1 Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, have emerged as a
transformative force in various fields such as precision agriculture, wildlife conservation,
delivery, logistics, and etc. The ability for vertical take-off and landing within limited spaces
and their impressive speed and agility have induced researchers to exploit drones in a wide
range of tasks in particular in those requiring surveillance and data collection such as traffic
monitoring andmanagement tasks. The exponential rise in the number of vehicles in the road
networks have largely contributed to the emergence of frequent traffic congestion problems as
well as of problems related to air and sound pollution in urban areas (Anjum et al., 2021; Goetz,
2019). Sensor-network based technology, exploiting fixed camera Radivojević et al. (2021),
ultrasonic sensors Tan et al. (2020), and RFID—Radio Frequency Identification—reader Atta
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et al. (2020), have made possible to address the negative effects of
traffic on quality of life and on wellbeing of citizens with effective
strategies to monitor, and possibly alleviate, vehicle congestion on
urban roads and motorways (Fadda et al., 2022; Appiah et al., 2020;
Tasgaonkar et al., 2020). For example, in Neelakandan et al. (2021);
Zhang et al. (2020); Kuang et al. (2021); Desmira et al. (2022), a
combination of fixed sensor-networks and different AI-based
algorithms are presented to manage traffic by regulating traffic-
light timing. These systems has been proved quite effective in
reducing the average waiting time of vehicles in the road networks.
Nevertheless, sensor-network based technology suffers from several
limitations, primarily determined by the relatively high cost of
maintenance operations such as sensor calibration, as well as from
the fact that the technology is not particularly suitable to be deployed
in very large areas (Narisetty et al., 2021; Ravish and Swamy, 2021).
Furthermore, this technology, being anchored to the ground,
completely lacks the flexibility and adaptability required to be
easily and continuously redeployed in different areas to track the
development of vehicle traffic on large road networks. To overcome
the limitations of fixed sensor-networks, drones have emerged as a
costs effective technology, that has the advantage to be easily deployed
in different and potentially large urban zones to carry out tasks related
to road safety, motorway infrastructure management, and traffic
monitoring (Gohari et al., 2022; Dilshad et al., 2020; Bisio et al., 2022).

The scientific literature on single or multiple UAVs systems
employed for urban activities, including traffic monitoring, is
already quite vast. A possible way to sort this large body of
research is by classifying these works in those that we referred to
as “general” and those that we referred to as “specific.” In the
“general” category we include those research works that focus on
challenges in urban air mobility common to multiple applications.
Many of these studies focus on problem related to the generation of
trajectories for UAVs required to fly at low altitudes in cluttered
scenarios, characterised by natural and man-made obstacles. In
Causa and Fasano (2021), the authors illustrate a obstacle-free
path planning algorithm for multi UAVs based on the multi-step
strategies that include automated definition of GNSS-challenging
volumes based on a georeferenced three-dimensional environment
model, derivation of candidate obstacle-free paths between
waypoints, waypoint assignment and definition of time-tagged
trajectories to cope with path planning issues in low altitude
environment. In Nguyen et al. (2021), the authors developed a
drones-based traffic monitoring system in which the drones fly on
trajectories that are defined using GPS points. The scientific
contribution of this work is in demonstrating that GPS
trajectories are more effective than map based routes. In Elloumi
et al. (2018), an innovative road traffic monitoring system is
characterised by multiple drones generating adaptive flying
trajectories, which are based on the tracking of moving points
within the UAV field of view. Other papers propose algorithms
that allow drones to minimise travel time in missions that require
drones to visit multiple sites. For example, in Christodoulou and
Kolios (2020) and Garcia-Aunon et al. (2019), the authors describe
methods to allow drones to minimise travel time based on point of
interests (POIs) and genetic algorithm, respectively.

In the “specific” category, we include those research works that
focus on issues related to specific applications, with a main focus on
research works in which air mobility is applied to the development

of traffic monitoring and management systems. In Roldán-Gómez
et al. (2022), a swarm of simulated drones is deployed to monitor
traffic by counting the number of vehicles in a virtual city called
swarm city and to share this data with a ground station unit. In these
investigations, the shared data were used to generate maps
represented in a virtual reality interface. In Hanzla et al. (2024),
the authors introduce a smart traffic monitoring solution to address
challenges in vehicle detection and tracking, by segmenting images
taken by drones using deep learning technology (i.e., YOLOv5) and
Kalman Filter based algorithms. In Zhu et al. (2018), the authors also
exploited deep neural network algorithms to process videos
recorded by a swarm of drones in order to detect and localise
vehicles. Several drones-based traffic monitoring systems used a
centralised approach in which the information gathered by drones is
transferred to a human-operated central unit that processes the data
and makes decisions concerning the management of traffic
congestion. In studies that adopt this approach, the research
focuses on issues related to the communication between drones
and the central decision unit (Elloumi et al., 2018). Human errors,
delays in response time, and difficulty in handling emergency
conditions are the main drawbacks of the centralised traffic
management systems (Yadav et al., 2021). To overcome these
challenges, decentralised and adaptive traffic stations, exploiting
machine learning methods (such as reinforcement learning
algorithms), have been investigated. Some of these decentralised
traffic systems regulate the traffic light duration as in Saleem et al.
(2022); Abdoos and Bazzan (2021). In Chow et al. (2020), centralised
and decentralised optimal control strategies are compared based on
the Hamilton-Jacobi formulation of the kinematic traffic model. The
optimal methodologies are applied to a set of test scenarios
constructed from a real road network in central London (UK). In
Yao et al. (2022), the authors illustrate an optimised traffic signal
controller based on SPSA algorithm for a mixed traffic flow
composed of automated and human driven vehicles by using
CTM traffic model. The optimised control effectively reduces the
range and the dissipation time of traffic congestion in comparison
with fixed timing control. Mixed traffic flow is characterized by
connected automated vehicles (CAVs), connected vehicles (CVs),
and regular vehicles (RVs). In Qin et al. (2024), an analyticalmixed
traffic capacity model for minor roads in an intersection is proposed
to estimates their passing probabilities between CAV-led and CV/
RV-led platoons.

In most of the applications within the framework of urban air
mobility, an advanced and reliable communication protocols is
required to exchange data between drones and ground stations.
Due to the limited resources available to run highly secure
algorithms on board, authors in Hassija et al. (2021) investigated
the effectiveness of communication methods such as blockchain,
software defined networks (SDN), and machine learning to
neutralise the effects of attacks such as man-in-the-middle or de-
authentication. In Ivancic et al. (2019) and Guirado et al. (2021), the
authors present internet-based communication protocols named 4G
LTE method for real-time transfer of video and images between air
traffic management units and small unmanned air vehicles to
address communication challenges. In Aloqaily et al. (2022), a
UAV-supported vehicular network is implemented where drones
and traffic units are considered as separate nodes that communicate
with each other through the 5G connection and ad hoc links. To
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make communication more secure against cybersecurity attacks, a
novel distributed way for drone-to-drone communication is
illustrated in (Kumar et al., 2022). This secure method comes
with some drawbacks such as limited bandwidth, spectrum
constraints, and the requirement of the use of a large quantity of
drones to cover a vast city map.

As in Yao et al. (2022) mentioned above, the research work
described in this paper focuses on a system that manages traffic
using drones. In particular, we illustrate and evaluate a decentralised
multiple UAVs based system that by patrolling urban network,
count cars on different roads and communicate this information to
traffic lights signals. The signalling system uses this information to
adjust signalling time using an optimisation method in order to
reduce any eventual congestion. We consider a road network that
consists of three connected two-way two-lanes cross intersections,
we model traffic using CTM traffic model, and we defined fixed
meeting points where the drones can share data with traffic light
signals at regular intervals. We show that, when a high concentration
of traffic is detected by drones in any part of the network, the traffic
light unit concerned with the congestion, made aware of the problem
by drones, resolves the congestion (i.e., it reduces the volume of
traffic) by using the optimisation algorithm to adjust the green traffic
light duration. In order to provide a term of comparison for the
performance of the drones-based system, we also evaluate in
identical conditions an alternative sensor-network based system
in which information about traffic is generated and transferred to
traffic lights by fixed camera. The results show that the drones-based

system is more effective than the sensor-network based system. The
original contribution of this study is in demonstrating the
effectiveness of the above described drones-based traffic
management system in a more complex scenario than the one
employed in other similar studies such as in (Yao et al., 2022).
We target a more extended road network than those described in the
literature for similar drone-based technology, with a greater number
of interconnected intersections and a realistic traffic signalling
system, where traffic units control and optimise the flow of
forward/right turn, and left turn traffic. Moreover, we evaluate
the robustness of the mentioned traffic management system in a
larger set of traffic flow input conditions in comparison with (Yao
et al., 2022).

The remaining of this paper is structured as follows: the general
methodological approach is described in Section 2, with Section 2.1
and 2.2 illustrating the whole of the city layout model and the traffic
light phases, respectively; Section 2.3 illustrating the traffic model;
the route planning for the navigation of drones is described in
Section 2.4; the traffic lights optimisation algorithm is illustrated in
Section 2.5. Simulation results are shown in Section 3, and finally
conclusions are drawn in Section 4.

2 Methodology

This Section describes the methods used to develop the
simulation modelling an urban scenario with a swarm of drones

FIGURE 1
The three layered structure of the traffic simulator: the City Layer on top, the Drone Layer in the middle, and Traffic Unit layer at the bottom.
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carrying out the traffic monitoring and management task. As
illustrated in Figure 1, the simulation model is made of the
following three layers: i) the city-layer, ii) the drone-layer, and
iii) the traffic-layer. The city-layer includes the road map, the
traffic model, and the routes the drones follow during inspection.
The road map describes an urban environment, with a
geographically realistic representation of road networks with
lanes, intersection geometries, and relevant infrastructure such as
traffic signals. The traffic is implemented using CTM which is an
inflow-outflow mathematical formulation used to simulate and
analyse the flow of traffic within the road network. The routes
refer to the trajectories that drones follow to monitor the traffic.
Each drone has two possible routes. The switching between routes by
drones is triggered by specific conditions concerning the level of
traffic within the route currently monitored. Within each route,
there are meeting points; that is, points in which drones and traffic
signals are sufficiently close (< 5 m) to be able to transmit each
other data concerning the status of traffic while avoiding
communication issues related to limited bandwidth. The drone-
layer takes care of flying the drones along their trajectories while
monitoring the traffic (i.e., by counting vehicles on the each of the
road cells traversed during the flight). This layer also takes care of the
communication between drones and traffic lights. As detailed later,
the dynamic propagation process of traffic flow is discretised.
Consequently, the drones also move in a discrete way between
adjacent road cells at a given velocity. While above a road cell, each
drone records the number of vehicles on that cell, as modelled by
CTM. Anytime a drone reaches a meeting point, it transfers fresh
data on traffic to the corresponding traffic signal. The traffic-layer
runs the SPSA algorithm. This is an optimisation algorithm that uses
the most recently available data on traffic to set the light signal cycle

in order to minimise the traffic on the cells of the entire road
network. The traffic-layer also informs the drones to switch route
anytime specific conditions on traffic are fulfilled. In the following,
we describe in details the properties of the main components of this
three-layers simulation model.

2.1 The road network

The road network is made of three two-way two-lanes cross
intersections (four legs) connected as illustrated in Figure 2. Each leg
has two entry and two exit points to the intersection. The entry
points are one for vehicles moving forward and turning right, and
the other entry for vehicles turning left. The exit points are one for
receiving vehicles travelling forward and for those leaving the
intersection with a right turn, and the other exit for vehicles
leaving the intersection with a left turn. In the road network,
there are a total of 48 entry/exit points to intersections, which we
refer to as R{i,j,k}, where i � {1, 2, 3} refers to the intersection
number; j � {INfr, INl, OUTfr, OUTl, } refers to the lanes of
each leg, with INfr for the vehicles entering the intersection to
move forward and to turn right, INl for the vehicles entering the
intersection to turn left, OUTfr for the vehicles leaving the
intersection with a forward movement and with a right turn,
OUTl for the vehicles leaving the intersection with a left turn; k �
{W,E,N, S} indicate the four legs of each intersection using the
cardinal points. Similarly, we use L{i,j,k} to denote the total length of
the lanes. The traffic flows according to the Right-Hand Traffic
(RHT) system. It follows that, for example, vehicles leaving
intersection 1 from point R{1,OUTfr,E}, enter into intersection 2 at
point R{2,INfr,W}, while moving forward. Conversely, vehicles leaving

FIGURE 2
The road network made of three two-way two-lanes cross intersections. The notation refers to the entry and exit points to the intersections.
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intersection 2 from point R{2,OUTfr,W}, enter into intersection 1 at
point R{1,INfr,E}, while moving forward.

2.2 The three sets of traffic lights

Three sets of traffic signals control the traffic at each
intersection. Each traffic light has a cycle characterised by four
phases, as illustrated in Figure 3. In order to implement the four
phases, each set is made of four traffic signals, with each traffic signal
made of two subsets of two lights (i.e., one red and one green light).
The two-light subset referred to as S{i,INfr,k,c}, with c � {red, green},
controls the movement of vehicles entering into intersection i from
point R{i,INfr,k}, while the two-light subset referred to as S{i,INl,k,c},
controls the movement of vehicles entering into intersection i from
point R{i,INl,k}. For each set of traffic signals, the light cycle is
characterised by the following four phases:

• phase 1: during this phase, the traffic at intersection i flows
from the W to the E leg, and from the E to the W leg, for
moving forward vehicles. Moreover, the traffic flows from the
W to the S leg, and from the E to the N leg, for turning-right
vehicles. This means that, in the W leg S{i,INfr,W,green}, and
S{i,INl,W,red}, while in the E leg and S{i,INfr,E,green}, and
S{i,INl,E,red}. All the other subsets have red lights; in the N
leg S{i,INfr,N,red}, S{i,INl,N,red}, and in the S leg S{i,INfr,S,red},
S{i,INl,S,red}.

• phase 2: during this phase, the traffic at intersection i flows
from the W to the N leg, and from the E to the S leg, for

turning-left vehicles. This means that, in the W leg
S{i,INfr,W,red}, and S{i,INl,W,green}, while in the E leg and
S{i,INfr,E,red}, and S{i,INl,E,green}. All the other subsets have red
lights; in the N leg S{i,INfr,N,red}, S{i,INl,N,red}, and in the S leg
S{i,INfr,S,red}, S{i,INl,S,red}.

• phase 3: during this phase, the traffic at intersection i flows
from the N to the S leg, and from the S to the N leg, for
moving forward vehicles. Moreover, the traffic flows from
the N to the W leg, and from the S to the E leg, for turning-
right vehicles. This means that, in the N leg S{i,INfr,N,green},
and S{i,INl,N,red}, while in the S leg and S{i,INfr,S,green}, and
S{i,INl,S,red}. All the other subsets have red lights; in theW leg
S{i,INfr,W,red}, S{i,INl,W,red}, and in the E leg S{i,INfr,E,red},
S{i,INl,E,red}.

• phase 4: during this phase, the traffic at intersection i flows
from the N to the E leg, and from the S to the W leg, for
turning-right vehicles. This means that, in the N leg
S{i,INfr,N,red}, and S{i,INl,N,green}, while in the S leg and
S{i,INfr,S,red}, and S{i,INl,S,green}. All the other subsets have red
lights; in the W leg S{i,INfr,W,red}, S{i,INl,W,red}, and in the E leg
S{i,INfr,E,red}, S{i,INl,E,red}.

Note that, we do not include the yellow light, since, being a fixed
duration signal, generally overlapping with the green—and
sometime with the red—light, we consider that it has only
marginal and potentially negligible effects on the emergence and
dissipation of traffic congestion. Nevertheless, at this stage of our
exploration, the elimination of yellow light considerably simplifies
our model.

FIGURE 3
The phases of the traffic lights.
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2.3 The traffic model

We use the cell transition model (CTM) to simulate the vehicles’
movement on the road network (Yao et al., 2022). CTM is a cellular
automaton traffic model that is widely used in the literature since it
offers several advantages in terms of definition and analysis of traffic
dynamics based on cells’ input and output flow. The model

represents the road network as a series of discrete cells, in which
the length of each cell is calculated based on the distance travelled by
free-flow traffic in one evaluation time step. Each cell corresponds to
a segment of the road. The non-continuous (in time and space) flow
of traffic between adjacent cells of the CTM is shown in Figure 4a,
where for cell i, ηi(t) refers to the number of vehicles in the cell, fi is
the incoming traffic flow into the cell and fi+1 the outgoing traffic

FIGURE 4
(a) Drawing showing the cells of the Cell Transition Model (CTM) in a portion of the road network. (b) Diagram showing the flow of traffic between
adjacent cells in the CTM.
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flow from the cell. In our road network, there are two sets of four
cells between two consecutive intersections as shown in Figure 4b.
One sets models all vehicles entering into an intersection (i.e., the
vehicles that proceed straight, those turning right, and those turning
left at the intersection), and the other sets model the vehicles leaving
an intersection (i.e., the vehicles joining the leg while moving
forward, those joining the leg after a right turn, and those
joining the leg from a left turn). In each set of cells, cell 1 is the
furthest, and cell 4 is the closest to the corresponding intersection
entry point (see Figure 4b). Hence, the number of vehicles in cell i at
time (t + 1) is defined as:

ηi t + 1( ) � ηi t( ) + fi t( ) − fi+1 t( ); (1)
fi t( ) � qi t( )Δt � min vfki−1Δt, qmaxΔt − wΔtki{ } (2)

where, Δt is the sample time, w and vf are the reverse wave speed
and the free flow speed, respectively, and k is the congestion density.
In traffic flow theory, reverse wave speed characterizes how quickly a
traffic jam forms and moves in the opposite direction to vehicle
travel and free flow speed refers to the velocity at which vehicles
move under uncongested traffic conditions.

The following requirements must be met for the traffic flow:

ηi−1 t( ) � vfki−1Δt (3)
Qi t( ) � qmaxΔt (4)

ηi t( )≤Q (5)
with Q the maximum capacity of cell i, and qmax the maximum traffic
flow. Therefore, by substituting Equations 3–5 into Equation 2, the
number of cars leaving cell i− 1 toward cell i can be rewritten as follows:

fi t( ) � min ηi−1 t( ), Qi t( ),− v/wf( ) Ni t( ) − ηi t( )[ ]{ } (6)

withNi(t) the maximum number of vehicles that can stay at time t
in cell i. Two capacity variables Si(t) and Ri(t) are introduced to
refer to the number of vehicles that can be sent and received by cell i
at time t, with:

Si t( ) � min ηi t( ), Qi+1 t( )( ) (7)
Ri t( ) � min Qi t( ),− v/wf( ) Ni t( ) − ηi t( )[ ]( (8)

Based on the Equations 6–8 can be simplified as follows.

fi t( ) � min Si−1 t( ), Ri t( )( ) (9)
More detailed information about CTM model can be found in (Yao
et al., 2022). Based on Equation 9, CTM is suitable for capturing
fundamental traffic dynamics. However, it has limitations in
representing more complex behaviours, especially in urban
environments with dynamic conditions, such as: frequent lane
changes, pedestrian interactions, heterogeneous vehicle
movements and/or driving behaviour, etc. These phenomena can
be more effectively captured by microscopic traffic flow simulation
software, which we will use in future works.

2.4 Route planning for drones

Four drones monitor and manage the road traffic on the entire
road network by flying along predefined paths. Each drone is
assigned to a specific portion of the road network which can be
monitored by following two distinctive routes. In each route, only
the roads that are part of the monitored road network are considered
by the drones, as shown in Figure 5. Each drone keeps on flying on
the same route unless specific traffic conditions are met, following
which the done swap route (see Section 2.5 for details on the

FIGURE 5
Routes of four traffic-monitoring drones, with continuous lines for monitored roads and dashed lines for unmonitored roads.
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conditions triggering the route swapping). In the current
implementation, drone coordination is managed by the traffic
unit at the meeting point, which assigns tasks and ensures each
drone collects relevant data. While this centralized approach is
sufficient for the three-intersection network, we acknowledge that
larger networks would require more sophisticated, possibly
decentralized, coordination strategies. The camera is oriented in a
nadir (downward-facing) position of the drones with a fixed angle of
view. In the cellular model, to ensure complete coverage of a single
cell, the drones should fly at a specific flight altitude (h) set
as follows:

h � celldimention

2. tan θ/2( )
; (10)

where h refers to the flight altitude required by drones to fully cover
an area with the cell dimension (celldimention); θ is the camera’s field
of view angle (Yang et al., 2024). Based on Equation 10, it is
important to highlight that data quality decreased with increasing
altitude. Since drones fly at different speeds, it takes different times
for them to completely monitor a specific route. While flying above
the road, the drones monitor the traffic by counting the number of
vehicles in the cell at their current position. Figure 5 shows the four
drones and the two routes per drone DR(i,j), with i ∈ 1, 2, 3, 4
referring to the drone, and j ∈ 1, 2 indicating the route.
Moreover, in Figure 5, the black and blue arrows indicate the
directions of the drones’ movement within each route and the
flow of traffic in CTM, respectively. Moreover, the red stars
indicate the starting point of each route, the yellow circles mark
a road change within the route, and the green circles are the meeting
points placed at the intersections. Anytime a drone reaches this
point, it communicates to the corresponding traffic light the number
of vehicles found in each of the cell traversed during the latest loop
on the route. In the current system, the data transmission from
drones to traffic units is implemented as a one-way communication
at predefined meeting points, which minimizes latency and
simplifies synchronization. However, we acknowledge that in
larger networks, where continuous or real-time updates are
required, communication delays could become a bottleneck. To
address this, future extensions may incorporate low-latency
communication protocols, time-slot scheduling, or multi-channel
communication systems to ensure timely and reliable data exchange
between drones and traffic agents. Weather conditions can act as
external disturbance for the motion control of drones. Since several
studies have already illustrated robust drones motion controller in
adverse weather conditions, for the sake of simplicity, we did not
consider this element (i.e., wind disturbance) in our model. Finally,
drones travel timing between different routes is not considered.
Given that such rerouting typically happens faster than signal cycle
updates, we consider its impact on timing synchronization to be
negligible at least in this first investigation of the system
performance.

2.5 Traffic signal optimisation

The simultaneous perturbation stochastic approximation
(SPSA) algorithm is used to set the conditions to minimise the
traffic and to avoid traffic congestion on the road network. The

information about the current traffic conditions (i.e., the number of
cars in each of the monitored cells) are communicated at regular
intervals by the drones to the closest traffic lights every time they
reach a meeting point. The traffic light runs the SPSA algorithm to
adjust the duration of the green light with the objective of reducing
traffic while taking into account constraints determined by the
intersection signal timing control and the flow transmission
relationship between cells. The SPSA algorithm is a powerful
heuristic method that gradually approximates the optimal
solution by iteratively estimating the gradient information of the
objective function. The algorithm employs two estimated values of
the objective function, which is independent of the dimension of the
optimisation problem. The feature of perturbing each variable in
both positive and negative directions allows the algorithm to
estimate the gradient of the objective function more robustly.
After perturbing the parameters, SPSA observes the
corresponding changes in the objective function. By averaging
these perturbations, SPSA computes an approximation of the
gradient, adapting its steps based on this approximation to
iteratively refine the solution. This adaptability allows SPSA to
handle noisy objective functions and to converge efficiently, even
in the presence of uncertainties or fluctuations. In our road traffic
scenario, the objective function tries to minimise the overall delay
D(t) of all cells in a street. The duration of green light G of each
traffic unit is the decision variable to minimise the overall delay. The
iteration equation of SPSA is formulated as illustrated in
Algorithm 1;

Input : x̂0 ,a0,C0

Output : x̂k+1
Compute (k Iteration)
1. Defines parameters ak and Ck:

ak � a/(A + k + 1)α
Ck � C/(k + 1)γ

2. Generate two estimated value:

L(x̂k + Ckpδk)
L(x̂k − Ckpδk)

3. Calculates the approximation gradient:

ĝ(xk) � L(x̂k + Ckpδk) −L(x̂k − Ckpδk)/ 2Ckpδk

4. Update:

x̂k+1 � x̂k − akpĝ(xk)
5. Stop if therequirements

are reached or end of maximum numberof

iterations, otherwise,k � k + 1 and returns to step1.

Algorithm 1 SPSA.

Where, x̂k is the estimated value at the kth iteration, ak
represents a scalar gain coefficient, ĝ(xk) is the estimated value
of the gradient g(xk), C is a positive scaler, a, α, A, and γ are non-
negative coefficients. In order to set the values of the algorithm’s
parameters, we followed the theoretical recommendations
illustrated in (Yao et al., 2022). However, we also empirically
tuned these values to enhance the algorithm convergence stability
and performance under the conditions set by the traffic dynamics
modelled in this study. The mentioned algorithm consists of 5 steps.
In the first step, the sequences of ak and Ck generate a p dimensional
random vector, which is independently and identically distributed
with zero mean. Next step calculates two estimation values of the

Frontiers in Future Transportation frontiersin.org08

Alahvirdi and Tuci 10.3389/ffutr.2025.1662822

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1662822


objective function. In the third step, asynchronous perturbation
approximation gradient of the unknown gradient ĝ(xk) are
generated. Following the update in step 4, the algorithm checks
whether the accuracy criterion and maximum iteration limit have
been satisfied; if so, the optimal result is returned. More description
about SPSA algorithm can be found in (Yao et al., 2022).

The objective function aims to minimise the time vehicles spend
waiting or moving slowly in the total length of each lane by
increasing the number of cars leaving each lane. The delay of a
single cell is described as the difference between the number of
vehicles in cell i at time t (see Equation 1 and the number of
departing vehicles as in Figure 4a.

di t( ) � Δt ni t( ) − fi+1,[ ] (11)
where Δt is step time, ni(t) is the number of vehicles in cell i at time t
and fi+1(t) is the number of the outgoing vehicles from cell i at time
t. The objective function must be designed for the entire of street to
analyse the efficiency of the traffic system in terms of congestion of
vehicles. Equation 11 is designed for single cell, so the overall delay
for all cells is calculated as:

D t( ) � ∑
Y

i�1
Δt ni t( ) − fi+1 t( ),[ ] (12)

Y = 4 is the number of CTM sub-cells for each road network.
Finally, the objective function is achieved based on Equation 12 as:

minD t( ) � min∑
Y

i�1
Δt ni t( ) − fi+1 t( ),[ ] (13)

From Equation 13, it can be concluded that when ni(t) � fi+1(t)
the entities in cell i are being continuously transferred to cell i + 1,
resulting in an empty state for cell i at the specific time t. Theoretical
convergence to a local minimum is established under the
assumption that the objective function is continuously
differentiable with a Lipschitz continuous gradient. Additionally,
the stochastic noise in the gradient approximation arising from
simultaneous perturbations is assumed to be zero-mean with
bounded variance (Jia et al., 2023) Finally, some of the
parameters of this model, like the 4-cell depth, has been set with
any reference to real-world scenario. We cannot exclude that a
different parametrisation could bear upon the system performance
as illustrated in Section 3.

2.6 Constraints

Note that, several assumptions are made to simplify the
simulation process and allow for a more detailed investigation into
specific aspects of the study. As mentioned above, the fixed length
yellow light is not considered. The sum of the green light duration for
all traffic lights at an intersection S{i,INfr,k,green} and S{i,INl,k,green} where
k � {w, e, s, n} is considered as cycle time as follows:

C � ∑
n

k�w
S i,INfr,k,green{ } + S i,INl,k,green{ } (14)

The travel time required by drones to change routes is not
considered. By neglecting the travel time for route changes, the

simulation focuses more narrowly on specific aspects of drone
behaviour, such as counting vehicles and the communication
with the traffic unit layer. Finally, we define S{i,INfr,k,green}min,
S{i,INfr,k,green}max as the minimum and maximum parameters of
green traffic lights Li,INfr,k, respectively, and S{i,INl,k,green}min,
S{i,INl,k,green}max for Li,INl,k green traffic lights by considering
Equation 14.

3 Results

In this Section, we show the results of a series of tests aimed at
evaluating the efficiency and robustness of the traffic monitoring
and management system based on the adjustment of the green light
duration of traffic signals using the SPSA optimisation control. In
the following, we refer to this as the adaptive green light duration
condition. In particular, we run three types of tests: i) test A, a test in
which a fixed green light duration condition is compared with the
adaptive green light duration with traffic data generated by drones
monitoring the road network as illustrated in Figure 2. ii) test B, a
test in which the adaptive green light duration condition with data
generated by a set of fixed camera system is compared with the
adaptive green light duration with traffic data generated by drones
monitoring the road network; iii) test C, a test in which the adaptive
green light duration with data generated by drones monitoring the
road network is subjected to a progressively higher volume of traffic
entering the road network. In all the three types of tests, the traffic is
simulated with the CTM model. The length of each cell of the CTM
model is set to 50 m, and the maximum capacity of each cell for the
Li,INfr,k lane is 10 vehicles and for the Li,INl,k lane is 5 vehicles, with
i ∈ 1, 2, 3 referring to the intersections, and k ∈ W,E,N, S referring
to the cardinal points. Description and value of parameters are set as
shown in Tables 1, 2, respectively.

3.1 Test A: comparison between fixed and
adaptive green light duration conditions

This is the test in which we compare the development of traffic
in a condition in which traffic lights operate with a fixed signalling
duration with the development of traffic in a condition in which
traffic lights adjust the green light duration with the SPSA
optimisation algorithm using data generated dy drones. We
assess the system’s performance using a constant input flow with
20 vehicles per minute entering Li,INfr,N and Li,INfr,S lanes at cell 1,
and 10 vehicles per minute entering Li,INl,N and Li,INl,S lanes at cell
1 ∀i ∈ 1, 2, 3. Note that, the inflow of north/south roads is two times
more than west/east roads. It is also assumed that, at the beginning
of each simulation run, a total number of 20 and 10 vehicles are
distributed randomly among the four CTM cells of Li,INfr,k and
Li,INl,k, respectively. We have executed 50 differently seeded
simulation runs, differing in the initial distributions of the
20 vehicles among the cells of the Li,INfr,k. In each simulation
run, each traffic light completes 22 full cycles. While during the
first 10 cycles, the duration of each green light phase is fixed (i.e., 20 s
for phase 1 and 3; 10 s for phase 2 and 4), in the last 12 cycles this
duration is set by the SPSA optimisation control to manage traffic as
monitored by drones. Note that each simulation run lasts 1,320 s,
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which is less than the average drone battery life which ranges from
approximately 1,200 to 1,800 s, allowing us to model drones’
continuous operation without mid-flight stop for battery
recharging. To evaluate the performances of the traffic
monitoring and management system, we have kept track of the
total number of cars in: i) Li,INfr,W and Li,INfr,E lanes at the beginning
of phase 2 of each traffic light cycle; we refer to this asNC −WEi,fr,
with intersection i ∈ 1, 2, 3 (see Figure 6a); ii) Li,INl,W and Li,INl,E

lanes at the beginning of phase 3 of each traffic light cycle; we refer to
this asNC −WEi,l, with intersection iwith i ∈ 1, 2, 3 (see Figure 6b);
iii) Li,INfr,N and Li,INfr,S lanes at the beginning of phase 4 of each
traffic light cycle; we refer to this asNC −NSi,fr, with intersection i
with i ∈ 1, 2, 3 (see Figure 6c); iv) Li,INl,N and Li,INl,S lanes at the
beginning of phase 1 of each traffic light cycle; we refer to this as

NC −NSi,l, with intersection i with i ∈ 1, 2, 3 (see Figure 6d). Note
that the traffic light phases at which cars are counted, correspond to
points in time that follow the end of the green light for the
corresponding lanes. That is, times in which the number of cars
is expected to be at its minimum value.

The results of our evaluation tests are shown in Figure 6, where
Figures 6a,b refer to the evolution of traffic on the west/east
direction, and Figures 6c,d refer to the evolution of traffic on the
north/south direction at each intersection i with i ∈ 1, 2, 3. If we
focus our attention on the evolution of traffic during the first
10 cycles, when the duration of the green light is fixed, we see
that, the most frequently observed values for the number of cars in
the west/est direction are those close to zero (see the values ofNC −
WEi,fr in Figure 6a, and the values ofNC −WEi,l in Figure 6b, from
cycle 0–10). This means that at every cycle, the “fixed” duration of
the green light in phase 1 and 2 is sufficient to empty the lanes
Li,INfr,W, Li,INfr,E, Li,INl,W, and Li,INl,E. Conversely, the most
frequently observed values for the number of cars in the north/
south direction are those close to 35 for the vehicles moving forward
and turning right (see the values of NC −NSi,fr in Figure 6c, from
cycle 0–10) and 15 for the vehicles turning left (see the values of
NC −NSi,l) in Figure 6d, from cycle 0–10). This means that at every
cycle, the “fixed” duration of the green light in phase 3 and 4 is not
sufficient to empty the lanes Li,INfr,N, Li,INfr,S, Li,INl,N, and Li,INl,S. In
other words, given the input flow with 20 vehicles per minute
entering Li,IN,N and Li,IN,S lanes at cell 1, and 10 vehicles per
minute entering Li,IN,W and Li,IN,E lanes at cell 1 ∀i ∈ 1, 2, 3, the
fixed duration of green light tends to generate traffic on the north/
south directions.

From cycle 10, to the end of the simulation time (i.e., cycle 22),
we see that the traffic evolves in a radically different way in response
to the activation of the adaptive traffic unit, which by receiving data
on traffic from drones, it increases the duration of the green light for
phase 3 (i.e., S{2,INfr,N,green}, S{2,INfr,S,green}) and phase 4
(i.e., S{2,INl,N,green}, S{2,INl,S,green}), while reducing the green light
duration of phase 1 (i.e., S{2,INfr,W,green}, S{2,INfr,E,green}), and phase
2 (i.e., S{2,INl,W,green}, and S{2,INl,E,green}). This effect, starting at cycle
10 until cycle 13, is illustrated in Figure 7, which shows themean and
standard deviation of the duration of the green signal traffic lights

TABLE 1 Table of symbols.

Description Notation Unit

Intersection R{i,j,k} -

Input Flow INfr/l -

Output Flow OUTfr/l -

Intersection Lane L{i,j,k} -

Traffic Signal S{i,j,k,c} s

Number of Vehicle in Cell ηi(t) -

Incoming Flow into Cell i fi -

Outgoing Flow from Cell i fi+1 -

Reverse wave speed v km/h

Free flow speed wf km/h

Step time Δt s

Simulation duration T s

Cycle time C s

Drone speed SDrone m/s

Max duration of green traffic light for fr lane S{i,INfr ,k,green}max s

Min duration of green traffic light for fr lane S{i,INfr ,k,green}min s

Max duration of green traffic light for l lane S{i,INl ,k,green}max s

Min duration of green traffic light for l lane S{i,INl ,k,green}min s

Maximum Traffic Flow qmax veh/hr

Flight Altitude of Drone h m

Dimension of Cellular Cell Celldimension m

Camera Field of View θ degree

Drone DR{i,j} -

Objective Function D(t) s

Green Light Duration G s

Gradient Estimation g(xk) -

Positive Scalar C -

Positive Coefficients a, α, A, γ -

TABLE 2 Values of the simulation parameters used during the evaluation
tests.

Parameter Notation Value

Reverse wave speed v 63 km/h

Free flow speed wf 60 km/h

Step time Δt 2 s

Simulation duration T 1320 s

Cycle time C 60 s

Drone speed SDrone 16m/s

Max duration of green traffic light for fr lane S{i,INfr ,k,green}max 26 s

Min duration of green traffic light for fr lane S{i,INfr ,k,green}min 14 s

Max duration of green traffic light for l lane S{i,INl ,k,green}max 14 s

Min duration of green traffic light for l lane S{i,INl ,k,green}min 6 s
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over 50 differently seeded simulation runs. This has an immediate
effect on traffic as shown in Figure 6. In particular, we observe that
from cycle 10 to cycle 22, the most frequently observed values for the
number of cars in the north/south direction generate a decreasing
trend to about zero for vehicles moving forward and turning right
(see the values of NC −NSi,fr in Figure 6c, from cycle 10–22) and
between 4 and 6 for vehicles turning left (see NC −NSi,l in
Figure 6d, from cycle 10–22). This means that the SPSA
optimisation algorithm manages to reduce the traffic on the
north/south direction in spite of the input flow described above.
At the same time, the most frequently observed values for the
number of cars in the west/east direction generate a slightly
increasing trend that reaches the threshold of 7 vehicles (see the
values ofNC −WSi,fr in Figure 6a, and ofNC −WSi,l in Figure 6b,
from cycle 10–22). This means that, given that the duration of the
traffic light cycle is fixed, the adjustment on the duration of the green
light for all phases inevitably causes a slight increase in the traffic on
the west/east direction in response to a large decrease in traffic in the
north/south direction.

3.2 Test B: comparison between camera
generated and drones generated traffic data

To provide a comparative framework that helps to assess the
performance of the drones-based system, we have compared the

development of traffic in a condition in which traffic lights adjust the
green light duration with the SPSA optimisation algorithm using
data generated by a fixed set of cameras, with the development of
traffic in a condition in which traffic lights adjust the green light
duration with the SPSA optimisation algorithm using data generated
by drones. In the fixed camera condition, we assume that each
intersection is equipped with four stationary cameras each oriented
toward a different cardinal point. Each camera has a field of view of
50 m sufficient to correctly count cars in the last cell (i.e., cell 4, the
cell in the immediate proximity of the traffic light) of the viewed
lanes. Thus, contrary to the drones-based system which delivers data
related to the number of cars along the entire flying path, cameras
can only generate and deliver accurate data related to the cells closest
to the traffic lights. Note that our aim is to model a generic camera-
based system that we assume with a limited view of the roads
compared to the drones-based system. This assumption follows
from general considerations on practical aspects related to the
specifications of cameras used for this type of application, as well
as on other aspects such as the height at which cameras are usually
mounted. This limitation may not necessarily apply to all camera-
based systems for traffic monitoring. This issue will be discussed
in Section 4.

In the tests, the initial traffic conditions and the frequency of cars
entering into the road network as well as any parameters of the
system remain unchanged from previous set of tests illustrated in
Section 3.1. Moreover, as in tests A, we have executed 50 differently

FIGURE 6
Graphs showing the evolution of traffic monitored by showing the frequency of the different values of (a) NC −WEi,fr , (b) NC −WEi,l , (c) NC − NSi,fr ,
and (d) NC − NSi,l, for every intersection i with i ∈ 1,2,3, at every traffic light cycle from cycle 0 to cycle 22. Note that, the optimisation algorithm starts
operating at cycle 10 until cycle 22.
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seeded simulation runs, differing in the initial distributions of the
20 vehicles among the cells of the Li,INfr,k. In each simulation run,
each traffic light completes 22 full cycles. While during the first
10 cycles, the data for the SPSA optimisation algorithm is generated
by fixed cameras, in the last 12 cycles the data for the SPSA
optimisation algorithm is generated by drones.

The results of our evaluation tests are shown in Figure 8, where
Figures 8a,b refer to the evolution of traffic on the west/east
direction, and Figures 8c,d refer to the evolution of traffic on the
north/south direction at each intersection i with i ∈ 1, 2, 3. At the
beginning of the simulation, green lights are assigned to Li,INfr,W/E

lane of each intersection, resulting in a near-zero vehicles at cycle
0 in this lane of each traffic light or unit. This can be clearly seen in
Figure 8a, which shows the number of cars at the beginning of phase
2 of each cycle of each traffic light or unit. However, we notice that,
while the system operates on cameras the number of cars at each
intersection tends to increase until roughly 20 at cycle 10 (see
Figure 8a from cycle 0–10). On the contrary, on the Li,INfr,N/S

lane of each intersection, we observe a progressive decrease in
the number of cars from cycle 0 to cycle 10. This can be seen
from Figure 8c, showing the number of cars at the beginning of
phase 4 of each cycle of each traffic light or unit. This indicates that
while operating on camera, the traffic management system resolves
congestion on the Li,INfr,N/S lanes while inevitable producing more
traffic on the Li,INfr,W/E lane of each intersection. From cycle 11 to
cycle 22, when the traffic management system operates on drones
data, we observe an identical trend on traffic that sees cars increasing
on the Li,INfr,W/E lane of each intersection and cars decreasing on the
Li,INfr,N/S lane of each intersection (see Figures 8a,c from cycle 11 to
cycle 22). Nevertheless, if we compare the traffic trend generated by
camera data (from cycle 0 to cycle 10) with the trend generated by
drones data (from cycle 11 to cycle 22), we clearly see that the
management system is more effective in managing overall traffic on
both Li,INfr,W/E and Li,INfr,N/S lanes when operating on drones
generated data.

The traffic develops in a similar way on the Li,INl,W/E and
Li,INl,N/S lanes of each intersection, with a progressive decrease in
traffic on the Li,INl,N/S lane of each intersection (see Figure 8d), and a
progressive increase on traffic on the Li,INl,W/E lane of each
intersection (see Figure 8b). The management system continues
to operate more effectively when data is generated by drones (see
Figures 8b,d, from cycle 11 to cycle 22) than when data is generated
by cameras (see Figures 8b,d, from cycle 0 to cycle 10). The results
shown in Figure 8 indicate that the SPSA algorithm shows limited
effectiveness when operated by camera generated data. This happens
when the cells monitored by cameras (i.e., the cell in the proximity of
the traffic lights) reach full capacity on both Li,INfr,W/E and Li,INfr,N/S

lanes, or on Li,INl,W/E and Li,INl,N/S lanes. Under this condition the
camera-based system, due to its limitations, can not detect any
further increase in traffic congestion and the optimization control
convert to the fix control strategy as can be seen in Figure 9 after
cycle 18. Consequently, it cannot provide sufficiently informative
data to the SPSA algorithm to keep on effectively managing traffic.

3.3 Test C: adaptive green light duration on a
progressively higher volume of traffic

In a further set of post-evaluation tests, we have evaluated the
robustness of the SPSA optimisation algorithm to cope with a
progressively higher volume of vehicles entering into the road
network. In particular, we have considered different scenarios, in
which the input flow of vehicles at intersection i � 2 is set in the
following: for the north-south direction to input flow is fixed in all
scenarios to 40 vehicles with 20 vehicles entering cell 1 of lane
L2,IN,N, 20 vehicles entering cell 1 of lane L2,IN,S. Conversely, the
input flow for the west-east direction increases from 20 to
40 vehicles, with an initial scenario in which 10 vehicles enter
cell 1 of lane L2,IN,W, and 10 vehicles enter cell 1 of lane L2,IN,E.
In each of the following scenarios, the numbers of vehicles entering

FIGURE 7
Graph showing the mean value and standard deviation, over 50 simulation runs, of the optimised duration of the green signals of traffic light 2, for
phase 1 (black line, corresponding to signals S{2,INfr ,W,green}, S{2,INfr ,E,green}), phase 2 (dark grey line, corresponding to signals S{2,INl ,W,green}, and S{2,INl ,E,green}),
phase 3 (medium grey line, corresponding to signals S{2,INfr ,N,green}, S{2,INfr ,S,green}), and phase 4 (light grey line, corresponding to signals S{2,INl ,N,green},
S{2,INl ,S,green}). Traffic data collected by drones.
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the Li,IN,W and Li,IN,E is progressively increased by 2 vehicles until
to the point at which the input flow of vehicles is the same for
both directions (i.e., 40 vehicles north-south and 40 west-east).
This gives rise to the following 6 scenarios: 40/20, 40/24, 40/28,
40/32, 40/36, 40/40, in which the first number refers to the vehicles
entering the north-south direction and the second number those
entering the west-east direction. In each scenario, at time 0 of each
simulation run there are 30 randomly positioned vehicles among the
road cells. For each scenario, we run 50 differently seeded runs in
which we vary the initial position of these 30 vehicles. During these
tests, we computed: i) ΦNS as the fraction of the number of vehicles
leaving lanes Li,INfr,N, Li,INl,N, Li,INfr,S, Li,INl,S, to the total number of
vehicles entering the north-south direction; ii)ΦWE as the fraction of
the number of vehicles leaving lanes Li,INfr,W, Li,INl,W, Li,INfr,E,
Li,INl,E, to the total number of vehicles entering the north-
south direction.

Figure 10 shows the results of the robustness test by illustrating,
for each scenario, and for each traffic light cycle, the frequency
occurrence for ΦNS > � 1 and ΦWE > � 1 out of 50 runs per
scenario. When these two metrics are bigger than 1, it means
that the vehicles exiting are more than the vehicles entering the

respective lanes, with a relatively fluid traffic flow. Additionally,
when the number of vehicles exiting equals the number of
vehicles entering, traffic conditions remain stable, preventing the
occurrence of traffic jams. Conversely, when these two metrics are
not bigger than 1, this is a sign that the traffic is increasing. The
graph in Figure 10 clearly shows that, for scenarios 40/20, 40/24,
40/28, the traffic management system manages to keep the traffic
fluid by adjusting the green light duration of the traffic light at
intersection 2. For scenario, 40/32, 40/36, 40/40 the traffic
management system progressively lose effectiveness with a clear
increase of volume of traffic indicated by the decrease of the
frequency of occurrence for ΦNS > 1 and ΦWE > 1. It is
interesting to notice that, beyond scenario 40/28, the traffic
management system realises that the traffic is increasing in both
directions (north-south and west-east). Thus, it tries to reduce the
traffic first in one direction and then in the other one. However,
since that the duration of the traffic light cycle is fixed, the actions
aimed at mitigating the traffic in one direction tend to produce the
opposite effect on the other direction. Given the progressively high
input flow of vehicles, the system is not capable of re-establishing a
fluid traffic condition in both directions.

FIGURE 8
Graphs showing the evolution of traffic monitored by showing the frequency of the different values of (a) NC −WEi,fr , (b) NC −WEi,l , (c) NC − NSi,fr ,
and (d) NC − NSi,l, for every intersection i with i ∈ 1, 2, 3, at every traffic light cycle from cycle 0 to cycle 22. The optimization algorithm utilizes data
collected from fixed cameras during cycles 0 to 10, and from drones during cycles 10 to 22.
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4 Conclusion

This paper describes and evaluates a simulated drones-based
system for traffic surveillance and management. In our model, the
drones patrol different parts of the road network by counting cars
forming the urban traffic. The number of cars are communicated by
drones to traffic lights, which, by running the SPSA optimisation

algorithm, adapt the green light duration to resolve any eventual
congestion. In our study, the road network is composed of eight
roads and three signalled intersections. The roads are patrolled by
four drones deployed to monitor the road traffic by flying along
predefined paths. We have evaluated the drones-based system by
monitoring the traffic on the road network under two different
conditions: with fixed (predefined green light duration) and with

FIGURE 9
Graph showing the mean value and standard deviation, over 50 simulation runs, of the optimised duration of the green signals of traffic light 2, for
phase 1 (black line, corresponding to signals S{2,INfr ,W,green}, S{2,INfr ,E,green}), phase 2 (dark grey line, corresponding to signals S{2,INl ,W,green}, and S{2,INl ,E,green}),
phase 3 (medium grey line, corresponding to signals S{2,INfr ,N,green}, S{2,INfr ,S,green}), and phase 4 (light grey line, corresponding to signals S{2,INl ,N,green},
S{2,INl ,S,green}). Traffic data collected by fixed camera.

FIGURE 10
Graph showing the frequency of occurrence for ΦNS > � 1 and ΦWE > � 1 out of 50 runs per scenario, defined by the number of input flow vehicles
for the north-south direction and the number of input flow vehicles for the west-east direction.
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adaptive (i.e., SPSA determined) green light duration. We have also
compared the drones-based system with a sensor-network based
surveillance systemmade of cameras placed at the road intersections
pointing to the four different legs of each signalled intersection.
Compared to the drones-based system, the sensor-network based
system is conceived limited in its capacity to count cars, since the
cameras precisely count cars only in the proximity of traffic lights1.
The evaluations are run under specific initial traffic conditions and
predefined number of cars entering the road network with more cars
entering the N/S than the W/E lanes. We show that with the fixed
light duration, the number of cars on the N/S lanes (i.e., the most
congested lanes) remains constant with cars jammed entire the
roads at each intersection. With the adaptive green light duration,
the number of cars on the N/S lanes tends to progressively decrease
until no cars jammed entire the roads at each intersection. This is the
result of the effects of the SPSA optimisation algorithm which
increases the green light duration for the N/S lanes in response
to data generated by drones. Since the increase of the green light
duration for the N/S lanes corresponds to a decrease of the green
light duration for the W/E lanes, the number of cars on these lanes
tends to slightly increase. In summary, we have shown that, contrary
to the fixed green light duration condition, the adaptive green light
duration condition is effective in resolving traffic congestion
determined by the flux of incoming cars into the network. The
comparison between the drones-based and the sensor-network
based system demonstrates that the drones-based system is more
effective than the sensor-network based system in resolving traffic
congestion.

We acknowledge that, as a first model evaluating a specific urban
traffic monitoring andmanagement system based on drones counting
cars and optimised system adjusting green light duration, several
simplification have been made. On top of those already discussed in
2.6, in our model we assume that four drones are sufficient to
exhaustively patrol the entire road network. This may not
necessarily be the case especially in large cities, where a too high
number of drones may be required to exhaustively patrol the road
network. In this study, we do not look at phenomena related to the
ratio between number of drones and extension of the road network.
Nevertheless, these issues may be of absolute relevance for a system
where traffic is monitored by drones andmanaged by an optimisation
algorithm working on drones generated data. If the road network is
too large to be exhaustively patrolled by the available drones, several
issues emerge related to the capability of drones: i) to position
themselves in order to maximise traffic observability; ii) to
redeploy themselves in response to changes in the traffic
conditions; iii) to manage energy efficiently to maximise battery-
life and operation time.Moreover, in this study we do not consider the
possibility of replacing drones once their batteries are exhausted to

monitor and manage traffic for a period of time longer than the
average drone battery life. This can be achieved by creating one or
more charging points where drones can return and autonomously
recharge their batteries. Given that drones have the capacity to take off
and to land vertically, charging points could be created in urban
environment by exploiting already existing facilities, such as flat roofs
of sufficiently high buildings.We acknowledge that a time complexity/
computational cost analysis of the drone-based system is required to
correctly evaluate and effectively tackle some of the above mentioned
issues which significantly impact on the possibility to deploy this
system in real-world conditions.We leave this analysis to future work.

Another aspects which we did not consider is related to the
synchronisation of traffic lights behaviour. Clearly, a system in
which traffic lights located on the same road behave in a
synchronous way may be potentially more effective in resolving
traffic congestion than a system like the one we modelled in which
traffic lights do not interact. The synchronisation or any other form
of coordination between traffic lights can not be achieved by the
system we described in this paper, since there is no means for traffic
lights to interact and coordinate. This is another important issue that
we intend to explore in future work.

In this study we have compared the drones-based system with a
sensor-network based system intentionally conceived limited in its
capacity to monitor the road network. Future work may focus on
progressively reducing the limitations imposed to the sensor-network
based system to quantitatively evaluate the extend to which
observability related issues influence the effectiveness of the
algorithms adapting the green light duration. This will also be the
subject of future work. Finally, it is worth to consider that the use of
drones in scenarios like the one illustrated in this paper may require
modifications to the current regulations that governed drones
operations in terms of both operational and technical requirements.
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