
www.frontiersin.org February 2011 | Volume 2 | Article 4 | 1

Original research article
published: 24 February 2011

doi: 10.3389/fgene.2011.00004

A primer on high-throughput computing for genomic
selection

Xiao-Lin Wu1,2*, Timothy M. Beissinger1,3, Stewart Bauck4, Brent Woodward4, Guilherme J. M. Rosa2,5,
Kent A. Weigel1, Natalia de Leon Gatti3 and Daniel Gianola1,2,5

1 Department of Dairy Science, University of Wisconsin, Madison, WI, USA
2 Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
3 Department of Agronomy, University of Wisconsin, Madison, WI, USA
4 Igenity Livestock Business Unit, Merial Limited, Duluth, GA, USA
5 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA

High-throughput computing (HTC) uses computer clusters to solve advanced computational
problems, with the goal of accomplishing high-throughput over relatively long periods of time.
In genomic selection, for example, a set of markers covering the entire genome is used to train
a model based on known data, and the resulting model is used to predict the genetic merit
of selection candidates. Sophisticated models are very computationally demanding and, with
several traits to be evaluated sequentially, computing time is long, and output is low. In this
paper, we present scenarios and basic principles of how HTC can be used in genomic selection,
implemented using various techniques from simple batch processing to pipelining in distributed
computer clusters. Various scripting languages, such as shell scripting, Perl, and R, are also very
useful to devise pipelines. By pipelining, we can reduce total computing time and consequently
increase throughput. In comparison to the traditional data processing pipeline residing on the
central processors, performing general-purpose computation on a graphics processing unit
provide a new-generation approach to massive parallel computing in genomic selection. While
the concept of HTC may still be new to many researchers in animal breeding, plant breeding,
and genetics, HTC infrastructures have already been built in many institutions, such as the
University of Wisconsin–Madison, which can be leveraged for genomic selection, in terms
of central processing unit capacity, network connectivity, storage availability, and middleware
connectivity. Exploring existing HTC infrastructures as well as general-purpose computing
environments will further expand our capability to meet increasing computing demands posed
by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic
selection via better statistical models, faster solutions, and more competitive products (e.g.,
from design of marker panels to realized genetic gain). Eventually, HTC may change our view
of data analysis as well as decision-making in the post-genomic era of selection programs in
animals and plants, or in the study of complex diseases in humans.

Keywords: Bayesian models, genomic selection, general-purpose computing, high-throughput computing,
parallel programming, pipelining

solutions to a certain problem requires several weeks or months.
This is especially true in bioinformatics, computational biology,
and quantitative genetics and breeding. The HTC community
is also concerned with robustness and reliability of jobs over a
long-time scale, that is, being able to create a reliable system from
unreliable components.

Another related concept, yet somewhat different, is high-per-
formance computing (HPC; Dowd and Severance, 2010). HPC
tasks are characterized as needing large amounts of computing
power for short periods of time, often measured in terms of float-
ing point operations per second (FLOPS). Typically, HPC systems
handle tightly coupled parallel jobs and, as such, they must execute
within a particular site with low-latency interconnects, whereas
HTC systems can handle independent, sequential jobs that can
be individually scheduled on many different computing resources

IntroductIon
Years ago, heavy computational work relied on a large central-
ized mainframe or a supercomputer. These machines, however,
are very expensive, and availability is limited. On the other hand,
personal computers (PCs) are becoming faster and cheaper. Thus,
users can move away from centralized mainframes and purchase
large numbers of PCs. Workstations, each owned by a user or
user group, have become very popular in recent years. This is an
environment of distributed ownership, which can be organized
to support what is called high-throughput computing (HTC), by
virtual of making effective use of all available computing resources
while expanding the resources available to each individual user.
Conceptually, HTC refers to the use of many computing resources
over relatively long periods of time to accomplish a computational
task (Thain et al., 2005). Nowadays, it is common that computing

Edited by:
Hans Cheng, United States
Department of Agriculture – Agricultural
Research Service, USA

Reviewed by:
Ashok Ragavendran, Purdue University,
USA
Mario Calus, Wageningen UR Livestock
Research, Netherlands
Theo Meuwissen, Norwegian
University of Life Sciences, Norway

*Correspondence:
Xiao-Lin Wu, Department of Dairy
Science, University of Wisconsin, 1675
Observatory Drive, Madison, WI
53706, USA.
e-mail: nick.wu@ansci.wisc.edu

http://www.frontiersin.org/
http://www.frontiersin.org/livestock_genomics/archive
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/livestock_genomics/10.3389/fgene.2011.00004/abstract
http://www.frontiersin.org/livestock_genomics/10.3389/fgene.2011.00004/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=25094&d=1&sname=Xiao_LinWu&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=25101&d=1&sname=TimothyBeissinger&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=14494&d=1&sname=GuilhermeRosa&name=Science

Frontiers in Genetics | Livestock Genomics February 2011 | Volume 2 | Article 4 | 2

Wu et al. High-throughput computing for genomic selection

 selection, or genomic selection (Meuwissen et al., 2001), which com-
prises methods that use genotypic data across the whole genome
to predict a trait with accuracy sufficient to allow selection based
on that prediction (e.g., Goddard and Hayes, 2007; Habier et al.,
2009; Heffner et al., 2009). Genomic selection differs from classical
breeding programs in that phenotypes are no longer used to select
animals but rather to train a prediction model in a genomic selection
program. Simulation and empirical studies have shown that genomic
estimated breeding values (GEBV) based solely on individuals’ geno-
types are considerably accurate (Meuwissen et al., 2001; Habier et al.,
2007; Legarra et al., 2008; Lorenzana and Bernardo, 2009; Van Raden
et al., 2009; Zhong et al., 2009), yet they depend on characteristics of
the populations under selection (Hayes et al., 2009).

Nevertheless, there are many challenges for applications of
genomic selection, both methodologically and computationally.
Genomic selection emerged out of the desire to exploit high-density
parallel genotyping technologies for prediction of genetic values
for complex traits (Meuwissen et al., 2001). With a huge number
of markers fitted in the model, the number of predictor effects (p)
to be estimated is far more than the number of observations (n).
This is referred to as the “small n, large p” paradigm or more vividly
as “the curse of dimensionality.” From the statistical viewpoint, it
means that there are not enough degrees of freedom to estimate
all predictor effects simultaneously using least squares methods.
In addition, a high degree of multicollinearity may exist among
markers, leading to an over-parameterized model. To cope with
these difficulties, various sophisticated statistical methods have
been proposed, such as Bayesian parametric and non-parametric
regression models with a large number of parameters (reviewed by
Hamblin et al., 2011). Computing these models is not trivial, and
some can take weeks or months to finish. Thus, long computing
time and low throughput has become a bottleneck, which can limit
application of these methods in genomic selection.

High-throughput computing is a new-generation solution to
computing for genomic selection. To see what differences it can
bring to genomic selection, we begin with a simple case in which
147 Angus cattle were genotyped with the Illumina Bovine SNP50
BeadChip. After data quality control (QC) and screening, a total
of 37,892 polymorphic single nucleotide polymorphism (SNP)
markers are retained for the analysis. The goal is to select a subset
of markers as a panel to be used in the prediction of genetic merit
for a quantitative trait, say, marbling score. As an initial illustration,
we evaluate effects of these markers, one at a time, on estimated
breeding values (EBV) for marbling score. This is a simple regres-
sion analysis. An R function is defined, namely sma(xi,datf = test-
Data), where xi is an index variable for marker genotypes, and
testData is a data frame that contains both genotypes and EBV for
marbling score. This function outputs the estimated effect of the
marker under question, raw P-value, and adjusted P-value using
a Bonferroni correction (Abdi, 2007). Pedigree is ignored in this
illustration for the sake of simplicity. Now, we run single-marker
analysis sequentially for all 37,892 markers.

> xi = 2:37892

> system.time(out<-lapply(xi,sma))

 user system elapsed

214.414 0.000 214.444

across multiple administrative boundaries, and can achieve their
goals using various grid computing technologies and techniques
(Berman et al., 2003).

Successful HTC (HPC) applications span many industrial, gov-
ernment, and academic sectors, including bio-science and human
genome applications (e.g., for drug discovery, disease detection/
prevention), computer-aided engineering (e.g., automotive design
and testing, transportation, structural, mechanical design), chemical
engineering (e.g., process and molecular design), economics/finance
(e.g., risk analysis, portfolio management, automatic trading),
geo-science and geo-engineering (e.g., oil and gas exploration and
reservoir modeling), weather forecasting (e.g., near term weather
prediction and climate/earth modeling), and so on. Reportedly,
work HPC market exceeds $10 billion and is steadily increasing
(Eadline, 2009). In bioinformatics, many interesting applications
have emerged. The following are a few examples. A high-throughput
distributed phylogenetics platform, MultiPhyl, has been developed,
which is capable of using the idle computational resources of many
heterogeneous non-dedicated machines to form a phylogenetics
supercomputer (Keane et al., 2007). This package allows a user to
upload hundreds or thousands of amino acid or nucleotide align-
ments simultaneously and perform computationally intensive
tasks such as model selection, tree searching, and bootstrapping of
each of the alignments, which may otherwise take weeks or even
months to finish if using sequential computing. Likewise, molecular
replacement (MR) is a popular protein crystallographic technique
that exploits the structural similarity between proteins that share
some sequence similarity. MR calculations, however, is very time-
and labor-consuming because of the need to trial permutations
of search models, space group symmetries, and other parameters.
Nevertheless, MR calculations are embarrassingly parallel and thus
ideally suited to distribute computing. This has motivated the devel-
opment of a portable web-based application, MrGrid, to manage
the distribution of multiple MR runs to the available nodes by way
of grid computing (Schmidberger et al., 2010). Grid-based HTC
has also been used to automate analysis of genomes and metabolic
pathways (Sulakhe et al., 2005; Maltsev et al., 2006).

This paper presents an introductory reading about HTC in the
context of genome-enabled selection (Meuwissen et al., 2001). In
genomic selection, computing throughput is of primary concern,
and computing time is a limiting factor. From a practical viewpoint,
we do not make a specific distinction between HTC and HPC, and
we use them interchangeably. The outline of the paper is as follows:
first, we illustrate examples of the differences that HTC can bring to
genomic selection. Next, we describe some basic components and
mechanisms for parallel computing and pipelining. Finally, discus-
sions are given on some related issues such as parallel programming
and existing HTC environments and infrastructures, and how these
techniques and infrastructures can be explored to further expand
our capability in the computing and decision-making involved in
genomic selection.

Why htc In genomIc selectIon?
The availability of genome-wide dense marker maps for many spe-
cies of plants and animals provides opportunities for incorporating
genomic information into practical breeding programs (reviewed
by Hamblin et al., 2011). This is known as whole genome-enabled

http://www.frontiersin.org/livestock_genomics
http://www.frontiersin.org/livestock_genomics/archive

www.frontiersin.org February 2011 | Volume 2 | Article 4 | 3

Wu et al. High-throughput computing for genomic selection

program, each implementing 10,000 iterations (with a burn-in of
1,000 iterations). All jobs were submitted and run on a HTC cluster
at UW–Madison. It took less than 3 h for all 10 parallel jobs to finish
(Figure 1). Nevertheless, the posterior distributions of unknown
parameters were similar, regardless of whether they were obtained
from a single long chain or pooled samples from multiple short
chains (data not presented). The difference would be more striking
if several traits are to be evaluated. Assume that we have 10 traits,
each analyzed by simulating 100,000 iterations. If we run these jobs
sequentially, given the same computing specifications, the comput-
ing would take up to 10 days. However, in an HTC environment, we
may parallelize 100 jobs easily with posterior samples for each trait
collected from a set of 10 jobs. Then, the computing time would
still be approximately 3 h.

From the above comparison, it is clear that parallel computing
brings higher throughput, as compared with sequential comput-
ing, and total computing time for achieving the same amount of
throughput is dramatically reduced.

Parallel comPutIng – Where We can get started
Parallel comPutIng and measurements of sPeed-uP In
comPutIng
Parallel computing uses multiple processing elements simulta-
neously to solve a problem. In general, parallel computing can
be achieved at different levels: bit-level, instruction level, data
parallelism, and task parallelism. The first category (bit-level)
is related to the development of the computer hardware. The
 second category (instruction level) refers to parallelism achieved
by computer programs. Data parallelism is parallelism inherent in

The sequential computing took 214 s (3.57 min) on one of
our workstations. Can we improve the computing? The answer is
“yes,” because these computing jobs are “embarrassingly” parallel
(i.e., each marker can be evaluated independently), and because
we have multiple-core processor workstations that allow so called
“multi-tasking.” Next, we run these single-marker analyses in a
parallel setup.

> intall.packages(“multicore”,dependencies=T)

> library(multicore)

> system.time(out<-mclapply(xi,SMA))

 user system elapsed

172.225 172.892 61.503

In the above example, the R “multicore” package1 was used,
which supported running parallel computations on machines
with multiple-cores or central processing units (CPUs). With this
package, jobs can share the entire initial workspace, and appropri-
ate methods are provided for collection of results. Therefore, by
changing the way that jobs are run, computing is approximately
3.67 times faster (reduced to from 214 to 61 s) on a quad-core com-
puter. Nevertheless, we can still do better, because we have several
Linux workstations that can be connected as a cluster on the work-
ing site (e.g., UW Dairy Science Department), and we even have
a number of parallel computing back-ends on the UW–Madison
campus. When we submitted these jobs to run on a small cluster
of computers with 32 processors, it ran 25 to 30 times faster. Thus,
a computing job of this size could be completed in less than 8 s, as
compared to the original computing time of 214 s.

In real applications of genomic selection, single-marker analysis
is not preferred, because it considers only one maker at a time in the
model, and because of the over-parameterization problem instead,
we may wish to evaluate the effects of all the markers simultane-
ously using some parametric Bayesian methods, non-parametric
methods, or neural network approaches. In addition, we may wish
to compare predictive accuracy using different statistical methods
and choose the one that best fits the need. Running these sophisti-
cated models with genomic data, however, is computationally very
intensive. Now, consider the analysis of the testData data set using
the BLR package (de los Campos et al., 2009). The marker effects
in the model included those of all the 37,892 polymorphic SNPs
jointly on marbling score. The Markov chain Monte Carlo sam-
pling, which consisted of 100,000 iterations, took 23.1 h with only
147 animals! In reality, the computing time may be longer, because
we may have data from more animals and we may collect posterior
samples from longer chains. We can speed-up this computation by
running parallel MCMC (Ren and Orkoulas, 2007). Alternatively,
multiple chains can be run, instead of a single long chain, and the
posterior inference can be made using pooled samples from these
chains. Running multiple chains with dispersed initial values also
allows assessment of convergence (Gelman and Rubin, 1992). But
keep in mind that a certain period of burn-in iterations (i.e., dis-
carding an initial portion of a Markov chain sample) are needed
in order to minimize the effect of initial values on the posterior
inference. By way of parallel computing, we run 10 jobs of the BLR

1http://cran.r-project.org/

FiGure 1 | running multiple chains for Bayesian LASSO in a parallel
setting: (A) list of processes showing 10 running jobs; (B) computing
time for the 10 jobs (numbers on the x-axis indexes jobs and the
numbers on the y-axis represents computing time in hours).

http://www.frontiersin.org/
http://www.frontiersin.org/livestock_genomics/archive

Frontiers in Genetics | Livestock Genomics February 2011 | Volume 2 | Article 4 | 4

Wu et al. High-throughput computing for genomic selection

denoted by trait_1, trait_2, …, trait_k. A sequential execution
of the k jobs is to run an executable batch file containing the k
jobs in any order, such as:

modBayesB trait_1

modBayesB trait_2

……
modBayesB trait_k

In multiple-core computers, the above jobs can be run in parallel.
In a Linux workstation, for example, save the follow commands
into a text file, e.g., mytest.bat.

nohup modBayesB trait_1 > out1 &

nohup modBayesB trait_2 > out2 &

……

nohup modBayesB trait_k > outn &

Then, change the property of this text file to be executable.
Executing this file will lead to the n jobs running virtually in parallel
in the background of the workstation. Parallel computing within
a multi-core workstation is simple, but very limited in term of
scalable jobs and computing throughput.

comPuter clusters and batch queuIng systems
Computer clusters have been increasingly used in the past two
decades for high-throughput/performance computing. A cluster is
a collection of interconnected parallel or distributed machines that
may be viewed and used as a single, unified computing resource.
Clusters can consists of homogeneous or heterogeneous collection
of serial and parallel architecture computers, or even sub-clusters.
For example, a cluster may consist of twenty 16-core Linux worksta-
tions, which altogether will provide 320 CPU cores for computing.
The main specifications of each machine can be as follows: Dell
R410 servers/workstations; 2x Intel Xeon X5660, 6-core CPUs (12
cores total); 24G Memory; 2 × 3.5′ 500 GB SATA disk; Built in IPMI.
These computers will be linked to hubs which, in turn, feed into a
single switch using fast Ethernet, e.g., 100 Mbit s−1. Computer clus-
ters usually improve performance and availability and are typically
much more cost–effective, as compared with single computers of
comparable speed or availability (Bader and Pennington, 2001).

To provide management functions and abstractions that allow
clusters to work as a single resource, a number of specialized
resource management software products have been developed.
These include batch queuing systems for tightly interconnected
clusters, such as DQS, GNQS, PBS, EASY, LSF, and LoadLeverler,
and extended batch systems for loosely interconnected clusters,
such as Condor, PRM, CCS, and Codine (Buyya, 1999). Simply
put, such a system is a first-come first-serve queueing system,
in which any user can submit a job to be run, and can kill and
remove their own jobs. For example, Condor is a distributed batch
system developed at the University of Wisconsin–Madison from
1988 to execute long-running jobs on available workstation and
PCs, designed for HTC (Thain et al., 2005). Condor has been used
to manage workload on a dedicated cluster of computers, and/
or to farm out work to idle desktop computers, also called cycle
scavenging. Running on multiple operation systems (OS), such as
Linux, Unix, Mac OS X, FreeBSD, and contemporary Windows
OS, Condor can seamlessly integrate both dedicated resources
(rack-mounted clusters) and non-dedicated desktop machines

program loops, which focuses on distribution of the data across
different computer nodes to be processed in parallel. Task paral-
lelism is the characteristic of a parallel program in that entirely
different calculations can be performed on either the same or
different sets of data. Task parallelism contrasts with data paral-
lelism, where the same calculation is performed on the same or
different sets of data. Thus, task parallelism does not usually scale
with the size of a problem.

Computationally, many large problems can be divided into
smaller jobs, which can then be solved concurrently. This is
known as parallel computing, which has potential to dramati-
cally speed-up an algorithm. Arguably, any large computational
problem may consists of several parallelized parts and several
non-parallelizable (sequential) parts. Then, how much can paral-
lelization speed-up the computation? The Amdahl law states that
the overall speed-up in computing available from parallelization
is limited by a small portion of the program which cannon be
parallelized (Amdahl, 1967), and the relationship is described
by the equation:

S p= −()−
1

1

where S is the speed-up of the program (as a factor of its original
sequential runtime), and P is the fraction that is parallelizable.
For example, if the sequential part of a program is 10% of the
runtime, we have S = −() =−

1 0 9 10
1

. , indicating that we can get
no more than a 10× speed-up, regardless of how many processors
are added. This number puts an upper limit on the usefulness of
adding more parallel execution units. In an extreme case, if a task
cannot be partitioned in parallel, the application of more effort
has no effect on the schedule because S = 1. Similarly, Gustafson’s
(1988) law states that:

S P P P() = − −()α 1

where P is the number of processors, S is the speed-up, and α is
the non-parallelizable part of the process. The difference is that the
speed-up (S) in the Gustafson’s law is a function of the number
of processors (P), but the Amdahl’s law assumes a fixed problem
size and the size of the sequential section is independent of the
number of processors.

sImPle batch ProcessIng for Parallel comPutIng
Batch processing is a simple way to automate the execution of
a series of programs (“jobs”) on a computer without manual
intervention. This is in contrast to “online” or interactive pro-
grams, which prompt the user for such input. A program takes
a set of data files as input, processes the data, and produces a
set of output data files. This operating environment is termed
“batch processing,” because the input data are collected into
batches on files and are processed in batches by the program. As
an illustrative example, let modBayesB be a program implement-
ing a BayesB analysis, in which an arbitrary portion of markers
is assumed to have no effect at all, and effects of the remaining
markers are associated with different variances (Meuwissen et al.,
2001). This program accepts a trait name as the input argument
at run time, with all other parameters provided by a parameter
file. Furthermore, assume that there are k traits to be analyzed,

http://www.frontiersin.org/livestock_genomics
http://www.frontiersin.org/livestock_genomics/archive

www.frontiersin.org February 2011 | Volume 2 | Article 4 | 5

Wu et al. High-throughput computing for genomic selection

Arguments = weanin

Log = step.$(process).log

Output = step.$(process).out

Error = step.$(process).error

should_transfer_files = YES

when_to_transfer_output = ON_EXIT

transfer_input_files = parameters_Bayes.R, phenotypes_0610.csv,

genotypes_0610a.csv

QueueArguments = poswea

Queue

Arguments = sc18

Queue

Arguments = musc

Queue

Arguments = docil

Queue

Arguments = rep

Queue

Arguments = rea

Queue

Arguments = bkfat

Queue

Arguments = rump

Queue

Arguments = heifer

Queue

Arguments = stay

Queue

In the above, weanin, poswea, sc18, …, stay are trait names.
Furthermore, “Universe = vanilla” means a plain job (there are
some special universes in Condor, such as the “standard” uni-
verse), “Executable = ” specifies the name of program to be run,
“Arguments = ” provides the arguments to be used by the program,
“Log = ” specifies the name of a file where Condor will record
information about the job’s execution, “Output = ” specifies where
Condor should put the standard output from the job, in the analysis,
“Error = ” specifies where Condor should put the standard error
from your job, “should_transfer_files = ” tells Condor whether or
not it should transfer files, “when_to_transfer_output = ” gives
technical details about when files are to be transported back to the
computer from which were submitted, and “transfer_input_files = ”
specifies a list of files to be transferred at run time.

Now, we submit these jobs in the Merial Condor using the
condor_submit command. The status of these processes can be
monitored by the condor_q command.

[wuxiaoli@condor1 ∼]$ condor_submit runBayesCpi

[wuxiaoli@condor1 ∼]$ condor_q

……(Here, information about the submitter should be displayed.)

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

 104.0 wuxiaoli 11/11 17:37 0+07:59:44 R 0 390.6 run_BayesCpi_condor e

 104.1 wuxiaoli 11/11 17:37 0+07:59:44 R 0 390.6 run_ BayesCpi _condor e

 104.2 wuxiaoli 11/11 17:37 0+07:59:44 R 0 390.6 run_ BayesCpi _condor e

 104.3 wuxiaoli 11/11 17:37 0+07:59:44 R 0 390.6 run_ BayesCpi _condor e

(cycle scavenging) into one computing environment. For exam-
ple, the NASA Advanced Supercomputing (NAS) facility Condor
pool consists of approximately 350 (Silicon Graphics Inc., SGI) and
Sun workstations used for software development, visualization,
email, document preparation, and so on. As a scheduler software,
Condor was used to distribute jobs for the first draft assembly of
the Human Genome.

Parallel comPutIng In condor htc envIronment
We show how Condor can be used to distribute parallel computing
jobs. Assume that we have an R program that implements BayesCpi
analysis in which the parameter π describes the portion of markers
(genes) with no effect on the quantitative trait and the effects of
the remaining markers share the same variance. The program takes
parameter values from a parameter file, and it also accepts up to
two parameters at run time, one for the trait name and the other
for the pi (π) value, whose values overwrite those provided from the
parameter file. The second parameter π is optional. When it is miss-
ing, the parameter π is treated as an unknown quantity and inferred
from its posterior distribution. If a value is provided, then the pi
parameter is fixed to this value in the analysis. Notice that BayesCpi
analysis typically refers to the former case when π is unknown and
inferred. Now, define a shell script, namely run_BayesCpi_condor,
with the following content:

#use a single parameter file

statMod=“wgse_BayesCpi_beta.R”

#at least one arg is needed

if [$# == 0]

then

 echo “You must specify trait name!”

 exit

fi

specify trait name

trtNam=$1

if [$# == 2]

then

 piVal=$2

fi

cd $destDir

if [$# == 1]

then

 Rscript $statMod -t $trtNam

else

 Rscript $statMod -t $trtNam -n $piVal

fi

We wish to run BayesCpi analysis for the 11 traits in paral-
lel. A Condor batch script can be defined as follows and saved as
“runBayesCpi”:
Universe = vanilla

Executable = run_BayesCpi_condor

http://www.frontiersin.org/
http://www.frontiersin.org/livestock_genomics/archive

Frontiers in Genetics | Livestock Genomics February 2011 | Volume 2 | Article 4 | 6

Wu et al. High-throughput computing for genomic selection

In Condor, Directed Acyclic Graphic Manager (DAGMan) is a
program that allows one to specify the dependencies between your
Condor jobs and automatically manages them for you. Assume that
you have three jobs: job A for data input, QC, and editing, job B
for feature selection (e.g., stepwise regression), and program C for
post-selection inference and cross-validation. The order to execute
these jobs is as follows: Do not run job B until job A has completed
successfully, and do not run job C until job B has completed suc-
cessfully (Figure 3).

So, a DAG is the data structure used by DAGMan to represent
these dependencies: each job is a node in the DAG, and each node
can have any number of “parents” or “children” nodes, as long as
there are no loops.

Next, assume that we have four jobs: A for data input, QC, and
data editing, B and C for feature selection each using two different
criteria, and job D for comparing the two panels obtained from
jobs B and C by cross-validation. A DAG can be defined, say in a file
called demo.dag, which lists each of its nodes and their dependen-
cies (Figure 4).

Job A a.sub

Job B b.sub

Job C c.sub

Job D d.sub

Parent A Child B C

Parent B C Child D

To start the DAG job, simply run condor_submit_dag with the
.dag file

 $ condor_submit_dag demo.dag

Then, condor_submit_dag submits a Scheduler Universe job
with DAGMan as the executable. DAGMan acts as a scheduler,
managing the submission of your jobs to Condor based on the DAG
dependencies. While running a DAG, DAGMan holds and submits
jobs to the Condor queue at the appropriate times, as defined in
the .dag file. Once the DAG is complete, the DAGMan job itself is
finished and exits. In case of a job failure, DAGMan continues until
it can no longer make progress and then creates a “rescue” file with
the current state of the DAG. The rescue file can be used later to
restore the prior state of the DAG once the failed job is ready to be
re-run. When that job completes, DAGMan will continue the DAG
as if the failure never happened.

aPPlIcatIon to genomIc selectIon of lIvestock
Next, we illustrate how pipelining can be used for genetic evalua-
tion of candidate gene effects on quantitative traits. In reality, while
data from candidate genes studies have been accumulated in large

 104.4 wuxiaoli 11/11 17:37 0+07:59:44 R 0 390.6 run_ BayesCpi I_condor e

 104.5 wuxiaoli 11/11 17:37 0+07:59:44 R 0 390.6 run_ BayesCpi I_condor e

 104.6 wuxiaoli 11/11 17:37 0+07:59:44 R 0 390.6 run_ BayesCpi _condor e

 104.7 wuxiaoli 11/11 17:37 0+07:59:44 R 0 366.2 run_ BayesCpi _condor e

 104.8 wuxiaoli 11/11 17:37 0+07:59:44 R 0 390.6 run_ BayesCpi _condor e

 104.9 wuxiaoli 11/11 17:37 0+07:59:44 R 0 390.6 run_ BayesCpi _condor e

 104.10 wuxiaoli 11/11 17:37 0+07:59:44 R 0 390.6 run_ BayesCpi _condor e

11 jobs; 0 idle, 11 running, 0 held

hIgh-throughPut comPutIng vIa PIPelInIng for
genomIc selectIon
PIPelInIng for IncreasIng comPutIng throughPut
Now that we have had some experience with submitting par-
allel jobs in a Condor pool, it is time for us to get the flavor
of pipelining for HTC. Actually, pipelining is not something
new to us, but a natural concept in everyday life. For instance,
consider the assembly of a car. Possible steps in the assembly
line are the installation of the engine, the hood, and the wheels
(in that order, with arbitrary interstitial steps). Such an auto-
mobile assembly line increases the manufacturing throughput.
In computer science, pipeline refers to a set of data processing
elements connected in series, so that the output of one element
is the input of the next (Figure 2). The elements of a pipeline
are often executed in parallel or in a time-sliced fashion. The
procedure can be divided into stages, each completing a part of
an instruction. The stages are connected to each other to form a
pipe: instructions enter at one end, progress through the stages,
and exit at the other end. Pipelining increases the CPU instruc-
tion throughput, that is, the number of instructions completed
per unit of time, leading to lower total execution time and higher
instruction throughput.

FiGure 2 | Pipelining with sequential (upper) and parallel (middle and
lower) execution. Here, S1–S4 can be viewed as four stages of the
computing job, and each of them can consist of sub-stages such as S2a, S2b,
and S2c.

FiGure 3 | A DAG with three sequential jobs.

A

B C

D

FiGure 4 | A DAG with four nodes (among them jobs B and C run in
parallel).

http://www.frontiersin.org/livestock_genomics
http://www.frontiersin.org/livestock_genomics/archive

www.frontiersin.org February 2011 | Volume 2 | Article 4 | 7

Wu et al. High-throughput computing for genomic selection

goIng further – What oPPortunItIes do We have?
Though the concept of HTC may still be considered to be new
to many researchers in animal breeding and genetics, the HTC
revolution has already happened, as reflected in the development
of computer hardware and software, as well as scalable parallel
computing architectures. In this section, we briefly review existing
computer architectures and infrastructures that can be leveraged
for HTC, and explore new-generation hardware and software for
massive parallel computing.

leveragIng htc archItectures and Infrastructures for
genomIc selectIon
It is an undeniable fact that, nowadays, computer hardware is no
longer made for serial computation. Nearly all new-generation
computers have been equipped with multi-core central processors.
Many different computer systems supporting HPC have emerged
and are becoming increasingly widely used. These include massively
parallel processors (MPP), symmetric multiprocessors (SMP),
cache-coherent non-uniform memory access (CC-NUMA), dis-
tributed systems, and clusters (Hwang and Xu, 1998). Comparison
of the architectural and functional characteristics of these systems
can be found in Buyya (1999). Briefly, a MPP is a large parallel
processing system with a shared-nothing architecture. It is typi-
cally composed of several hundred processing elements (nodes),
connected through a high-speed interconnection network (switch).
In a MPP, each node can have a variety of hardware computers,
but generally consists of a main memory and one or more proces-
sors. Each node runs a separate copy of the operating system. SMP
systems usually have from 2 to 64 processors, and are considered to
have a shared-everything architecture. In these systems, the proces-
sors share all the global resources available, such as bus, memory,
and I/O system. A single copy of the operating system runs on these
systems. CC-NUMA is a scalable multiprocessor system having
a CC-NUMA. This system gets its name from the non-uniform
times to access the nearest and most remote parts of memory. Like
an SMP, every processor in a CC-NUMA system has a global view
of all of the memory. A distributed system consists of multiple
independent computers that communicate through a computer
network, interacting with each other in order to achieve a common
goal. Each computer runs its own operating system.

volumes in recent decades, it is possible to select subsets of these
candidate genes that can provide alternative panels for predict-
ing genetic merit in genomic selection. The analysis starts with
data input and editing (S1). Next, panels of candidate genes that
significantly affect the quantitative trait will be selected according
to certain criteria (S2). Finally, predictive accuracy of these pan-
els will be compared using cross-validation (S3). Thus, a pipeline
can be formed that automate all these steps (Figure 5). Instead of
DAGMan, many scripting languages can be very useful to build
pipelines and/or manage pipelining jobs. In this example, these
are seven R programs, three for S1 and two for S2, and for S3,
respectively. Instead of using DAGMan, a Perl wrapper program
can be used to manage these processes into a functional pipeline.
Furthermore, multiple pipelines can be run in parallel, where each
pipeline processes data for one trait based on one or more statistical
methods, and as such, the computing throughput can be dramati-
cally increased.

The example data consist of 2,246 animals, each genotyped
for 384 candidate genes, with EBVs for 15 traits. A linear model
was used in the data analysis, which includes EBV as the response
variables and additive marker effects as the predictors. Stepwise
regression analysis was used for variable (gene) selection based on
P-values, Akaike’s information criterion (AIC; Akaike, 1974), and
Bayesian information criterion (BIC; Schwarz, 1978), respectively.

Fifteen jobs, each corresponding to one trait, were submitted to
a HTC cluster at UW (Figure 6). The analyses were implemented
using the pipeline developed specifically for genomic selection (Wu
et al., 2010). These jobs were queued after submission and sub-
sequently took turns running on available machines (also called
nodes). The stage for data input, QC, and processing completed
quickly. At the stage of variable selection, stepwise regression based
on AIC, BIC, and P-value were used for feature selection for each
trait, activating a total of 45 parallel jobs. Upon completion, results
were transferred back to the submit machine (Figure 7A) and
deployed in web folders with secured access (Figure 7B).

FiGure 5 | Workflow of a high-throughput computing pipeline for
predicting genetic merit using candidate gene panels.

FiGure 6 | running and waiting time in parallel computing for
prediction of genetic merit using candidate genes for 15 quantitative
traits, each with three alternative methods for feature selection. Here,
x-axis represents time of computing, and y-axis represents number of jobs
pending (yellow bars) and number of jobs running (green bars).

http://www.frontiersin.org/
http://www.frontiersin.org/livestock_genomics/archive

Frontiers in Genetics | Livestock Genomics February 2011 | Volume 2 | Article 4 | 8

Wu et al. High-throughput computing for genomic selection

to heavy-use buildings and departments, and 1 GB connections
to the rest. The existing computational infrastructures can be
used for HTC in genomic selection programs. Furthermore, the
UW CHTC has off-campus collaborators. When the local UW
computer resources become not sufficient, grid middleware con-
nectivity can play an essential role. In this area, the UW is an active
participant in NSF TeraGrid activities and a leading institution
for the NSF/DOE Open Science Grid (OSG). These grid-based
HTC resources will further enhance our computing capability
and facilitate infusing HTC and grid computing techniques into
genomic selection.

gPu-enabled massIve Parallel comPutIng – reInventIng
Wheels that can fly
In comparison to the traditional data processing pipeline
residing on CPU, performing general-purpose computations
on a graphics processing unit (GPU) is a new concept even to
the computing field at large. The central processors have been

On the other hand, many HTC infrastructures have already
been built, though very few of them have been used for genomic
selection. At the UW–Madison campus, for instance, there are
existing HTC infrastructures that can be leveraged for genomic
selection, in terms of CPU capacity, network connectivity, stor-
age availability, and middleware connectivity. For CPU capacity,
we can make use of the many computer clusters across the UW–
Madison campus, which are linked together to share resources via
technology developed by the UW Condor Team. These campus
installations include the currently existing Grid Laboratory of
Wisconsin (GLOW) resources, the Center for High-Throughput
Computing (CHTC) resources, and the Department of Computer
Sciences (DCS) cluster. Together these clusters represent over
6,200 CPU cores for computing. These machines follow a roughly
4 year replacement cycle, and as such vary between 2.0 GHz single
core machines and 1 GB of RAM per CPU, to more recent multi-
core machines. For network connectivity, the UW network is cur-
rently comprised of a 10 GB backbone with 10 GB connections

FiGure 7 | results stored on the submit machine (A) and also deployed in web-accessible folders (B).

http://www.frontiersin.org/livestock_genomics
http://www.frontiersin.org/livestock_genomics/archive

www.frontiersin.org February 2011 | Volume 2 | Article 4 | 9

Wu et al. High-throughput computing for genomic selection

science, a thread of execution is the smallest unit of processing that
can be scheduled by an operating system. Simply put, CUDA is
a way to write parallel C code for various CUDA-enabled graph-
ics processors. CUDA can be downloaded from the NVIDIA web
site2, and it is free! A toy example of GPU parallel programming
for adding two vectors is shown in Figure 8. A CUDA C program
is similar to a standard C program, except a couple of noticeable
differences. First, CUDA C adds the _global_ qualifier to standard
C. This part alerts the compiler that a function should be compiled
to run GPU (referred to as a device) instead the CPU (referred to as
the host). Second, a function that executes on the device is given a
different name, called a kernel. A kernel differs from a standard C
function in that it contains extra parameters in the angle brackets.
In this example, we have addVec <<< 1, N >>> (x, y, z), where the
first number represents the number of blocks we would like the
device to execute the kernel, and the second number represents the
number of threads per block we would like the CUDA runtime to
create on our behalf. The total number of threads running simulta-
neously for a given kernel is the product of those two parameters.
In this example, if we define the value of the first parameter to
be N = 512 and the value of the second parameter to be 1, then
the total number of threads running concurrently is 512. In addi-
tion, nvcc is used to compile the CUDA part of the code, instead
of gcc used by the standard C, and the debugger and profilers are
therefore different.

Nowadays, most computers are equipped with at least one
CUDA-enabled GPU. Unfortunately, the statistical packages cur-
rently available are not designed to accommodate these new features
provided by GPU-enabled massive computing. Thus, these pack-
ages will have to be re-engineered accordingly. This represents a
tremendous task that may revolutionize the software development
for genomic selection. An analog is like reinventing the wheels:
while “traditional wheels” are designed so that they can only run
on roads, the next-generation “wheels” can fly as well. In high-
throughput/performance applications for genomic selection, this
is saying that we will have to rebuild statistical packages for massive
parallel computing on heterogeneous platforms that contains both
CPU and GPU.

To summarize, the HTC revolution has already taken place,
and the age of HTC for genomic selection is right here. We
expect that HTC has the potential to bring revolutionary changes
to genomic selection programs, such as faster solutions, bet-
ter statistical methods, more informed decisions, and more
competitive products. In the animal breeding industry, this
new-generation computing solution represents a tremendous
competitive edge in the marketplace, because it can give users
the ability to quickly model their data and subsequently manipu-
late a product or process to see the impact of various decisions
before they are made. To this end, we anticipate that HTC will
have a profound impact on post-genome era selection programs
in animals and plants, and it will eventually change our view
and our routine practice of data analysis and decision-making
involved in genomic selection.

 evolving in both clock speeds and core counts. In the meantime,
the state of graphics processors have been undergone a dramatic
revolution as well. The late 1980s and early 1990s have witnessed
the growth in popularity of graphically driven operating systems
such as Microsoft Windows, and latter in turn helped create a
market for a new type of processor. In the early 1990s, users
began purchasing 2D display accelerators for their PCs. These
display accelerators offered hardware-assisted bitmap operations
to assist in the display and usability of graphics operating sys-
tems. From a parallel computing standpoint, NVIDIA’s release
of the GeForce 3 series (chips) in 2001 possibly represented the
most important breakthrough in GPU technology. Essentially,
the GPUs of the early 2000 were designed to produce a color for
every pixel on the screen using programmable arithmetic units
known as pixel shaders. Because the arithmetic being performed
on the input colors and textures was completely controlled by
the programmer, it was observed that these input “colors” could
actually be any data. So, if the inputs were actually numerical
data signifying something other than color, then programmers
could program the pixel shaders to perform arbitrary compu-
tation on this data. Because of its high arithmetic throughput,
GPU-enabled computing has promised massive throughput
which otherwise can not be obtained from the central proces-
sor’s traditional computing.

 Toward this effort, NVIDIA’s Compute Unified Device
Architecture (CUDA) makes parallel programming and using
thousands of simultaneous threads straightforward. In computer

// Kernel definition
__global__ void addVec(float* x, float* y, float* z)
{

int i = threadIdx.x;
z[i] = x[i] + y[i];

}

int main (void)
{

…
// Kernel invocation with N threads
addVec<<<1,N>>>(x, y, z)
…

}

A

B

FiGure 8 | illustration of GPu-enabled parallel computing: (A) graphic
representation of summing two vector x and y into vector z; (B) CuDA C
code (partial) for summing two vectors.

2www.nvidia.com/cuda

http://www.frontiersin.org/
http://www.frontiersin.org/livestock_genomics/archive

Frontiers in Genetics | Livestock Genomics February 2011 | Volume 2 | Article 4 | 10

Wu et al. High-throughput computing for genomic selection

North American Holstein bulls. J.
Dairy Sci. 92, 16–24.

Wu, X.-L., Yao, C., Long, N., Stewart,
B., Woodward, B., Mujibi, D. F.
N., Rosa, G. J., Weigel, K. A., and
Gianola, D. (2010). “WGSE – pre-
liminary deployment of a high-
throughput computing pipeline for
genome-enabled selection,” in Plant
and Animal Genome XIX Conference,
San Diego.

Zhong, S., Dekkers, J. C. M., Fernando, R.
L., and Jannink, J. L. (2009). Factors
affecting accuracy from genomic
selection in populations derived from
multiple inbred lines: a barley case
study. Genetics 182, 355–364.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial
or financial relationships that could be
construed as a potential conflict of interest.

Received: 02 December 2010; accepted:
07 February 2011; published online: 24
February 2011.
Citation: Wu X-L, Beissinger TM, Bauck S,
Woodward B, Rosa GJM, Weigel KA, de
Leon Gatti N and Gianola D (2011) A
primer on high-throughput computing for
genomic selection. Front. Gene. 2:4. doi:
10.3389/fgene.2011.00004
This article was submitted to Frontiers in
Livestock Genomics, a specialty of Frontiers
in Genetics.
Copyright © 2011 Wu, Beissinger, Bauck,
Woodward, Rosa, Weigel, de Leon Gatti
and Gianola. This is an open-access article
subject to an exclusive license agreement
between the authors and Frontiers Media
SA, which permits unrestricted use, distri-
bution, and reproduction in any medium,
provided the original authors and source
are credited.

 predictions for marker-based selection
in biparental plant populations. Theor.
Appl. Genet. 120, 151–161.

Maltsev, N., Glass, E., Sulakhe, D.,
Rodriguez, A., Syed, M. H., Bompada,
T., Zhang, Y., and D’Souza, M. (2006).
PUMA2-grid-based high-throughput
analysis of genomes and metabolic
pathways. Nucleic Acids Res. 34,
D369–D372.

Meuwissen, T. H. E., Hayes, B. J., and
Goddard, M. E. (2001). Prediction
of total genetic value using genome-
wide dense marker maps. Genetics 157,
1819–1829.

Ren, R., and Orkoulas, G. (2007). Parallel
Markov chain Monte Carlo simula-
tions. J. Chem. Phys. 126, 211102.

Schmidberger, J. W., Bate, M. A., Reboul,
C. F., Androulakis, S. G., Phan, J.
M., Whisstock, J. C., Goscinski, W.
J., Abramson, D., and Buckle, A. M.
(2010). MrGrid: a portable grid based
molecular replacement pipeline. PLoS
ONE 5, e10049. doi: 10.1371/journal.
pone.0010049

Schwarz, G. (1978). Estimating the
dimension of a model. Ann. Stat. 6,
461–464.

Sulakhe, D., Rodriguez, A., D’Souza, M.,
Wilde, M., Nefedova, V., Foster, I., and
Maltsev, N. (2005). GNARE: auto-
mated system for high-throughput
genome analysis with grid computa-
tional backend. J. Clin. Monit. Comput.
19, 361–369.

Thain, D., Tannenbaum, T., and Livny,
M. (2005). Distributed computing
in practice: the condor experience.
Concurr. Comput. 17, 323–356.

Van Raden, P. M., Van Tassell, C. P.,
Wiggans, G. R., Sonstegard, T. S.,
Schnabel, R. D., Taylor, J. F., and
Schenkel, F. S. (2009). Invited review:
reliability of genomic predictions for

using multiple sequences. Stat. Sci. 7,
457–511. [with discussion].

Goddard, M. E., and Hayes, B. J. (2007).
Genomic selection. J. Anim. Breed.
Genet. 124, 323–330.

Gustafson, J. L. (1988). Reevaluating
Amdahl’s law. Commun. ACM 31,
532–533.

Habier, D., Fernando, R. L., and Dekkers,
J. C. M. (2007). The impact of genetic
relationship information on genome-
assisted breeding values. Genetics 177,
2389–2397.

Habier, D., Fernando, R. L., and Dekkers, J.
C. M. (2009). Genomic selection using
low-density marker panels. Genetics
182, 343–353.

Hamblin, M. T., Buckler, E. S., and
Jannink, J. L. (2011). Population genet-
ics of genomics-based crop improve-
ment methods. Trends Genet. PMID:
21227531. [Epub ahead of print].

Hayes, B. J., Bowman, P. J., Chamberlain,
A. J., Verbyla, K. L., and Goddard, M.
E. (2009). Accuracy of genomic breed-
ing values in multi-breed dairy cattle
populations. Genet. Sel. Evol. 41, 51.

Heffner, E. L., Sorrells, M. E., and Jannink,
J. L. (2009). Genomic selection for
crop improvement. Crop Sci. 49, 1–12.

Hwang, K., and Xu, Z. (1998). Scalable
Parallel Computing: Technology,
Architecture, Programming. New York,
NY: WCB/McGraw-Hill.

Keane, T. M., Naughton, T. J., and
McInerney, J. O. (2007). MultiPhyl: a
high-throughput phylogenomics web-
server using distributed computing.
Nucleic Acids Res. 35, W33–W37.

Legarra, A., Robert-Granie, C.,
Manfredi, E., and Elsen, J.-M. (2008).
Performance of genomic selection in
mice. Genetics 180, 611–618.

Lorenzana, R., and Bernardo, R.
(2009). Accuracy of genotypic value

references
Abdi, H. (2007). “Bonferroni and Šidák

corrections for multiple comparisons,”
in Encyclopedia of Measurement and
Statistics, ed. N. J. Salkind (Thousand
Oaks, CA: Sage), 103–107.

Akaike, H. (1974). A new look at the
statistical model identification. IEEE
Trans. Automat. Contr. 19, 716–723.

Amdahl, G. (1967) “The availability
of the single processor approach
to achieving large-scale computing
capabilities,” in Proceedings of AFIPS
Spring Joint Computer Conference
(Atlantic City, NJ: AFIPS Press),
483–485.

Bader, D. A., and Pennington, R. (2001).
Cluster computing: applications. Int.
J. High Perform. Comput. Appl. 15,
181–185.

Berman, F., Fox, G. C., and Hey, A. J.
G. (2003). “The grid: past, present,
future,” in Grid Computing: Making
the Global Infrastructure a Reality, eds
F. Berman, G. C. Fox, and A. J. G. Hey
(Chichester: Wiley), 9–50.

Buyya, R. (1999). High Performance
Cluster Computing: Programming and
Applications. Upper Saddle River, NJ:
Prentice Hall PTR.

de los Campos, G., Naya, H., Gianola,
D., Crossa, J., Legarra, A., Manfredi,
E., Weigel, K., and Cotes, J. M. (2009).
Predicting quantitative traits with
regression models for dense molecu-
lar markers and pedigree. Genetics 182,
375–385.

Dowd, K., and Severance, C. (2010). High
Performance Computing, 2nd Edn.
Cambridge: O’Reilly.

Eadline, D. (2009). High Performance
Computing. Hoboken, NJ: Wiley
Publishing.

Gelman, A., and Rubin, D. B. (1992).
Inference from iterative simulation

USA). William Taylor at the UW Center for High-Throughput
Computing (CHTC) is acknowledged for technical assistance. Yao
Chen is acknowledged for helping make graphs 1, 2, and 3. The
BayesCpi program was modified from an example R program
used in the short course taught by Dr. R. L. Fernando at the Iowa
State University.

acknoWledgments
This research was supported by the University of Wisconsin
(UW) Foundation, the genomic selection grant of the Merial
Ltd., and National Research Initiative competitive grant no.
2009-35205-05099 from the USDA National Institute for Food
and Agriculture Animal Genome Program (Washington, DC,

http://www.frontiersin.org/livestock_genomics
http://www.frontiersin.org/livestock_genomics/archive

	A primer on high-throughput computing for genomic selection
	Introduction
	Why HTC in genomic selection?
	Parallel computing – where we can get started
	Parallel computing and measurements of speed-up in computing
	Simple batch processing for parallel computing
	Computer clusters and batch queuing systems
	Parallel computing in Condor HTC environment
	Pipelining for increasing computing throughput
	Application to genomic selection of livestock

	Going further – what opportunities do we have?
	Leveraging HTC architectures and infrastructures for genomic selection
	GPU-enabled massive parallel computing – reinventing wheels that can fly

	Acknowledgments
	References

