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As genome-wide association studies expand beyond populations of European ancestry, the 
role of admixture will become increasingly important in the continued discovery and fine-
mapping of variation influencing complex traits. Although admixture is commonly viewed as 
a confounding influence in association studies, approaches such as admixture mapping have 
demonstrated its ability to highlight disease susceptibility regions of the genome. In this study, 
we illustrate a powerful two-stage testing strategy designed to uncover trait-associated single 
nucleotide polymorphisms in the presence of ancestral allele frequency differentiation. In the 
first stage, we conduct an association scan by using predicted genotypic values based on 
regional admixture estimates. We then select a subset of promising markers for inclusion in a 
second-stage analysis, where association is tested between the observed genotype and the 
phenotype conditional on the predicted genotype. We prove that, under the null hypothesis, 
the test statistics used in each stage are orthogonal and asymptotically independent. Using 
simulated data designed to mimic African-American populations in the case of a quantitative 
trait, we show that our two-stage procedure maintains appropriate control of the family wise 
error rate and has higher power under realistic effect sizes than the one-stage testing procedure 
in which all markers are tested for association simultaneously with control of admixture. We 
apply the proposed procedure to a study of height in 201 African-Americans genotyped at 108 
ancestry informative markers. The two-stage procedure identified two statistically significant 
markers rs1985080 (PTHB1/BBS9 ) and rs952718 (ABCA12). PTHB1/BBS9 is downregulated by 
parathyroid hormone in osteoblastic cells and is thought to be involved in parathyroid hormone 
action in bones and may play a role in height. ABCA12 is a member of the superfamily of 
ATP-binding cassette transporters and its potential involvement in height is unclear.
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Similarly, Hughes et al. (2008) validated the role of the HLA-DRB1 
shared epitope within African-Americans with rheumatoid arthri-
tis, suggesting an inheritance through admixture with European 
populations.

Earlier investigators have recognized the value of considering 
admixture to highlight disease susceptibility regions in the genome, 
spawning the approach of admixture mapping or mapping by 
admixture LD (Patterson et al., 2004; Freedman et al., 2006). The 
basic premise of these approaches is that individuals from admixed 
populations would have a greater probability of inheriting risk alle-
les from the ancestral population that carries more of such alleles. 
The initial appeal of admixture mapping was the potential savings 
in genotyping costs because the genome could be covered with a 
few thousand markers with reasonable resolution. However, with 
the rapid cost decrease for platforms assaying potentially millions 
of single nucleotide polymorphisms (SNPs), the initial appeal of 

IntroductIon
One of the major focuses of current genomics research is the expan-
sion of association studies beyond populations of European and 
Asian descent, including African populations and admixed popu-
lations such as African-Americans and Hispanics. Although these 
investigations carry several potential pitfalls such as greater hap-
lotype diversity and lower levels of linkage disequilibrium (LD), 
one of the most well-known issues is the potential confounding 
influence of population stratification and admixture (Marchini 
et al., 2004; Smith et al., 2004; Teo et al., 2010). However, the exist-
ence of these phenomena also presents an opportunity, as several 
recent studies have demonstrated that genetic ancestry need not be 
viewed as a nuisance quantity. For example, within the context of 
autoimmune diseases, Richman et al. (2010) illustrated a role for 
European population substructure across the northwest to south-
east cline with endophenotypes of systemic lupus erythematosus. 
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one-stage testIng procedure
A standard flexible approach for association testing while con-
trolling for admixture is regression within the generalized linear 
model (GLM) framework, which directly allows for quantitative, 
binary, ordinal, and time to event (survival) phenotypic distri-
butions through the choice of an appropriate link function (g) 
(McCullagh and Nelder, 1989; Freedman et al., 2006; Redden et al., 
2006; Zhu and Cooper, 2007). This involves a regression model 
for the jth SNP that assumes that the expected phenotypic value 
takes the form,

E Y g G A i N j Ji i j i j[ ] = + +( ) = =−1
0 1 2 1 1γ γ γ, , , , , , , , ,for … …

where A
i, j

= 2ω
i,2

(j) + ω
i,1

(j), ω
i,1

(j) (ω
i,2

(j)) are the probabilities 
that individual i has one (two) allele(s) at the jth marker from 
ancestral population A, and g−1(·) denotes the inverse link function 
(Redden et al., 2006; Tiwari et al., 2008). For ease of exposition, 
we will assume the situation of a quantitative trait, taking g(·) 
to be the identity link function and introducing residual error 
terms ε

i,j
 each independently distributed N 0 1

2, .σ( )  To estimate 
the admixture proportions A

i,j
, we utilize the Hidden Markov 

Model approach implemented in Ancestrymap (Patterson et al., 
2004), although a number of alternative estimation approaches 
exist and could be readily substituted (Sankararaman et al., 2008; 
Price et al., 2009). In order to control for multiple-testing, we 
employ a Bonferroni correction, testing the significance of γ

1
 for 

each SNP at a significance level of α/J. This controls the FWER at 
the desired upper bound of α. Though we focus on control of the 
FWER here, one could analogously look at control of other error 
rates, such as the false discovery rate (Benjamini and Hochberg, 
1995, 2000; Storey, 2002).

proposed two-stage testIng procedure
Our proposed two-stage method is predicated on the realization 
that an association analysis incorporating the ancestry estimate can 
be divided into two aspects. First, we fit a model using the condi-
tional expectation of genotype, where the expectation is now taken 
relative to regional admixture estimates for the particular SNP. The 
second-stage then tests the association of a subset of promising 
markers based on the first stage screen, where association is now 
tested conditioned on the conditional genotypic expectation. We 
prove the orthogonality of the two test statistics used in each stage 
under the null hypothesis in Appendix, and use simulation to illus-
trate that the two statistics may be correlated under the alternative 
hypothesis in the case of admixed populations.

Stage 1: We regress the observed genotypic value (G
i,j
) at each 

marker on the estimated average number (A
i,j
) of population 

A-ancestry alleles

G A e i N j Ji j i j i j, , , , , , , , , ,= + + = =ϕ ϕ0 1 1 1… …
 

(1)

where e
i,j
 represents residual error terms. This equation is then used 

to obtain a predicted genotypic value 
� � � �

G E G A Ai,j i, j i, j i, j= +[ | ]=ϕ ϕ0 1 .
We then consider a regression of the quantitative trait on the 

predicted genotypes as

Y G i N j Ji i j i j= + + = =α α τ0 1

�
… …, , , , , , , , ,1 1

 
(2)

admixture mapping has dwindled. Here we offer a new insight that 
there is benefit to considering the admixture mapping paradigm 
within genome-wide association (GWA) studies of admixed popu-
lations using high-density genotyping arrays.

A major challenge in GWA studies is to balance the control of type 
I and type II errors. If no adjustment for multiple-testing is used, 
with hundreds of thousands to millions of tests, the number (and 
proportion) of false-positives among the results declared significant 
is likely to be enormous. In contrast, if the Bonferroni correction 
[or any other method that controls the family wise type I error rate 
(FWER)] is used, power may be reduced excessively and too many 
type II errors (false-negatives) may be made (Kang et al., 2009). If 
there were a way to reduce the number of null hypotheses tested with-
out discarding too many markers that are truly in LD with causative 
loci, then power could be improved dramatically. With this in mind, 
several authors have considered various two-stage testing paradigms 
(Evans et al., 2006; Laird and Lange, 2006; Skol et al., 2006; Wang et al., 
2006; Ionita-Laza et al., 2007). Within the context of family based 
association studies, these approaches entail partitioning the available 
data into two orthogonal components. The between-family compo-
nent is used to provide an initial relative ranking of the markers, then 
using the within-family component to provide a second-stage test 
of association. Ideally, such two-stage testing paradigms (a) should 
not require family data, (b) should be robust to confounding by 
non-random mating (including admixture), (c) should offer strong 
control of the FWER, and (d) should not arbitrarily split the available 
data and suffer the attendant loss in power (Allison and Coffey, 2002).

Our intent here is to illustrate that other sources of informa-
tion, such as admixture, can be used to provide an orthogonal data 
partition and hence a two-stage testing opportunity satisfying the 
features listed above. In our method, we divide the association 
analysis for an admixed population into two parts, one of which 
tests the association between the phenotype and a predicted geno-
type based on regional admixture estimates. We then select a subset 
of promising markers for the second-stage analysis where we test 
the association between the observed genotype and the phenotype 
conditional on the predicted genotypes. Because the test statistics 
used in each stage of the procedure are orthogonal and asymp-
totically independent under the null hypothesis (see the proof in 
Appendix), this two-stage procedure maintains appropriate control 
of the FWER whether or not confounding by admixture exists. As a 
proof of concept for our new approach, we compare our proposed 
procedure through simulation to a one-stage procedure in the case 
of association mapping in an admixed population. We conclude 
with an illustration of the proposed method within a study of height 
in African-Americans using ancestry informative markers.

Methods
We consider the situation of j = 1, 2, …, J ancestry informative 
SNP markers and i = 1, 2, …, N individuals. We denote G

i,j
 as the 

observed genotypic value for the ith individual at the jth SNP. For 
simplicity, we assume that the admixed population sample arises 
from two ancestral populations (generically labeled as populations 
A and B). Let A

i,j
 denote a regional admixture estimate, that is, 

the estimated expected number of alleles inherited from ancestral 
population A at the jth SNP for the ith individual. Finally, let Y

i
 

denote the observed phenotype for the ith individual.
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To evaluate the FWER under the complete null hypothesis 
under situation 1, we first simulated 200 cases and 200 controls 
at 1805 ancestry SNPs under the complete null hypothesis using 
Ancestrymap. Then, we randomly selected one marker and simu-
lated the phenotype by using Eq. 4 with s = 0, 0.1, and 0.3 at the 
selected marker and t = 0, where the non-zero value of s was chosen 
to ensure that the phenotype variability explained by admixture was 
less than 3% (the average value of this value from our simulated 
data can be found in Table A1 in the Appendix). The FWER was 
estimated as the proportion of replicates that identified any one of 
1805 ancestry SNPs as significant.

To evaluate the FWER under the non-complete null hypothesis 
(situation 2), we first simulated 200 (400) cases and 200 (400) 
controls with one preset disease-associated ancestry SNP by using 
the software Ancestrymap. Then, we simulated the phenotype by 
using Eq. 4 with s = 0, 0.1, and 0.3 and t = 0.2, 0.4, and 0.6, respec-
tively, where the non-zero value of s was chosen to ensure that the 
phenotype variability explained by admixture was less than 3% 
(the average value of this value from our simulated data can be 
found in Table A2 in the Appendix). The FWER was estimated 
by the proportion of replicates where any one of the remaining 
ancestry SNPs was identified as being significant after the ancestry 
SNPs located at the same chromosome with the disease-associated 
ancestry SNP were removed from consideration.

power evaluatIon
To estimate the power of the two-stage procedure, we first simulated 
200 (400) cases and 200 (400) controls with 1805 ancestry SNPs and 
randomly chose 1 of the 1805 ancestry SNPs located at chromosome 
1 as a specific disease-associated ancestry SNP at which a population 
A-ancestry allele confers 2.4 multiplicative increased risk, where the 
multiplicative increased risk was chosen to ensure a high power under 
the scaled sample sizes. Then, we simulated the phenotype by using 
Eq. 4 with s = 0, 0.1, and 0.3 and t = 0.2, 0.4, and 0.6, respectively, where 
G in Eq. 4 is the genotype for the specific disease-associated ancestry 
SNP we chose above. For the estimation of power, we estimated the 
power level as the proportion of replicates where the specific disease-
associated ancestry SNP at chromosome 1 was successfully identified.

sIMulatIon results
correlatIon evaluatIons between two test statIstIcs under 
the alternatIve hypothesIs
Table 1 and Figures A1 and A2 in the Appendix show that these 
two test statistics were not correlated under the null and were cor-
related under the alternative hypothesis based on 200 datasets each 
with 800 individuals whether confounding by admixture existed 
or not. The level of correlations seems to increase as the effects 
of both genotype and the ancestry estimate on the trait increase. 
The correlations of two test statistics in the two-stage procedure 
under the alternative hypothesis further support the conclusion 
that our two-stage procedure has higher power than the one-stage 
procedure (see below).

Fwer evaluatIon
Because the test statistics in each stage of our two-stage proce-
dure are asymptotically independent under the null hypothesis, 
the FWER of our two-stage procedure should theoretically be 

where τ
i,j
 are independently distributed N 0 3

2, .σ( )  We test the 
 significance of α

1
 at each marker on the basis of Eq. 2 and select 

the top q markers for testing in the second-stage. We denote the 
selected subset of markers here as Φ. Approaches to selecting q will 
be discussed below.

Stage 2: In the second-stage, we consider a linear regression for 
the quantitative trait by using the observed genotype as,

Y G G G i n ji i j i j i j i j= + + − + = ∈β β β ϑ0 1 2 1ˆ ( ˆ ) , , , , ,, , , , … Φ
 

(3)

where ϑ
i,j
 are independently distributed N( , ).0 4

2σ  We test the sig-
nificance of β̂2 at each of the “q” selected markers from stage 1 on 
the basis of Eq. 3 at a significance level of α/q, where α is the overall 
significance level. The use of only q in the denominator of the 
Bonferroni correction is justified by the orthogonality and asymp-
totic independence under the null hypothesis proved in Appendix 
(Van Steen et al., 2005; Zheng et al., 2007).

sIMulatIon desIgn
To evaluate the frequency characteristics of our proposed procedure, 
we simulated an admixed population sample by using Ancestrymap. 
We utilized parameter settings designed to mimic an African-
American population (Patterson et al., 2004). The average propor-
tion of alleles inherited from the European ancestral population was 
set at 1/6, with the number of chromosomal exchanges per Morgan 
between ancestral segments of the genome since the mixing event 
set as 10. For the simulations under the alternative hypothesis, we 
randomly set one marker as a disease marker by setting the “risksim” 
parameter in Ancestrymap (rel8500) (ψ

1
) to a value other than 1, 

where ψ
1
 is the increased risk for disease due to carrying one popula-

tion A-ancestry allele at the disease marker (Patterson et al., 2004).
We simulated a quantitative trait by using the equation (Redden 

et al., 2006)

Y sA tGi ij ij i= + + ε ,
 

(4)

where ε
i
 is assumed to have a standard normal distribution. s denotes 

the overall effect of admixture on the trait, while t denotes the mean 
genotypic effect on the trait. We use simulation to illustrate the 
correlations of the test statistics in our two-stage procedure under 
the null and alternative hypotheses. We simulated 200 data sets each 
with 400 cases and 400 controls genotyped at the 1805 ancestry 
informative SNPs with one disease-predisposing allele. We then 
randomly selected one marker and simulated a continuous trait 
using Eq. 4 above with s set to be 0, 0.1, and 0.3 and t set equal to 
0, 0.2, and 0.4 at the selected marker.

Fwer evaluatIon
We estimated the FWER as the proportion of replicates in which at 
least one non-disease-associated SNP was found to be significantly 
associated with the disease, under two situations: (1) under the null 
hypothesis that there is no SNP associated with the trait with and 
without confounding association by admixture and (2) under the 
non-complete null hypothesis, in which some ancestry SNPs are 
associated with the trait and the associations are confounded by 
admixture between these ancestry SNPs and the trait. It is possible 
to get false-positive results at ancestry SNPs that are not associated 
with the trait.
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 controlled (Kang et al., 2009). We therefore next evaluated whether 
our two-stage procedure could effectively control the FWER by the 
preset limited sample size.

Figures 1 and 2A,B plot the estimated FWERs versus the 
ratio of the number of ancestry SNPs selected in the first stage 
(q) to the number of total SNPs (h) under the complete null 
hypothesis for a quantitative trait with and without asso-
ciation confounding by admixture based on 200 replicates. 
Figures 2A,B are for s = 0.1 and 0.3, respectively (confounding 
by admixture). These figures illustrate that both the one-stage 
procedure and our two-stage procedure provide adequate con-
trol of the FWER.

For the non-complete null hypothesis, refer to the columns 
labeled FWER in Tables 2 and 3. As shown in these two tables, all 
the estimated FWERs were close to the nominal values of 0.1 and 
0.05. Therefore, our two-stage procedure conserved good control 
of the FWER. On the other hand, we also found that our two-stage 
procedure still had a conservative FWER when q/h was close to 0 
under the alternative hypothesis.

Table 1 | Correlation evaluations of two test statistics in stage 1 and 

stage 2 for our two-stage procedure.

  sb

ta Correlation 0 0.1 0.3

Null hypoThesis

0 rc 0.086 0.078 0.072

 p-valued 0.228 0.273 0.314

NoN-CompleTe Null hypoThesis

0.2 rc −0.075 −0.171 −0.156

 p-valued 0.290 0.015 0.028

0.4 r −0.176 −0.231 −0.190

 p-value 0.013 0.001 0.007

aThe effect of genotype on the trait.
bThe effect of confounding association on the trait.
cThe Spearman’s r.
dThe p-value for testing correlation between two test statistics in the two-stage 
procedure based on Spearman’s r statistic under null hypothesis of r = 0.
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FiGure 1 | The estimated FWer of the two-stage procedure without 
confounding association by admixture at significance levels of 0.1 and 
0.05 (200 replicates). The red solid line represents the estimated FWER with 
the two-stage procedure of structured association tests; the blue dashed line 

represents the estimated FWER with the one-stage procedure of structured 
association tests; the black dotted line represents the nominal level; q is 
the number of SNPs selected in the first stage; and h is the number of 
total SNPs.
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FiGure 2 | The estimated FWer of the two-stage procedure with 
confounding association by admixture at significance levels of 0.1 and 
0.05 (200 replicates). (A) Is for s = 0.1 and (B) is for s = 0.3. The red solid line 
represents the estimated FWER with the two-stage procedure of structured 

association tests; the blue dashed line represents the estimated FWER with 
the one-stage procedure of structured association tests; the black dotted line 
represents the nominal level; q is the number of SNPs selected in the first 
stage; and h is the number of total SNPs.
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versus 0.447), respectively]; and (4) the selection of q affected the 
power of our two-stage procedure. As it approaches 1, the power 
of the two-stage procedure was higher than and close to that of 
the one-stage procedure. But the selection of q is correlated with 
the effect sizes of true association and confounding association 
by admixture. The optimal number of q is approximately 3% 
(≈50/1805) for all s and t.

In addition, we also noticed that as the effect size of the true 
association between the trait and the marker increased, the effect 
of association confounded by admixture on the power first 
increased and then decreased; but as the sample size increased, 
the effect of association confounded by admixture on the power 
decreased. For example, for α = 0.05, the difference in the maxi-
mum value of the power for s = 0 and 0.3 increased first from 2.6% 
(=0.036 − 0.01) to 22.3.5% (=0.67 − 0.447) and then decreased 
to 2.5% (=0.995 − 0.97) when n = 400. However, when n = 800, 
the above three values were from 15.3% (=0.27 − 0.121) to 6.5% 
(=0.975 − 0.91) to 0% (=1 − 1).

power coMparIsons
We compared the power of our two-stage procedure with that of 
the one-stage procedure described above for a quantitative trait. 
Tables 2 and 3 and Tables A4 and A5 in the Appendix present the 
empirical power of the two-stage procedure for simulated 200 rep-
licates at significance levels of 0.05 and 0.1, respectively. From these 
two tables we found that (1) the two-stage procedure generally 
had higher power than the one-stage procedure; (2) the maximum 
power of the two-stage procedure was significantly higher than that 
of the one-stage procedure when there was no or a small or mod-
erate association confounded by admixture and there was a small 
or moderate true association between disease and marker; (3) as 
the effect size of association confounded by admixture increased, 
the power of the two-stage procedure decreased [for example, 
when t = 0.4, s = 0, 0.1 and 0.3, α = 0.05, and n = 400, the differ-
ence between the maximum value of the power of the two-stage 
procedure and that of the one-stage procedure was about 32% 
(0.67 versus 0.35), 23.5% (0.68 versus 0.445), and 8.5% (0.362 

Table 2 | empirical power and FWer of the two-stage procedure at a significance level of 0.05 (200 replicates).

t a method q/hb sc = 0 s = 0.1 s = 0.3

 400d 800 400 800 400 800

   powere FWerf power FWer power FWer power FWer power FWer power FWer

0.2 OSg  0.005 0.031 0.115 0.02 0.01 0.03 0.09 0.055 0.005 0.045 0.121 0.04

 TSh 250/1805i 0.015 0.061 0.18 0.06 0.015 0.03 0.11 0.04 0.01 0.04 0.05 0.03

  125/1805 0.02 0.036 0.2 0.05 0.02 0.05 0.12 0.035 0.01 0.045 0.02 0.05

  100/1805 0.031 0.036 0.2 0.05 0.025 0.045 0.125 0.03 0.005 0.04 0.015 0.06

  25/1805 0.036j 0.02 0.27 0.045 0.025 0.04 0.08 0.045 0 0.015 0.005 0.06

  5/1805 0.031 0.036 0.225 0.01 0.005 0.055 0.04 0.04 0 0.01 0.005 0.055

  2/1805 0.026 0.031 0.19 0.025 0 0.065 0.02 0.02 0 0.03 0.005 0.05

0.4 OSg  0.35 0.03 0.875 0.05 0.445 0.04 0.865 0.04 0.362 0.05 0.875 0.065

 TSh 250/1805 0.505 0.03 0.92 0.03 0.555 0.045 0.92 0.06 0.447 0.055 0.91 0.06

  125/1805 0.555 0.045 0.935 0.035 0.605 0.05 0.945 0.03 0.412 0.04 0.87 0.04

  50/1805 0.62 0.015 0.95 0.03 0.68 0.03 0.96 0.04 0.372 0.035 0.795 0.02

  25/1805 0.655 0.02 0.975 0.01 0.64 0.02 0.95 0.015 0.322 0.025 0.745 0.02

  5/1805 0.67 0.015 0.965 0 0.495 0.02 0.865 0.005 0.196 0.045 0.57 0.015

  2/1805 0.545 0.005 0.945 0 0.395 0.035 0.8 0 0.146 0.045 0.465 0.04

0.6 OSg  0.93 0.06 1 0.065 0.9 0.06 1 0.06 0.915 0.04 1 0.06

 TSh 250/1805 0.96 0.055 0.985 0.06 0.95 0.06 0.99 0.035 0.96 0.035 0.99 0.065

  125/1805 0.965 0.045 0.985 0.06 0.95 0.04 0.985 0.025 0.97 0.01 0.99 0.03

  50/1805 0.985 0.02 0.985 0.045 0.98 0.025 0.985 0.02 0.97 0.04 0.99 0.015

  25/1805 0.995 0.01 0.985 0.01 0.985 0.015 0.985 0.01 0.93 0.015 0.98 0.025

  5/1805 0.97 0.005 0.985 0.005 0.97 0.005 0.985 0 0.785 0.015 0.95 0

  2/1805 0.93 0 0.985 0 0.91 0 0.985 0.005 0.69 0.025 0.93 0

at is the genotypic effect of the disease marker on the quantitative trait.
bq is the number of SNPs selected in the first stage; h is the number of total SNPs.
cs is the effect of confounding association on the trait.
d400 individuals and 800 individuals.
eThe power is estimated by the proportion of replicates successfully identifying the specific disease SNP.
fFWER, family wise error rate, which is estimated by the proportion of replicates wrongly identifying any one of the SNPs located at chromosomes 2 to 
chromosome 22.
gOS, one-stage procedure.
hTS, two-stage procedure.
i250/1805 = 0.139, 125/1805 = 0.069, 50/1805 = 0.028, 25/1805 = 0.014, 5/1805 = 0.003, 2/1805 = 0.001.
jThe maximum power of both the OS and TS is marked in bold.
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Stefflova et al., 2009). Height was based on self-report of the subject’s 
tallest height ever reached in inches. Genetic map positions for all mark-
ers were evaluated by using a program developed by McKeigue (2006).

For the purpose of comparison, we first conducted a linear regres-
sion evaluating the association between height and each SNP. We 
employed two methods to account for the confounding influence of 
admixture; Genomic Control (Devlin and Roeder, 1999) and prin-
cipal components analysis (Price et al., 2006). The genomic control 
inflation factor was calculated by dividing the median of the test 
statistics for all SNPs by 0.456. We also conducted one-stage analysis 
as described before. No SNP was found to be statistically significant 
at an overall nominal level of 0.05 (0.05/108 for each SNP) by the 
above three methods. Finally, we conducted our two-stage analysis. 
On the basis of our simulation results above, we selected the top 
three SNPs (≈108 × 0.03) in stage 1 and tested these three SNPs in 
stage 2 at an overall nominal level of 0.05 (0.05/3 for each SNP; see 
Methods). Table 4 shows the association results at a preset nominal 
level of 0.05 using our proposed two-stage testing procedure. We 

Furthermore, it was interesting that under the non-complete 
null hypothesis our two-stage procedure could have higher power 
with lower FWER if we chose fewer markers from stage 1 for stage 
2 analysis compared with the one-stage procedure, especially when 
there was moderate or large true association between the trait and 
the marker. This happens because under the non-complete null 
hypothesis, if we choose fewer promising markers in stage 1 for 
stage 2 analysis, there is a smaller chance of the false-positives occur-
ring with nearly no effect on true-positives.

applIcatIon to heIght In aFrIcan-aMerIcans
To evaluate the performance of our new two-stage procedure, we 
applied it to a real data set investigating the association of 108 ancestry 
informative markers with height in a sample of 201 African-Americans. 
Detailed information on the 108 ancestry markers can be found in Table 
A3 in the Appendix. Participants were part of an ongoing case–control 
study of genetic risk factors for prostate cancer conducted by investi-
gators at the University of Pennsylvania (Zeigler-Johnson et al., 2004; 

Table 3 | empirical power and FWer of the two-stage procedure at a significance level of 0.1 (200 replicates).

ta method q/hb sc = 0 s = 0.1 s = 0.3

 400d 800 400 800 400 800

   powere FWerf power FWer power FWer power FWer power FWer power FWer

0.2 OSg  0.025 0.041 0.105 0.05 0.021 0.082 0.09 0.08 0.015 0.056 0.1 0.07

 TSh 250/1805i 0.03 0.076 0.2 0.125 0.046 0.103 0.2 0.105 0.005 0.097 0.07 0.08

  125/1805 0.046 0.071 0.225 0.1 0.041 0.056 0.22 0.09 0 0.097 0.055 0.085

  50/1805 0.041 0.076 0.255 0.07 0.056 0.092 0.17 0.08 0 0.087 0.04 0.1

  25/1805 0.056 0.066 0.26 0.08 0.046 0.087 0.14 0.075 0 0.077 0.03 0.115

  5/1805 0.066j 0.086 0.215 0.07 0.031 0.072 0.11 0.045 0 0.056 0.01 0.1

  2/1805 0.051 0.107 0.195 0.06 0.015 0.062 0.06 0.09 0 0.087 0 0.105

0.4 OSg  0.44 0.11 0.925 0.07 0.48 0.09 0.89 0.105 0.431 0.113 0.894 0.086

 TSh 250/1805 0.595 0.085 0.95 0.075 0.66 0.11 0.96 0.05 0.513 0.103 0.909 0.101

  125/1805 0.645 0.035 0.96 0.065 0.67 0.075 0.97 0.06 0.477 0.087 0.828 0.086

  50/1805 0.74 0.04 0.965 0.05 0.7 0.06 0.97 0.04 0.374 0.067 0.768 0.061

  25/1805 0.765 0.035 0.97 0.03 0.69 0.06 0.975 0.06 0.333 0.056 0.727 0.071

  5/1805 0.735 0.03 0.96 0.01 0.575 0.045 0.935 0.01 0.185 0.072 0.53 0.051

  2/1805 0.675 0.02 0.925 0.005 0.46 0.075 0.87 0.005 0.138 0.067 0.46 0.051

0.6 OSg  0.944 0.101 1 0.12 0.949 0.066 1 0.135 0.95 0.1 1 0.121

 TSh 250/1805 0.97 0.076 0.985 0.11 0.99 0.076 0.985 0.115 0.985 0.065 1 0.07

  125/1805 0.99 0.071 0.985 0.075 0.99 0.051 0.985 0.075 0.975 0.065 0.99 0.095

  50/1805 1 0.066 0.985 0.06 0.99 0.04 0.985 0.05 0.945 0.085 0.985 0.065

  25/1805 1 0.02 0.985 0 0.99 0.02 0.985 0.025 0.925 0.045 0.985 0.01

  5/1805 1 0 0.985 0.005 0.965 0.01 0.985 0 0.785 0.025 0.965 0.005

  2/1805 0.97 0 0.975 0 0.919 0.005 0.98 0 0.72 0.01 0.945 0.01

at is the genotypic effect of the disease marker on the quantitative trait.
bq is the number of SNPs selected in the first stage; h is the number of total SNPs.
cs is the effect of confounding association on the trait.
d400 individuals and 800 individuals.
eThe power is estimated by the proportion of replicates successfully identifying the specific disease SNP.
fFWER, family wise error rate, which is estimated by the proportion of replicates wrongly identifying any one of the SNPs located at chromosomes 2 to 
chromosome 22.
gOS, one-stage procedure.
hTS, two-stage procedure.
i250/1805 = 0.139, 125/1805 = 0.069, 50/1805 = 0.028, 25/1805 = 0.014, 5/1805 = 0.003, 2/1805 = 0.001.
jThe maximum power of both the OS and TS is marked in bold.
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However, the proposed models can be straightforwardly adjusted to 
conduct a 2° of freedom genotypic test, which is robust to the under-
lying mode of inheritance. In addition, we only carried a subset of 
promising markers into a second-stage association analysis. Within the 
context of two-stage family based testing procedures, Ionita-Laza et al. 
(2007) have suggested that it may be more powerful to test all mark-
ers at the second-stage, weighting according to the first stage results. 
Thus, a point for future research will be to investigate how to optimally 
conduct two-stage testing procedures based on admixture information.

In addition, our approach is not intended to be used nor is it 
likely to be useful in all situations. When the correlation between 
admixture and the observed genotypes is zero, as will happen in 
regions of the genome that display little to no allele frequency 
differentiation across populations (or could occur in completely 
panmictic populations over many generations with no selection, 
no segregation distortion, and so on), the two-stage approach we 
propose will have no value. In situations in which the correlation 
between the adjusted genotypes and the observed genotypes is 1.0, 
there would also be no value in our two-stage approach because 
there will be perfect collinearity. Somewhere between zero and 
one must lie an optimum, and finding that optimum for different 
circumstances can be a topic for future research.
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found that the two-stage procedure identified two statistically sig-
nificant ancestry markers (rs952718 and rs1985080) associated with 
height after controlling for association confounded by admixture.

dIscussIon
In this study, we have introduced a new two-stage procedure for associ-
ation mapping in admixed populations. Our simulations indicate that 
the two-stage procedure had significantly higher power compared with 
a one-stage procedure and adequately controlled the FWER whether or 
not the admixture confounded the true association between genotype 
and trait. Because the performance of our two-stage method depends 
on the selection of the number of the top markers, we recommend that 
the top 3% markers be selected in stage 1 for stage 2 analysis in prac-
tice. In our real data example, using the one-stage procedure and the 
other two methods, we found no significant associations; however the 
two-stage procedure found two ancestry informative SNPs, rs1985080 
(PTHB1/BBS9) and rs952718 (ABCA12), to be significantly associ-
ated with height in African-Americans. PTHB1/BBS9 (parathyroid 
hormone-responsive B1) is downregulated by parathyroid hormone in 
osteoblastic cells and is thought to be involved in parathyroid hormone 
action in bones and may play a role in height (Adams et al., 1999). 
ABCA12 [ATP-binding cassette (ABC), sub-family A (ABC1), member 
12] is a member of the superfamily of ABC transporters (Annilo et al., 
2002). ABCA12 is a major causative gene for non-bullous congenital 
ichthyosiform erythroderma (Sakai et al., 2009), but its role in deter-
mining height merits further study.

Certain limitations of our proposed method deserve consideration. 
From empirical data across a range of traits and species, it has been 
suggested that most genetic variance is additive, which accounts for 
over half, and often close to 100%, of the total genetic variance (Hill 
et al., 2008). Thus, in our analysis we focused on the situation of addi-
tive genetic effects. If the underlying disease model follows a different 
mode of inheritance, then the proposed procedure will lose power. 

Table 4 | The association results of ancestry informative markers with height at a nominal level of 0.05 by the two-stage procedure.

rs iD Chromosome Gene physical position p-value in stage 1 rank in stage 1 p-value in stage 2

rs952718 2 ABCA12 215714130 0.074 2 0.011

rs1985080 7 BBS9 33400099 0.098 3 0.014
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Next, consider a multiple regression equation with Y as the 
response variable and E (X | Z) and (X − E (X | Z)) as the explana-
tory variables:

Y E X Z X E X Zi = + + −β β β0 1 2( | ) ( ( | ))

Then, β
2
 measures the within-subpopulation correlation between Y 

and X, and therefore can be estimated by FBAT-type score statistics 
(Laird et al., 2000; Laird and Lange, 2006)

U Y Z= − ×∑ µ) ( − |( X E X( )),

where μ is the pre-specified user-defined offset parameter (Laird 
and Lange, 2006). Let us denote the test statistic obtained by divid-
ing U by its estimated standard error (under the null hypothesis) 
by T

2
. Note that the estimated standard error is a function of X 

conditional on the Y and Z (Lange et al., 2002). Thus, the stand-
ard errors are estimated on the basis of X conditional on Y and Z. 
Therefore, the test statistic T

2
 is a random variable whose distribu-

tion is a function of X conditional on Y and Z. Our objective is to 
show that the statistics T

1
 and T

2
 are independent.

First, let us show that, if the null hypothesis that Y is independent 
of X conditional on Z is true, the test statistics are uncorrelated. 
(Independence of two random variables implies uncorrelatedness 
but the converse is not true.)

E T T t t f t f t dt dt( ) ,1 2 1 2 1 1 2 2 1 2= ( ) ( )∫∫
where the first integral is over t

1
 and the second integral is over t

2
. 

Also, f
1
 and f

2
 are density functions of the random variables T

1
 and 

T
2
, respectively. However, one can calculate the above integral in 

terms of the original density functions of X, Y, and Z.
We know that T

1
 is function of Y given Z. Let us denote 

T
1
 = ψ(Y | Z). Similarly, we know that T

2
 is function of X given Y 

and Z. Let us denote T
2
 = ϕ(X | Y, Z).

Define a set

A y z y z t B x y z x y z t= ={ } = ={ }| ψ | | ϕ |: ( ) : ( , ) .1 2and ,

appendIx
prooF oF orthogonalIty asyMptotIc Independence oF two 
test statIstIcs In stage 1 and stage 2 In the two-stage 
procedure For structured assocIatIon testIng
For ease of exposition and to facilitate generalization, we present 
this proof in the most general terms possible. Let X, Y, and Z be 
random variables with finite means and variances. Consider the 
regression with Y as the response variable and E (X | Z) as the 
explanatory variable. Note that E (X | Z) is a random variable that 
is a function of Z. Also, in this equation, all other measured covari-
ates can be included.

Y m a E X Zb= + ( | )

Let âb be an estimator of the regression coefficient in the above 
equation. Let T

1
 be a statistic for testing the significance of this 

regression coefficient. Note that T
1
 is obtained by dividing âb by 

its estimated standard error. Importantly, note that this estimate of 
standard error is also a function of Y and Z (because it is obtained 
from the residuals of the above regression equation, which is func-
tion of only Y and Z). Therefore, the distribution of T

1
 is a function 

of Y given Z.

Table A1 | The mean and variance of the percent of variability of a 

quantitative trait explained by admixture under the complete null 

hypothesis.

sa mean(s2var(A)/var(Y))b Var(s2var(A)/var(Y))

0.03 6.972548e-05 2.960423e-11

0.1 7.741784e-04 3.644441e-09

0.3 6.924462e-03 2.879201e-07

aa is the confounding effect of admixture on the trait.
bvar(Y) = s2 var(A) + t2 var(G) + 1, where var is variance, Y is the quantitative trait, 
A is the ancestry estimate, and G is the genotype.

Table A2 | The mean and variance of percent of variability of a quantitative trait explained by admixture under the non-complete null hypothesis.

  400c 800

sa tb mean(s2var(A)/var(Y))d Var(s2var(A)/var(Y)) mean(s2var(A)/var(Y)) Var(s2var(A)/var(Y))

0.03 0.2 8.617742e-05 3.650171e-11 6.879600e-05 2.994778e-11

 0.4 8.119870e-05 3.118215e-11 6.505619e-05 2.611041e-11

 0.6 7.406913e-05 2.465319e-11 5.965373e-05 2.126991e-11

0.1 0.2 9.566892e-04 4.490605e-09 7.637954e-04 3.669371e-09

 0.4 9.014642e-04 3.836954e-09 7.222993e-04 3.199798e-09

 0.6 8.223717e-04 3.034455e-09 6.623497e-04 2.607320e-09

0.3 0.2 8.544490e-03 3.527413e-07 6.832772e-03 2.914053e-07

 0.4 8.054818e-03 3.019340e-07 6.463735e-03 2.544517e-07

 0.6 7.352757e-03 2.393942e-07 5.930145e-03 2.077330e-07

as is the confounding effect of admixture on the trait.
bt is the effect of genotype at one disease marker on the trait.
cSample size is 400 individuals.
dvar(Y) = s2 var(A) + t2 var(G) + 1, where var is variance, Y is the quantitative trait, A is the ancestry estimate, and G is the genotype.
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The second integral in the brackets is essentially E (T
2
). It is note-

worthy that the E(X | Z) in the numerator of T
2
 is the expected value 

of X given Z under the null hypothesis. Also note that under null 
hypothesis, E (T

2
) = 0 (the null hypothesis is that X is independent 

of Y conditional on Z).
The overall numerator is asymptotically normal with a mean of zero 

and the overall denominator converges to 1. One can then use Slutsky’s 
theorem (Rao, 1973) to show the asymptotic normality of T

2
 under 

the null hypothesis with a mean of zero and variance of 1. Therefore,

Then,

E TT t t f y z g x y z dxdy( ) | | , .1 2 1 2= ( ) ( )∫∫
Here the first integral is over set A and the second integral is over set 
B. Also f is the conditional density of Y given Z and g is the condi-
tional density of X given Y and Z. We separate the above equation as

E TT t f y z t g x y z dx dy
BA

1 2 1 2( ) = ( ) ( )





∫∫ | | , .

FiGure A2 | scatter plot of the test statistics in stage 2 versus the test statistics in stage 1 in the two-stage procedure under the alternative. (A) is for 
s = 0; (B) is for s = 0.1 and  (C) is for s = 0.3. t = 0.2 and 0.4.

FiGure A1 | scatter plot of the test statistics in stage 2 versus the test statistics in stage 1 in the two-stage procedure under the null. (A) is for s = 0; (B) is 
for s = 0.1; (C) is for s = 0.3. t = 0.
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Table A3 | information on 108 ancestry informative markers and the p-values of association with height by the two-stage procedure.

rs iD Chromosome Gene Genetic position physical position p-values in stage 1 p-value in stage 2

rs10202705 2 LOC646324 215.6077 216417394 0.0609 0.0951
rs952718a 2 ABCA12 214.6798 215714130 0.0742 0.011
rs1985080 7 BBs9 52.12773 33400099 0.098 0.0135
rs7021690 9 LOC645586 0.193122 534642 0.1055 0.2294
rs9849733 3 C3orf55 180.1571 158876963 0.122 0.4364
rs4350528 15 LOC728292 108.5775 91964704 0.174 0.2227
rs11901793 2 CXCR7 263.0074 237279237 0.1982 0.4396
rs12997060 2 FLJ39660 200.7928 197405233 0.2028 0.744
rs9416026 10 CBARA1 96.30602 74087507 0.2088 0.4445
rs11000419 10 CCDC109A 96.30699 74244696 0.2089 0.8467
rs1462309 3 LOC151760 133.062 112009941 0.2097 0.4675
rs13261248 8 HAS2 139.6438 122583352 0.2133 0.3082
rs12900262 15 LOC723972 29.64596 33272681 0.2177 0.4129
rs6023376 20 DOK5 90.68957 52629121 0.2567 0.8494
rs2426515 20 DOK5 90.49722 52506124 0.2612 0.1514
rs1911999 10 LOC728616 178.5082 132471324 0.2755 0.1609
rs503677 10 HERC4 87.70496 69497018 0.2833 0.2395
rs2816 17 GUCY2D 19.18685 7864289 0.3024 0.8106
rs2246695 14 LOC729637 58.51679 61077818 0.3051 0.0223
rs710052 14 FLJ22447 58.61844 61180428 0.3151 0.2077
rs4896780 6 LOC645749 164.4003 145559100 0.3188 0.3345
rs7187359 16 LOC730183 61.75076 30610656 0.3312 0.9713
rs12926237 16 LOC647086 61.75096 30745097 0.3312 0.4634
rs4811651 20 LOC728922 93.27854 54135335 0.3494 0.8077
rs4529792 10 hCG_2024596 81.85902 65612336 0.3962 0.569
rs7424137 2 COL3A1 194.4305 189709150 0.4053 0.0935
rs6937164 6 MOXD1 148.7214 132737005 0.4066 0.9089
rs4859147 3 DCUN1D1 210.388 184164555 0.4125 0.6253
rs2891 17 C17ORF85 9.398317 3652275 0.4196 0.6011
rs4792105 17 FLJ45455 30.27122 11052086 0.4274 0.6108
rs4489979 15 C15orf53 35.4689 36834731 0.4324 0.2248
rs4659762 1 MT1P2 273.1732 233493259 0.438 0.9298
rs6765491 3 C3orf58 166.8326 145319388 0.4425 0.3359
rs1733731 10 LOC399774 71.0642 53909652 0.4485 0.0848
rs1917028 5 ARHGAP26 157.1685 142106940 0.4486 0.3187
rs33957 5 FGF1 156.1912 141908017 0.4601 0.4253
rs4793237 17 ARL4D 85.4688 38792121 0.4654 0.7775
rs2593595 17 G6PC 84.88509 38309771 0.4719 0.6797
rs228768 17 HDAC5 86.18277 39547419 0.4784 0.348
rs4923940 15 GANC 39.91222 40372666 0.4937 0.8646
rs12594483 15 CDAN1 39.91419 40809278 0.4937 0.4814
rs735480 15 LOC653381 40.30385 42939663 0.4964 0.8786
rs155409 3 CNTN6 2.635718 1330266 0.5017 0.585
rs316598 5 LOC728878 5.460322 2417626 0.5049 0.9373
rs10041728 5 FTMT 136.5294 121164880 0.5065 0.8867
rs1011643 20 MACROD2 39.12778 15492065 0.5089 0.9319
rs645510 12 KSR2 144.2429 116569153 0.5143 0.1442
rs584059 3 LOC646641 160.1478 140313784 0.5177 0.9838
rs798443 2 C2orf46 17.5542 7918873 0.5191 0.8202
rs4885162 13 HCG_1820717 79.18408 73767349 0.549 0.4777
rs13173738 5 FLJ43080 126.6313 110015127 0.5525 0.2062
rs9543532 13 KLF12 79.02257 73599383 0.5551 0.5224
rs13318432 3 GADL1 54.50649 30848144 0.5574 0.2923
rs10056388 5 FLJ43080 126.0682 109533593 0.5586 0.5464
rs3861709 9 BNC2 34.77461 16693100 0.5747 0.8248

(Continued)
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rs10962612 9 LOC648570 34.90021 16794167 0.5755 0.4173
rs1800498 11 DRD2 136.8711 112796798 0.5808 0.1784
rs1885167 9 C9orf39 35.55759 17504515 0.5936 0.6049
rs1982235 2 ATP5G3 186.285 175873413 0.5956 0.376
rs9530646 13 MYCBP2 82.60269 76871502 0.6132 0.9015
rs2814778 1 DARC 164.8221 155987756 0.6205 0.4206
rs9306906 4 LOC727792 55.75533 33788933 0.6277 0.7811
rs4789070 17 CD300A 131.3202 70006271 0.6372 0.9351
rs2184033 10 IPMK 75.94487 59493900 0.6399 0.1966
rs11607932 11 CCND1 88.57647 69059026 0.6467 0.4551
rs2687427 4 LOC133185 55.40398 33048432 0.6625 0.0284
rs1876482 2 LOC442008 38.4539 17284196 0.666 0.8582
rs2777804 9 ABCA1 130.4389 104650796 0.6929 0.4834
rs1412521 9 DBC1 159.8048 118992643 0.699 0.6384
rs1372115 2 ACVR1 169.3729 158503007 0.6991 0.9289
rs7041 4 GC 87.68387 72983369 0.7033 0.6588
rs1508061 2 EXOC6B 97.05812 72867396 0.7045 0.2826
rs17049450 2 LOC402102 145.4099 129901408 0.7169 0.6291
rs12640848 4 ENAM 85.96041 71871447 0.7298 0.0069
rs7134682 12 LOC645253 80.89459 64454418 0.7345 0.6023
rs12692701 2 FIGN 175.3797 164294693 0.7444 0.1651
rs6494466 15 CSNK1G1 61.74714 62295816 0.7454 0.6236
rs857440 6 LOC728961 31.91449 14814156 0.7505 0.456
rs7689609 4 LOC727995 86.35034 72448409 0.7546 0.0392
rs12612040 2 CALM2 73.80653 47363479 0.7645 0.9367
rs870272 9 C9orf18 162.2841 122033114 0.7711 0.4028
rs1858465 17 LOC339209 93.90577 48497919 0.7736 0.3317
rs4823460 22 FAM118A 63.38413 44040171 0.7749 0.801
rs722098 21 LOC388814 5.595659 15607469 0.8444 0.6704
rs4602918 8 CSMD1 7.077355 2610476 0.8447 0.7925
rs1490728 12 CAPZA3 36.7412 18926829 0.8761 0.7462
rs7189172 16 LOC440389 105.4772 78505139 0.8801 0.7853
rs11150219 16 LOC440389 105.4753 78404774 0.8802 0.2759
rs2416791 12 ETV6 25.75001 11592755 0.8869 0.9688
rs1991818 19 KLK7 93.55545 56176825 0.898 0.8252
rs1477921 13 LOC728192 116.9487 105816154 0.8992 0.7171
rs7161 1 DPH2 78.39628 44108067 0.9069 0.9732
rs13169284 5 CMBL 26.64584 10343037 0.9133 0.5776
rs1372894 4 LOC727891 192.5881 171959148 0.9174 0.7485
rs1862819 16 MPHOSPH6 112.0289 80783067 0.9223 0.6052
rs12129648 1 KIF26B 292.7902 241697533 0.9233 0.3829
rs10842753 12 ITPR2 49.58988 26588678 0.9316 0.7366
rs2077863 18 LOC645932 37.92992 11046815 0.9335 0.6782
rs6491743 13 LOC728183 109.1772 102859333 0.9419 0.9647
rs6003 1 F13B 211.9731 193762678 0.9516 0.992
rs10195705 2 CTNNA2 106.2942 80576097 0.9642 0.0683
rs1043809 17 EPN2 47.36621 19180025 0.9716 0.671
rs344454 7 CNTNAP2 167.2209 145839082 0.9799 0.5745
rs10908312 1 CSF3R 68.42725 36774370 0.983 0.71
rs1335826 10 LOC729432 47.59236 24084471 0.9838 0.6698
rs10255169 7 CNTNAP2 167.0514 145456168 0.9875 0.7345
rs2451563 6 LOC643281 97.19765 77170807 0.9911 0.6489
rs1257010 2 LOC643445 112.4947 97055688 0.9994 0.6953

aWe chose top three AIMs for stage two association analysis and the significant AIMs are in bold. Here, we chose three because based on our simulation results the 
optimal proportion of top markers selected in stage one seems equal to 0.03 so that 0.03 × 108 ≈ 3.

Table A3 | Continued

rs iD Chromosome Gene Genetic position physical position p-values in stage 1 p-value in stage 2
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Table A4 | empirical power and FWer of the two-stage procedure at a significance level of 0.05 (200 replicates).

t a method q/hb sc = 0 s = 0.1 s = 0.3

 400d 800 400 800 400 800

   powere FWerf power FWer power FWer power FWer power FWer power FWer

0.2 OSg  0.005 0.031 0.115 0.02 0.01 0.03 0.09 0.055 0.005 0.045 0.121 0.04

 TSh 1000/1805i 0.01 0.046 0.14 0.035 0.01 0.045 0.095 0.06 0.01 0.045 0.07 0.04

  500/1805 0.015 0.051 0.185 0.045 0.015 0.04 0.095 0.06 0.005 0.055 0.055 0.035

  250/1805 0.015 0.061 0.18 0.06 0.015 0.03 0.11 0.04 0.01 0.04 0.05 0.03

  125/1805 0.02 0.036 0.2 0.05 0.02 0.05 0.12 0.035 0.01 0.045 0.02 0.05

  100/1805 0.031 0.036 0.2 0.05 0.025 0.045 0.125 0.03 0.005 0.04 0.015 0.06

  75/1805 0.026 0.036 0.215 0.035 0.02 0.045 0.12 0.045 0.005 0.035 0.005 0.045

  50/1805 0.026 0.041 0.25 0.03 0.025 0.04 0.11 0.035 0.01 0.04 0.005 0.065

  25/1805 0.036j 0.02 0.27 0.045 0.025 0.04 0.08 0.045 0 0.015 0.005 0.06

  5/1805 0.031 0.036 0.225 0.01 0.005 0.055 0.04 0.04 0 0.01 0.005 0.055

  2/1805 0.026 0.031 0.19 0.025 0 0.065 0.02 0.02 0 0.03 0.005 0.05

0.4 OSg  0.35 0.03 0.875 0.05 0.445 0.04 0.865 0.04 0.362 0.05 0.875 0.065

 TSh 1000/1805i 0.39 0.035 0.88 0.04 0.465 0.035 0.865 0.065 0.397 0.045 0.91 0.065

  500/1805 0.455 0.03 0.9 0.045 0.52 0.03 0.89 0.06 0.432 0.06 0.93 0.06

  250/1805 0.505 0.03 0.92 0.03 0.555 0.045 0.92 0.06 0.447 0.055 0.91 0.06

  125/1805 0.555 0.045 0.935 0.035 0.605 0.05 0.945 0.03 0.412 0.04 0.87 0.04

  100/1805 0.575 0.025 0.94 0.03 0.645 0.04 0.945 0.035 0.402 0.045 0.83 0.05

  75/1805 0.605 0.035 0.945 0.03 0.66 0.045 0.96 0.04 0.382 0.045 0.83 0.025

  50/1805 0.62 0.015 0.95 0.03 0.68 0.03 0.96 0.04 0.372 0.035 0.795 0.02

  25/1805 0.655 0.02 0.975 0.01 0.64 0.02 0.95 0.015 0.322 0.025 0.745 0.02

  5/1805 0.67 0.015 0.965 0 0.495 0.02 0.865 0.005 0.196 0.045 0.57 0.015

  2/1805 0.545 0.005 0.945 0 0.395 0.035 0.8 0 0.146 0.045 0.465 0.04

0.6 OSg  0.93 0.06 1 0.065 0.9 0.06 1 0.06 0.915 0.04 1 0.06

 TSh 1000/1805i 0.945 0.055 1 0.065 0.92 0.06 0.995 0.025 0.935 0.03 1 0.04

  500/1805 0.96 0.035 0.985 0.055 0.935 0.06 0.99 0.035 0.95 0.03 1 0.06

  250/1805 0.96 0.055 0.985 0.06 0.95 0.06 0.99 0.035 0.96 0.035 0.99 0.065

  125/1805 0.965 0.045 0.985 0.06 0.95 0.04 0.985 0.025 0.97 0.01 0.99 0.03

  100/1805 0.975 0.035 0.985 0.065 0.96 0.03 0.985 0.035 0.97 0.02 0.99 0.025

  75/1805 0.985 0.02 0.985 0.06 0.98 0.035 0.985 0.03 0.97 0.03 0.99 0.01

  50/1805 0.985 0.02 0.985 0.045 0.98 0.025 0.985 0.02 0.97 0.04 0.99 0.015

  25/1805 0.995 0.01 0.985 0.01 0.985 0.015 0.985 0.01 0.93 0.015 0.98 0.025

  5/1805 0.97 0.005 0.985 0.005 0.97 0.005 0.985 0 0.785 0.015 0.95 0

  2/1805 0.93 0 0.985 0 0.91 0 0.985 0.005 0.69 0.025 0.93 0

at is the genotypic effect of the disease marker on the quantitative trait.
bq is the number of SNPs selected in the first stage; h is the number of total SNPs.
cs is the effect of confounding association on the trait.
d400 individuals and 800 individuals.
eThe power is estimated by the proportion of replicates successfully identifying the specific disease SNP.
fFWER, family wise error rate, which is estimated by the proportion of replicates wrongly identifying any one of the SNPs located at chromosomes 2 to 
chromosome 22.
gOS, one-stage procedure.
hTS, two-stage procedure.
i250/1805 = 0.139, 125/1805 = 0.069, 50/1805 = 0.028, 25/1805 = 0.014, 5/1805 = 0.003, 2/1805 = 0.001.
jThe maximum power of both the OS and TS is marked in bold.

E TT t f y s E t dy
A

1 2 1 2 0( ) = =∫ ( | )[ ( )]

and

Cov TT E TT E T E T( ) ( ) ( ) ( ) .1 2 1 2 1 2 0= − =

Thus, we have proven that these two statistics are uncorrelated.
We can then prove the asymptotic independence of T

1
 and T

2
 by 

noting that the uncorrelatedness (orthogonality) implies independ-
ence IF T

1
 and T

2
 are normally distributed. T

1
 and T

2
 are standard linear 

regression estimators and can be shown to be asymptotically normally 
distributed by using standard asymptotic arguments. Thus, the joint 
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Table A5 | empirical power and FWer of the two-stage procedure at a significance level of 0.1 (200 replicates).

ta method q/hb sc = 0 s = 0.1 s = 0.3

 400d 800 400 800 400 800

   powere FWerf power FWer power FWer power FWer power FWer power FWer

0.2 OSg  0.025 0.041 0.105 0.05 0.021 0.082 0.09 0.08 0.015 0.056 0.1 0.07

 TSh 1000/1805i 0.02 0.071 0.15 0.05 0.015 0.082 0.125 0.055 0.015 0.087 0.1 0.08

  500/1805 0.01 0.086 0.185 0.085 0.036 0.097 0.185 0.08 0.015 0.097 0.065 0.08

  250/1805 0.03 0.076 0.2 0.125 0.046 0.103 0.2 0.105 0.005 0.097 0.07 0.08

  125/1805 0.046 0.071 0.225 0.1 0.041 0.056 0.22 0.09 0 0.097 0.055 0.085

  100/1805 0.041 0.066 0.215 0.095 0.046 0.062 0.225 0.08 0 0.092 0.05 0.09

  75/1805 0.041 0.076 0.23 0.09 0.046 0.056 0.2 0.105 0 0.092 0.045 0.08

  50/1805 0.041 0.076 0.255 0.07 0.056 0.092 0.17 0.08 0 0.087 0.04 0.1

  25/1805 0.056 0.066 0.26 0.08 0.046 0.087 0.14 0.075 0 0.077 0.03 0.115

  5/1805 0.066j 0.086 0.215 0.07 0.031 0.072 0.11 0.045 0 0.056 0.01 0.1

  2/1805 0.051 0.107 0.195 0.06 0.015 0.062 0.06 0.09 0 0.087 0 0.105

0.4 OSg  0.44 0.11 0.925 0.07 0.48 0.09 0.89 0.105 0.431 0.113 0.894 0.086

 TSh 1000/1805i 0.47 0.1 0.92 0.06 0.525 0.07 0.9 0.08 0.441 0.123 0.914 0.081

  500/1805 0.54 0.105 0.935 0.09 0.575 0.08 0.94 0.075 0.492 0.108 0.909 0.126

  250/1805 0.595 0.085 0.95 0.075 0.66 0.11 0.96 0.05 0.513 0.103 0.859 0.101

  125/1805 0.645 0.035 0.96 0.065 0.67 0.075 0.97 0.06 0.477 0.087 0.828 0.086

  100/1805 0.67 0.04 0.96 0.09 0.68 0.075 0.97 0.06 0.462 0.087 0.823 0.086

  75/1805 0.715 0.03 0.965 0.08 0.71 0.09 0.975 0.04 0.431 0.077 0.808 0.081

  50/1805 0.74 0.04 0.965 0.05 0.7 0.06 0.97 0.04 0.374 0.067 0.768 0.061

  25/1805 0.765 0.035 0.97 0.03 0.69 0.06 0.975 0.06 0.333 0.056 0.727 0.071

  5/1805 0.735 0.03 0.96 0.01 0.575 0.045 0.935 0.01 0.185 0.072 0.53 0.051

  2/1805 0.675 0.02 0.925 0.005 0.46 0.075 0.87 0.005 0.138 0.067 0.46 0.051

0.6 OSg  0.944 0.101 1 0.12 0.949 0.066 1 0.135 0.95 0.1 1 0.121

 TSh 1000/1805i 0.955 0.076 1 0.12 0.96 0.061 0.995 0.135 0.95 0.085 1 0.121

  500/1805 0.955 0.071 0.99 0.115 0.975 0.066 0.99 0.12 0.955 0.07 1 0.095

  250/1805 0.97 0.076 0.985 0.11 0.99 0.076 0.985 0.115 0.985 0.065 1 0.07

  125/1805 0.99 0.071 0.985 0.075 0.99 0.051 0.985 0.075 0.975 0.065 0.99 0.095

  100/1805 0.99 0.066 0.985 0.085 0.99 0.061 0.985 0.045 0.975 0.065 0.99 0.09

  75/1805 0.995 0.066 0.985 0.095 0.99 0.061 0.985 0.05 0.97 0.06 0.99 0.08

  50/1805 1 0.066 0.985 0.06 0.99 0.04 0.985 0.05 0.945 0.085 0.985 0.065

  25/1805 1 0.02 0.985 0 0.99 0.02 0.985 0.025 0.925 0.045 0.985 0.01

  5/1805 1 0 0.985 0.005 0.965 0.01 0.985 0 0.785 0.025 0.965 0.005

  2/1805 0.97 0 0.975 0 0.919 0.005 0.98 0 0.72 0.01 0.945 0.01

at is the genotypic effect of the disease marker on the quantitative trait.
bq is the number of SNPs selected in the first stage; h is the number of total SNPs.
cs is the effect of confounding association on the trait.
d400 individuals and 800 individuals.
eThe power is estimated by the proportion of replicates successfully identifying the specific disease SNP.
fFWER, family wise error rate, which is estimated by the proportion of replicates wrongly identifying any one of the SNPs located at chromosomes 2 to 
chromosome 22.
gOS, one-stage procedure.
hTS, two-stage procedure.
i250/1805 = 0.139, 125/1805 = 0.069, 50/1805 = 0.028, 25/1805 = 0.014, 5/1805 = 0.003, 2/1805 = 0.001.
jThe maximum power of both the OS and TS is marked in bold.

distribution of T
1
 and T

2
 is asymptotically normally  distributed. Given 

this and the fact that we have shown that these two statistics are uncor-
related proves the asymptotic independence of T

1
 and T

2
.

Having demonstrated the asymptotic independence of T
1
 and 

T
2
, we can easily make the specification that Y is a phenotype, X is 

a genotype, and Z is a variable (e.g., an individual ancestry value 

or a region-specific admixture value) such that conditional on Z, 
there can be no confounding of the association between X and Y 
by admixture. And E(X | Z) is the predicted genotype value denoted 
by ˆ .,Gi j  If we do so, we now have two tests that can be used in our 
two-stage procedure that has all of the desirable characteristics [(a) 
to (d)] that we listed in the introduction.
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