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Since the discovery of the ubiquitous contribution of copy number variation to genetic variability,
researchers have commonly used metrics such as r? to quantify linkage disequilibrium (LD)
between copy number variants (CNVs) and single nucleotide polymorphisms (SNPs). However,
these reports have been restricted to SNPs outside copy number variable regions (CNVR) as
current methods have not been adapted to account for SNPs displaying variable copy number.
We show that traditional LD metrics inappropriately quantify SNP/CNV covariance when SNPs
lie within CNVR. We derive a new method for measuring LD that solves this issue, and defaults
to traditional metrics otherwise. Finally, we present a procedure to estimate CNV-SNP allele
frequencies from unphased CNV-SNP genotypes. Our method allows researchers to include
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INTRODUCTION

Examination of linkage disequilibrium (LD) between single
nucleotide polymorphisms (SNPs) has played a key role in our
understanding of worldwide patterns of genetic variation, includ-
ing determining the extent of haplotype diversity (Conrad et al.,
2006), detecting regions of positive selection (Sabeti et al., 2007),
and guiding the design of most current genotyping arrays through
the selection of appropriate haplotype tagging SNPs. Traditional
pairwise metrics of LD, including 7, D, and D', have been designed
to quantify the degree of non-independence between neighboring
genetic polymorphisms (Lewontin and Kojima, 1960; Lewontin,
1964; Hill and Robertson, 1968). With the current understanding
that copy number variation (CNV) also significantly contributes to
genetic variation (Redon et al., 2006), research has turned to the role
for CNV in disease risk (Gonzalez et al., 2005; Aitman et al., 2006;
McCarroll and Altshuler, 2007; Sebat et al., 2007), particularly as a
partial explanation for the so-called missing heritability (Manolio
etal., 2009; Eichler et al., 2010). Recently, genome-wide CNV sur-
veys such as that performed by the Wellcome Trust Case Control
Consortium (WTCCC) have concluded that common CNVs were
adequately tagged by SNPs; and thus unlikely to substantially con-
tribute to the genetic basis of common human diseases (Conrad
etal.,2010; Wellcome Trust Case Control Consortium et al., 2010).
However, current methods have restricted these studies to only
include SNPs that fall outside of copy number variable regions
(CNVR) —the ramifications being that more tagging SNPs are being
missed, particularly in DNA segments of higher copy number.

In this paper, we explicitly derive the covariance between SNPs
and CNVs under a range of scenarios where SNPs either fall inside
(interior) or outside (exterior) of a CNVR. We find that traditional
LD metrics are sufficient for exterior SNPs; however, these same
metrics inappropriately quantify covariance for interior SNPs.

all SNPs in SNP/CNV LD measurements, regardless of copy number.
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Specifically, we show that the covariance estimated from common
metrics using interior SNPs will: (1) always be non-zero at any
polymorphic loci; (2) differ based upon the arbitrary choice of
reference SNP allele; and (3) potentially lead to high values of LD
despite any meaningful correlation between the copy number state
and SNP allele. Based on this result, we modify traditional tech-
niques to appropriately quantify the covariance in the case of SNPs
residing within CNVRs.

MATERIALS AND METHODS

We begin with a brief review of current statistical metrics for the
quantification of LD, discuss their performance in the presence of
CNV, and conclude with our proposed statistics based on CNV-
SNP covariance.

REVIEW OF CURRENT LD METRICS FOR SNPs AND CNVs

In accordance with current LD metrics, let X denote the integer copy
number state for a CNVR on a single maternal/paternal chromo-
some or haploid, where we assume for simplicity that X can take
three values representing a deletion (0), normal copy number (1),
and duplication (2). Similarly define Y as the count of reference
alleles at a SNP on the same chromosome, where we arbitrarily label
the SNP alleles as A (reference) and B. The marginal probability
distributions for X and Y can then be defined as:

0 with P(X =0)=f,,
={1with P(X=1)=f,,
2 with P(X =2)=f,; and

_[1with P(Y =1)=£,,
|0 with P(y =0)=f,. (1)
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Assuming that the joint frequencies (f,,) are known, the
covariance between X and Y can be written as:

COV(X,Y)ZE;)C)W](XX —(Zx,x-fx](;%fy]-

We consider this covariance between CNVs and SNPs in the
following four scenarios.

Scenario 1a: The SNP is outside a CNVR (exterior SNP) that
contains a normal (one copy) variant and deletion (zero copies). Then:

COV(X>Y)=f1,A_flfAz_(fl,B_flfB)- (3)

Scenario 1b: The SNP is outside a CNVR (exterior SNP) that con-
tains a normal (one copy) variant and duplication (two copies). Then:

COV(X’Y)=f2,A_f2fA =_(f2,B_f2fB)' (4)

In both of the above scenarios, the covariance between the CNV
and SNP will appropriately be zero when X and Yare independent
(i.e., the joint frequency is equivalent to the product of the mar-
ginal frequencies). Also, any inference concerning the relationship
between the CNV and SNP does not depend on as the choice of
reference allele, since only the direction of the covariance differs.
Given these features, traditional measurements of LD between
CNVs and SNPs are sufficient for exterior SNPs.

Scenario 2a: The SNP is inside a CNVR (interior) that contains a
normal (one copy) variant and deletion (zero copies). Table 1 provides
definitions of CNV-SNP allele frequencies based on haploid, three
copy number state model (zero to two copies per haploid). In situ-
ations where the SNP lies within the CNVR, SNP allele counts are
dependent on copy number state. For example, whenever a deletion
is present, both X and Y must be equal to zero. Thus,

COV(X’Y)=f1,A(1_f1)¢_fl,B(l_fl)' (5)

Scenario 2b: The SNP is inside a CNVR (interior) that contains
a normal (one copy) variant and duplication (two copies). This final
scenario represents the most complex case. The sample space of Y
needs to change to reflect the possibility of zero to two copies of
the A allele. Namely:

(2)

0 with P(X =0)= fy+ fi5 + frps
Y=21with P(X=1)=f,, + fo s>

2 with P(X =2)=f, ... (6)
Table 1 | Copy number variant-single nucleotide polymorphism
(CNV-SNP) alleles based upon a haploid three copy number state
model (zero to two copies per haploid).
CNV-SNP allele  Copy number Number of A alleles  Frequency
0 0 0 f,
A 1 1 fia
B 1 0 fio
AA 2 2 Toma
AB 2 1 [
BB 2 0 Tyes

The covariance then becomes,

COV(X’Y) = fl (fz,AB +2fZ,AA)+(1 _fl)fl,A
* _fl (fZ,AB +2f2,BB)_(1 _fl)fl,B‘

Based on the covariances calculated in scenarios 2a and 2b, we
find two undesirable features of current metrics when used to assess
LD between interior SNP and CNVs: (1) polymorphic SNPs inside
CNVRs will never be uncorrelated with the CNV; and (2) the cor-
relation between variants will differ based upon which SNP allele
is considered as the reference. In these scenarios the use of tradi-
tional LD measurements could impact association results. Consider
a population where a monomorphic SNP lies within a CNVR that
includes a moderately frequent deletion (for instance: f) = 0.1 and
fL , =0.9). Traditional metrics would conclude that the SNP and CNV
are in perfect LD; and that any inference based upon the SNP would
apply to the CNV. However, in the absence of copy number data,
an association analysis based upon the SNP would be completely
uninformative — leading to, perhaps, the incorrect conclusion that
CNV is also not associated with the trait. In general, we show that
high values of 1* between an interior SNP and deletion are obtained
whenever the SNP minor allele frequency is low (Figure 1). However,
in the absence of CNV data, the same incorrect conclusion would
again be applied to the CNV. In these situations we would hope LD
measurements would conclude independence. However that is not
the case. We also note the result that the correlation between the SNP
and CNV depends on the SNP allele considered as the reference.
We have provided an example in the results section signifying this
property. Together, these features demonstrate that traditional LD
metrics are inappropriate when applied to interior SNPs and CNVs.

(7)

fa

0.20

FIGURE 1 | Linkage disequilibrium (r?) between copy number variants
(CNVs) and single nucleotide polymorphisms (SNPs) within the copy
number variable region as a function of deletion frequency (f) and SNP
minor allele frequency (MAF).
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To address these deficiencies, we now propose a new metric to
quantify LD between CNVs and SNPs that functions equivalently
to traditional measures for exterior SNPs, and solves these issues
for interior SNPs.

DERIVATION OF NEW PROPOSED STATISTIC

We consider a bi-allelic SNP present within a CNVR with three
potential haploid copy number states: zero, one, or two copies —
although methods here can be expanded to higher copy number,
or multiple SNP alleles (Kalinowski and Hedrick, 2001). Define the
CNV-SNP allele at this locus to be a combination of the haploid
copy number state and nucleotide frequency with two differing,
generically labeled SNPs A and B. Then this model can be treated
similar to a multiallelic locus with alleles: 0, A, B, AA, AB, and BB;
where 0 represents a deletion (Table 1). Combined in pairs, these
alleles form a CNV-SNP genotype which provides information
on the total number of copies of each nucleotide (Table 2). This
model is consistent with those in the majority of copy number
calling algorithms for array-based CNV detection (Wang et al.,
2007; Korn et al., 2008; Coin et al., 2010). Note, however, that while
CNV-SNP genotypes can be inferred from common genotyping
platforms (Korn et al., 2008; Coin et al., 2010), the phase, particu-
larly in duplicated regions, may be ambiguous. For example, an
AAB genotype may have either of the phased haploid configurations
AA/B or AB/A.

Table 2 | Copy number variant-single nucleotide polymorphism
(CNV-SNP) genotypes based upon a haploid three copy number state
model, CNV-SNP haploid configurations, and respective frequencies.

CNV-SNP genotype Haploid configuration Frequency
0 0/0 7

A/O 2f1‘AfO
B B/O 2f, o1,
AA A/A 12

AA/0 21, 41
AB A/B 2f \fig

AB/O 21, o1
BB B/B 2

BB/O 21, o1,
AAA AA/A 21, jain
AAB AA/B 2f, pafis

AB/A 21,51,
ABB BB/A 21,65t n

AB/B 2f2‘ABfW,B
BBB BB/B 2,6t s
AAAA AA/AA an
AAAB AA/AB 21, e
AABB AA/BB 21, palyps

AB/AB o an
ABBB AB/BB 21, e lres
BBBB BB/BB s

Frequency estimates are based upon haploid configurations falling into their
appropriate Hardy—\Weinberg equilibrium proportions.

We note that in the case of interior SNPs, a deletion should
not provide any information on the relationship between the copy
number state and SNP allele(s) present. Therefore, let X be the
integer haploid copy number state and Y represent the presence of
a particular SNP allele, conditional on haploid copy number state
not equal to zero, so that:

1with P(X =1)= h ,
X= )
2 with P(X =2)= f ;and
L “Jo
1 with P(Y =1)= Ju ,
Y- & (8)
0 with P(Y = 0):1 fy ; where
L ~Jo
ﬁ = ﬁ,A +f;,B; f; = f;,AA + 2,AB +f;,BB; f;\ = LA + 2,AA + l/zf;,AB; and

Jo =15 =1+ 1/2f, ., according to the CNV-SNP allele frequencies
listed in Table 1. The covariance between X and Y then becomes,

fAJ:—@—ﬁ)[ﬁB fﬁ)’

Cov(X,Y)Z(l_fo) (flA 1-f, 1-f,

)

which does not depend on the particular choice of the reference
allele. We denote the inner factor in formula {9} asD_, noting its
equivalence to Lewontin’s D (Lewontin and Kojima, 1960) in situ-
ations for exterior SNPs. Specifically, let

paN

- (10)

c=f1A

£ 0 for exterior SNPs,
where Jo = f, for interior SNPs.

Similar to D, the range of values for D is difficult to interpret
without proper scaling. Therefore, we propose a method nearly
identical to the construction of D’(Lewontin, 1964). Define the
maximum value that D can take based upon allele frequencies
as DZ™. Then:

(fﬁ’ﬁﬂmenD>o
1-f, 1= f;

DéﬂaX:
max( ffA foB )whenD <0. (11)
1-f," 1-f;
Finally, let
, D,
D.=—. 12
e = Do (12)

Meanwhile, we can also calculate the correlation between Xand
Y to be:

(13)

(=5 )\/ffzfAfB
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or, alternatively:

2 )2 Dé
pir=0-1) 77

=1 (14)

We again note that D and r_ are identical to the traditional LD
measurements D" and 7%, respectively, for exterior SNPs; and both
are an appropriate measurement for interior SNPs.

ESTIMATION OF CNV-SNP ALLELE FREQUENCIES

Calculation of D and r is straightforward when the CNV-SNP
haplotype frequencies are known. However, current methods for
array-based genotype/CNV calling do not directly infer the hap-
loid configuration (phase), though methods for estimating this
configuration have been recently proposed (Kato et al., 2008; Su
etal.,2010). Here we present a novel method to estimate CNV-SNP
allele frequencies based on unphased CNV-SNP genotypes. The
method is a direct result of an EM algorithm and nearly identical
in construction to the gene-counting, allele frequency estimation
procedure in Ceppellini et al. (1955) and Smith (1957). Consider
a CNVR with CNV-SNP haploid configurations S/T such that S,
T e {0, A, B, AA, AB, BB}. In the E-step, haploid configuration
counts are estimated based on the expected counts from estimated
CNV-SNP allele frequencies. That is, for each CNV-SNP haploid
configuration S/T:

fe,
Ny =N ( fS/T ‘
STk

(15)

where N is number of CNV-SNP genotypes that could possibly
result in an S/T haploid configuration, f;/l . is the estimated fre-
quency of the S/T haploid configuration, and f;,, , is the estimated
frequency of CNV-SNP genotypes that could result in an S/T hap-
loid configuration for the kth iteration. In the M-step, CNV-SNP
allele frequencies estimates are updated:

2N+ ZNS/T

fop ==

2N (16)

as well as new CNV-SNP haploid configuration frequencies
estimates:

f. Z o 1IfS=T,
fS/T,kH = { .

2fs,k+1f'[‘,k+l Othemse‘ (17)

The algorithm is based upon haploid configurations falling into
their appropriate Hardy—Weinberg equilibrium proportions. As
a result, this approach may perform poorly in de novo mutation
hot-spots and CNVs found only in somatic cells.

RESULTS

We provide calculations of 7 for various CNV-SNP allele fre-
quencies and compare them to the traditional measurements
for SNPs inside CNVRs (Table 3). We define, r; and r; are the

Table 3 | Measurements of linkage disequilibrium (LD) between copy
number variants and single nucleotide polymorphisms (SNPs) within
the copy number variable region.

Type Frequency r P 2
Deletion only (1) f,=0.1 0.111 0.074 0*
flA =05
fw,B =04
Deletion only (2) f,=05 0.429 0.250 0%
f,,=03
fle=02
Duplication only (1) fa=05 0.667 0.910 0.818
fZ,AB =0.1
foee =04
Duplication only (2) f,a=03 0.146 0.146 0
fs=03
fz,AA =0.1
fZ,AB =02
f 55 = 0.1
Duplication only (3) f,=03 0.098 0.098 0
f,s=03
fon=02
foee =02
Multiallelic (1) f,=0.2 0.014 0.656 0.758
fa=05
fope = 0.1
foee =02
Multiallelic (2) f,=0.2 0.222 0.222 0
f‘\,A =0.3
fHB =03
fZ,AA =0.1
foee = 0.1

0*: r? cannot be calculated as the informative (non-zero) copy number state is
monomorphic.

traditional metrics of LD using SNP allele A or B as the reference
allele, respectively. Note how vastly different results can be obtained
depending on which allele is used as the reference. The value of 7 is
the same irrespective of SNP allele considered as the reference allele.

We theoretically demonstrated how current metrics of LD are
inappropriate in certain cases and proposed a new method that
solves these issues. Note that the CNV—SNP allele frequencies are
critical in calculating 2. We evaluated our method for estimating
CNV-SNP allele frequencies via an EM algorithm, as described
above in the methods section, using a simulation procedure. These
results are provided in Table 4. In summary, our metric accurately
and precisely measures SNP/CNV covariance, regardless of the
location of the SNP and type of CNV. In particular, high values
of 72 will always lead to a proper conclusion about role of CNVs
from the study of SNPs. In CNVRs that only include a deletion,
our proposed method will always correctly assign independence
between interior SNPs and the CNV. Meanwhile, in duplicated
regions our metric will provide a value that appropriately quan-
tifies the correlation between SNP allele(s) and the number of
copies present.
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Table 4 | Copy number variant-single nucleotide polymorphism
(CNV-SNP) allele frequency estimation procedure diagnostics based
upon 1,000 simulations of a sample size of 1,000 (2,000 haploids) and
various CNV-SNP allele frequencies.

Type Simulated frequency Mean difference

No CNVs fa=05 0*
f,=05

Deletion only (1) f,=0.1 0%
fa=05
fe=04

Deletion only (2) f,=05 0*
fw,A =03
=02

Duplication only (1) f,=05 0.0019
fie=0.1 0.0019
fps = 0.1 0.0019
f o5 = 0.3 0.0019

Duplication only (2) f,=03 0.0050
f,=03 0.0050
f)pn =01 0.0048
fons =02 0.0082
fyes = 0.1 0.0048

Duplication only (3) fa=03 0¥
f=03
fZ,AA =02
fZ,BB =02

Multiallelic (1) f,=0.1 0.0040
f,=03 0.0069
f,=03 0.0108
fpn=0.1 0.0047
=01 0.0076
f o5 = 0.1 0.0100

Multiallelic (2) f,=0.1 0.0028
fa=04 0.0038
=03 0.0102
fopn=0.1 0.0020
foee = 0.1 0.0097

Mean difference represents the mean difference between the true and
estimated CNV-SNP allele frequencies.

0*: Less than 1 x 10°° for each allele. Haploid configurations can nearly be
unambiguously assigned based upon the given three-state haploid model.
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