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A three-generation resource population was constructed by crossing pigs from the Duroc
and Pietrain breeds. In this study, 954 F, animals were used to identify quantitative trait loci
(QTL) affecting carcass and meat quality traits. Based on results of the first scan analyzed
with a line-cross (LC) model using 124 microsatellite markers and 510 F, animals, 9 chro-
mosomes were selected for genotyping of additional markers. Twenty additional markers
were genotyped for 954 F, animals and 20 markers used in the first scan were genotyped
for 444 additional Fo animals. Three different Mendelian models using least-squares for
QTL analysis were applied for the second scan: a LC model, a half-sib (HS) model, and
a combined LC and HS model. Significance thresholds were determined by false discov-
ery rate (FDR). In total, 50 QTL using the LC model, 38 QTL using the HS model, and
3 additional QTL using the combined LC and HS model were identified (g <0.05). The
LC and HS models revealed strong evidence for QTL regions on SSC6 for carcass traits
(e.g., 10th-rib backfat; g <0.0001) and on SSC15 for meat quality traits (e.g., tenderness,
color, pH; g <0.01), respectively. QTL for pH (SSC3), dressing percent (SSC7), marbling
score and moisture percent (SSC12), CIE a* (SSC16), and carcass length and spareribs
weight (SSC18) were also significant (g < 0.01). Additional marker and animal genotypes
increased the statistical power for QTL detection, and applying different analysis models
allowed confirmation of QTL and detection of new QTL.
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INTRODUCTION

Quantitative trait loci (QTL) mapping has been conducted
using numerous pig populations to identify genomic regions
controlling phenotypic variation for hundreds of traits
(http://www.animalgenome.org/cgi-bin/QTLdb/SS/index). Nev-
ertheless, the implementation of QTL into breeding programs
which is a major goal of QTL mapping has been limited not
only due to insufficient numbers of identified causative muta-
tions, but because of unknown linkage disequilibrium (LD) phase
between markers and QTL resulting from cross breeding sys-
tems (Spelman and Bovenhuis, 1998; Hayes et al., 2009). We have
developed a F, Duroc x Pietrain resource population at Michi-
gan State University (Edwards et al., 2008b) and reported QTL
for carcass merit and meat quality traits (Edwards et al., 2008a).
The Duroc and Pietrain breeds are used in breeding programs as
sire breeds worldwide, and these breeds exhibit variation in car-
cass merit and meat quality phenotypes. Pietrain pigs have been
shown to have less backfat (Affentranger etal., 1996; Edwards et al.,
2003) and larger longissimus muscle area (LMA; Edwards et al.,
2003). Duroc and Duroc-sired pigs generally have more favorable
meat quality (Langlois and Minvielle, 1989; Affentranger et al,,
1996; Jeremiah et al., 1999; Edwards et al., 2003), whereas Pietrain
and Pietrain-sired pigs are leaner with average meat quality
(Edwards et al., 2003).

A line-cross (LC) model, which assumes the founder lines to
be fixed for alternative QTL alleles, has been most commonly
used to identify QTL for F, population designs (Haley et al.,
1994). The first genome scan for our Duroc x Pietrain popula-
tion was performed using a LC analysis (Edwards et al., 2008a,b).
However, for crosses between outbred lines such as domestic ani-
mals, not all QTL alleles are completely fixed so effects under the
LC model can be biased downwards (Pérez-Enciso and Varona,
2000). To identify QTL segregating within parental breeds, a half-
sib (HS) model that does not assume fixation of QTL alleles in
the founder lines was introduced by Knott et al. (1996), and
Kim et al. (2005) developed a combined line-cross and half-
sib (CB) model that accounts for both line and HS effects. We
have recently utilized LC, HS, and CB models to identify QTL
for growth traits in our Duroc x Pietrain population (Choi et al.,
2010). The objective of this study was to confirm previously iden-
tified carcass merit and meat quality QTL regions with addition
of new marker genotypes and additional F, animals, and to detect
new QTL for carcass merit and meat quality traits using three
different least-squares models under different assumptions; (1)
founders fixed for alternative QTL alleles (LC model), (2) segrega-
tion of QTL alleles at similar frequencies in founders (HS model),
and (3) segregation of QTL alleles at different frequencies in
founders (CB model).
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MATERIALS AND METHODS

ANIMALS AND PHENOTYPIC DATA

A three-generation resource population developed at Michigan
State University was used for this study. A detailed description
of the animals and phenotypic data was previously reported
(Edwards et al., 2008a,b). All grandparents were confirmed to be
homozygous normal for the polymorphism at position 1843 in
the RYRI gene (Edwards et al., 2008b). Animal protocols were
approved by the Michigan State University All University Com-
mittee on Animal Use and Care (AUF# 09/03-114-00). A total of
954 F, pigs were used which included the 510 animals evaluated in
the first genome scan. These pigs were produced from 6 F; boars
and 50 F; sows which were retained from 4 Fy Duroc sires and
15 Fy Pietrain dams. The F, pigs were analyzed for 38 carcass and
meat quality traits.

Details of carcass and meat quality phenotype collection were
reported in Edwards et al., 2008a. Briefly, animals were slaughtered
at the Michigan State University Meat Laboratory (East Lans-
ing, MI, USA) or a federally inspected commercial plant (DeVries
Meats, Coopersville, MI, USA). Slaughter age was 165.8 + 9.2 days
and the minimum off-farm body weight (BW) for slaughter was
82.54kg. Hot carcass weight (HCW), and pH and temperature
of the longissimus muscle (LM) at 45-min and 24-h postmortem
were obtained. After overnight chilling, backfat thickness, num-
ber of ribs and carcass length were measured, and the weights
of primal cuts were recorded. A single trained evaluator scored
color, marbling, and firmness using two 2.54-cm thick chops cut
from the LM, and objective color scores of CIE L*, a*, and b*
were obtained using a Minolta colorimeter. The remaining section
of the LM was used to determine drip loss, cook yield, Warner-
Bratzler shear force, proximate analysis measures, and sensory
attributes. A trained sensory panel evaluated juiciness, tenderness,
overall tenderness, connective tissue, and off-flavor using an 8-
point hedonic scale. Descriptive statistics for phenotypes used in
this study are presented in Table 1.

GENOTYPIC DATA

Nine chromosomes (SSC3-7, 12, 15, 16, and 18) were selected
based on results of the first genome scan (Edwards et al.,
2008a,b) which had been completed using 510 F, animals and
124 microsatellite markers. For the second scan 20 additional
microsatellite markers were selected on these chromosomes (1—
4 markers per chromosome; Choi et al., 2010) in order to increase
the power of QTL detection and to narrow the QTL locations. All
Fo, F1, and the 954 F, pigs were genotyped for the 20 new markers,
and the 444 additional F, pigs were also genotyped for 20 markers
flanking the QTL regions on the 9 selected chromosomes. Sex-
averaged genetic linkage maps were estimated for all autosomes
using CRI-MAP version 2.4 (Green et al., 1990) and converted to
the Haldane map function (Choi et al., 2010).

STATISTICAL ANALYSIS

Three different models using least-squares (LC, HS, and CB mod-
els) were adopted for QTL analysis (Kim et al., 2005) and analyses
were performed using the methods described in Choi et al. (2010).
Significance thresholds were determined by false discovery rate
(FDR; Weller et al., 1998).

Table 1| Number of records, means, and SD for carcass and meat
quality traits.

Traits N Mean SD

CARCASS MEASURE

Off-farm BW, kg 948 112.08 8.56
Hot carcass weight, kg 948 81.84 6.81
Dressing percent, % 948 73.01 2.1
45 min carcass temperature, ‘C 947 39.47 2.23
24 h carcass temperature, °C 945 2.91 1.19
45 min pH 934 6.37 0.22
24 h pH 927 5.51 0.14
45 min-24h pH decline 914 0.86 0.22
Carcass length, cm 947 78.72 2.51
Number of ribs 669 14.83 0.85
First-rib backfat, mm 859 40.67 709
Last-rib backfat, mm 947 28.69 6.38
Last lumbar vertebra backfat, mm 946 22.25 6.23
10th-rib backfat, mm 941 24.16 735
Longissimus muscle area, cm? 942 40.61 4.74
PRIMAL CUT WEIGHT

Ham weight, kg 947 9.63 0.77
Loin weight, kg 947 8.28 0.83
Boston shoulder weight, kg 947 3.90 0.56
Picnic shoulder weight, kg 947 3.72 0.57
Belly weight, kg 947 5.03 0.67
Spareribs weight, kg 943 1.53 0.20
MEAT QUALITY EVALUATION

Color, 1-6 945 3.16 0.82
Marbling, 1-10 946 2.82 0.84
Firmness, 1-5 932 2.86 0.79
L* 900 53.77 2.24
a* 900 1725 1.83
b* 900 9.13 1.61
PROXIMATE ANALYSIS

Moisture, % 936 73.94 163
Fat, % 936 3.18 1.40
Protein, % 935 23.44 1.13
LABORATORY ANALYSES

Drip loss, % 946 1.85 1.18
Cook yield, % 936 77.26 2.83
Warner-Bratzler shear force, kg 935 3.21 0.69
SENSORY PANEL ANALYSES

Juiciness, 1-8 942 5.23 0.59
Tenderness, 1-8 942 5.65 0.62
Overall tenderness, 1-8 942 5.63 0.55
Connective tissue, 1-8 942 6.39 0.39
Off-flavor, 1-8 942 1.14 0.21

The LC analysis assumes the QTL to be fixed for alternative
alleles in the founder lines. Probabilities of each F, individual
being homozygous for two Duroc alleles (P;;), homozygous for
two Pietrain alleles (P,;), or heterozygous (P, or Py;) were esti-
mated at fixed 1-cM intervals across the genome using the QTL
Express software (Seaton et al., 2002). By denoting the mean of
homozygous animals for the Duroc allele as positive additive (a),
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the mean of heterozygous animals as dominance (d) and the mean
of homozygous animals for the Pietrain allele as negative additive
(—a), the following linear model was fitted at every cM across the
genome.

yj = Xjb + aPa; + dPd; + ¢;

Where y; is the phenotype of F, progeny j, Xj, and b are the design
matrix and solution vector for the fixed effects, respectively, a and
d are the estimated additive and dominance effects of a putative
QTL at the given location, respectively, Pa;=P1; — P>, is the con-
ditional expectation of the number of Duroc alleles carried by
animal j, Pd; =Py, + Py is the conditional probability of animal j
to be heterozygous, and ¢ is the residual error.

The HS analysis assumes the QTL to be segregating in the
parental breeds, and the 6 F; sires were regarded as common
parents. QTL Express (Seaton et al., 2002) was used to calculate
the probabilities of individuals inheriting allele (A;) or allele (A;)
from the common F; sire (A; or A;) at fixed 1-cM intervals (Knott
etal., 1996). In these analyses contrasts were made between the two
haplotypes of every F; sire.

yij = Xijb + s; + aHS; PS; + e

Where yj; is the phenotype of F, progeny j of F; sire , Xjj, and b are
the design matrix and the solution vector for fixed effects, respec-
tively, s; is the effect of the ith F; sire, «HS; is the substitution
effect for the two putative QTL alleles (A; or A;) carried by the ith
Fy sire, PSjj is the probability that the F individuals inherited the
arbitrary allele (A;;) from F; sire i, and e;; is the residual error.

The CB model assumes the QTL to be segregating in the
parental breeds.

yij = Xijb + sij + aPajj + dPd;; + aCB; PS;; + e;;

Where yjj is the phenotype of F, progeny j of F; sire i, Xj;, and
b are the design matrix and the solution vector for fixed effects,
respectively, s; is the effect of the ith Fy sire, a and d are the additive
and dominance effects of breed-origin alleles, respectively, Pa;; and
Pdj; are the corresponding breed-origin coefficients as described
above, aCB; is the substitution effect for the two putative QTL
alleles carried by the ith F; sire, PS;; is the probability that the F,
individuals inherited the arbitrary allele (A;;) from F; sire i, and
ejjis the residual error. In this model, a and d account for the aver-
age effects of breed-origin alleles through both the F; sire and the
F; dam and «CB; represents the difference between the two QTL
alleles that a given F; sire received from the two parental breeds
as a deviation from their average additive effect (Kim et al., 2005).
To avoid increasing Type I error rate due to multiple testing, a
significance threshold of g < 0.05 was used, where g is the FDR
corrected p-value. QTL detected using the LC, HS, or CB models
were declared using the following criteria:

(1) LC QTL declared if g1c = min(qic, qus) < 0.05
(2) HS QTL declared if ggs = min(qrc, qus) < 0.05
(3) CBQTL declared if gcp < 0.05 and qrc > 0.05 and qys > 0.05

A QTL was declared under the CB model only if it had not been
previously detected using the LC or HS models.

RESULTS

Three different models for QTL analysis revealed a total of 91
QTL for carcass and meat quality traits on all autosomes except
SSC11 and 17. The LC analysis revealed 50 QTL (Table 2) includ-
ing 14 new QTL on 6 chromosomes (SSC3, 6, 7, 12, 16, and 18)
which had not been identified in the first genome scan of this
population (Edwards et al., 2008a). The HS analysis revealed 38
QTL, and 3 additional QTL were detected using the CB model
(Table 2). The thresholds used in this study were —log;o(P) = 3.78
and —log;o(P) =2.88 at the 1 and 5% FDR levels, respectively.
As an example, the genome scan for ham weight is shown in
Figure 1. At the 1% FDR level, two QTL were identified using
the LC model on SSC6 and 7, and one QTL was identified using
the HS model on SSC7. At the 5% FDR level, additional QTL were
revealed on SSC3 with the LC model and on SSC5, 8, and 9 with
the HS model.

LINE-CROSS ANALYSIS

A total of 50 significant QTL were identified on SSC1, 3-10, 12,
14, 16, and 18 using the LC model (Table 2). Of these, 29 QTL
were below the 1% FDR threshold on SSC1, 3, 6,7, 12, 14, and 18.
On SSC1, QTL affecting LMA and spareribs weight detected at 12
and 236 cM supported our previous results, but a QTL for dressing
percent which was significant at the 1% chromosome-wise level
in the first scan of this population (Edwards et al., 2008a) did not
reach significance in the second scan. On SSC3, a QTL for 45-min
pH was significant at the 1% FDR level, also confirming results
from our first scan (Edwards et al., 2008a), and a QTL for ham
weight was newly identified at the 5% FDR level.

On SSC6, QTL for moisture and firmness were located in
the S0087-S0220 interval, QTL influencing meat quality traits
were mapped to the SW2173-SW1647 interval, and QTL affecting
fat deposition and carcass traits were identified in the SW1647—
SW1881-SW322 interval (Figure 2). The QTL detected in these
marker intervals showed additive pleiotropic effects indicating
that the Duroc allele contributed to increased fat deposition and
reduced muscularity. In contrast to SSC6, QTL affecting muscle
mass located in the SW2019-SW859 interval on SSC7 showed neg-
ative additive effects, and the Pietrain allele was associated with
higher muscularity. The incorporation of the new SSC7 marker
SW2019 in the SW1369-SW850 marker interval allowed refining
the QTL position detected in the first scan, as well as increasing the
statistical power and narrowing the QTL interval. A QTL for LMA
detected in the SW859-S0115 interval in the first scan was repo-
sitioned at 86 cM in the SW2019-SW859 interval in the second
scan.

On SSC12, QTL for fat related traits including marbling score,
belly weight, and intramuscular fat percent detected in the SW874—
S0090 interval in the first scan were identified in the second scan
in the SW957-SW874 interval at the 1% FDR level. In addition, at
the 5% FDR level, QTL for a* and b* not identified in the first scan
were mapped to 93 and 110 cM of SSC12, respectively. A QTL for
LMA mapped to 42 <M and QTL for intramuscular fat and mois-
ture percent located at 143 cM were newly discovered on SSC16
in the second scan. In the SW2540-SW1023 interval of SSC18,
not only was a QTL for spareribs weight confirmed from the first
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Table 2 | Position and significance level of carcass and meat quality trait QTL.

Chr! Position?  Trait Typed —logiop? FDR® Flanking markers  Additive® Dominance’
1 12 LM area, cm? LC 3.48 0.0177 SW1514-SW1515 —1.27 (0.32) 0.45 (0.59)
236 Spareribs wt, kg LC 5.36 0.0005 SW974-S0056 0.02 (0.02) —0.12 (0.02)
2 81 Juiciness, 1-8 HS 2.98 0.0471 S0170-SW1026
100 45-m carcass temperature, °C HS 3.00 0.0460 SW1026-S0370
3 47 45-m carcass temperature, 'C HS 4.73 0.0020 SW2021-S0206
97 Ham wt, kg LC 3.68 0.0121 S0206-SWR978 0.11 (0.03) 0.03 (0.05)
17 45-min to 24-h pH decline CB 3.21 0.0469 ACTG2-SW2141
135 45-min pH LC 3.92 0.0076 SW2047-SW2408 —0.04 (0.01) 0.00 (0.02)
151 Loin wt, kg LC 3.36 0.0215 SW2047-SW2408 0.02 (0.03) —0.20 (0.05)
4 19 Off-farm BW, kg LC 2.91 0.0473 SW2509-S0301 —1.58 (0.45) 0.78 (0.77)
21 HCW, kg LC 3.1 0.0334 SW2509-S0301 —1.30 (0.35) 0.56 (0.61)
5 94 First-rib backfat, mm HS 3.95 0.0083 SWR453-SW?2
151 24-h carcass temperature, °C LC 3.14 0.0317 S0005-S0018 0.04 (0.03) 0.22 (0.06)
173 Ham wt, kg HS 3.13 0.0364 S0018-IGF1
6 103 Picnic shoulder wt, kg LC 3.39 0.0204 SW2525-50087 —0.05 (0.02) 0.05 (0.02)
114 Moisture, % LC 5.12 0.0008 S0087-S0220 —0.25 (0.08) 0.48 (0.13)
124 Firmness, 1-5 LC 4.31 0.0037 S0220-SW122 0.17 (0.04) —0.03 (0.06)
141 Fat, % LC 19.03 0.0000 SW2173-SW1647 0.56 (0.06) —0.23 (0.09)
146 Marbling, 1-10 LC 16.18 0.0000 SW2173-SW1647 0.34 (0.04) —0.14 (0.06)
152 a* LC 4.40 0.0031 SW2173-SW1647 0.12 (0.05) 0.24 (0.07)
160 First-rib backfat, mm LC 6.71 0.0000 SW1647-SW1881 1.54 (0.30) —1.19(0.47)
162 10th-rib backfat, mm LC 35.82 0.0000 SW1647-SW1881 3.20 (0.25) —1.65 (0.38)
162 Carcass length, cm LC 10.42 0.0000 SW1647-SW1881 —0.46 (0.11) 0.55 (0.16)
163 Loin wt, kg LC 19.86 0.0000 SW1647-SW1881 —0.21 (0.02) 0.18 (0.04)
164 Last lumbar vertebra backfat, mm LC 14.87 0.0000 SW1647-SW1881 1.95 (0.25) —1.51(0.39)
168 Belly wt, kg LC 3.78 0.0101 SW1881-SW322 0.06 (0.02) —0.06 (0.02)
174 Ham wt, kg LC 10.38 0.0000 SW1881-SW322 —0.16 (0.02) 0.08 (0.04)
174 Last-rib backfat, mm LC 747 0.0000 SW1881-SW322 1.28 (0.27) —1.62 (0.43)
175 LM area, cm? LC 8.30 0.0000 SW1881-SW322 —1.30(0.21) 0.61 (0.35)
179 Protein, % LC 5.41 0.0005 SW1881-SW322 —0.30 (0.06) 0.09 (0.10)
182 HCW, kg LC 3.10 0.0341 SW1881-SW322 0.44 (0.35) —2.23(0.61)
183 24-h carcass temperature, °C LC 4.98 0.0010 SW1881-SW322 0.13 (0.03) —0.11 (0.05)
7 15 Protein, % LC 3.44 0.0186 S0025-S0064 —0.27 (0.07) —0.23(0.15)
75 Spareribs wt, kg CB 3.40 0.0339 SW2019-SW859
84 Dressing percent, % LC 12.04 0.0000 SW2019-SW859 —0.81 (0.11) —0.05 (0.19)
86 Carcass length, cm LC 11.50 0.0000 SW2019-SW859 0.88(0.13) 0.29 (0.23)
97 LM area, cm? LC 8.25 0.0000 SW2019-SW859 —1.60 (0.26) 0.21 (0.46)
104 Ham wt, kg LC 4.05 0.0060 SW2019-SW859 —0.12 (0.03) —0.02 (0.04)
130 Marbling, 1-10 HS 2.97 0.0480 SW859-SW2040
139 Ham wt, kg HS 6.13 0.0002 SW859-SW2040
141 Loin wt, kg HS 3.83 0.0102 SW859-SW2040
178 Number of ribs HS 9.23 0.0000 S0115-SW632
8 39 Ham wt, kg HS 2.96 0.0490 SW905-SWR1101
126 LM area, cm? LC 2.97 0.0429 S0017-SW2160 —0.84 (0.24) —0.40 (0.37)
205 Off-flavor, 1-8 HS 4.48 0.0031 SW1085-S0178
214 Cook yield, % HS 3.73 0.0122 SW1085-S0178
9 0 Drip loss, % LC 2.94 0.0449 SW21 —0.04 (0.07) 0.35(0.10)
25 Ham wt, kg HS 3.1 0.0380 SW983-SW9I11
10 0 Overall tenderness, 1-8 LC 2.90 0.0484 SWR136 0.04 (0.04) 0.19 (0.05)
21 Protein, % HS 3.06 0.0414 SWR136-SW249
72 Connective tissue, 1-8 LC 2.99 0.0410 SW1041-SW920 0.08 (0.04) 0.17 (0.07)
12 47 Marbling, 1-10 LC 5.50 0.0004 SW957-SW874 0.23 (0.04) 0.03 (0.07)
50 Belly wt, kg LC 4.14 0.0051 SW957-SW874 0.09 (0.02) —0.01 (0.03)
(Continued)
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Table 2| Continued

Chr’ Position?  Trait Type®!  —logoP*  FDRS Flanking markers  Additive® Dominance’
50 Fat, % LC 3.97 0.0070 SW957-SW874 0.30 (0.07) —0.11 (0.12)
69 Moisture, % LC 5.80 0.0002 SW37-50090 —0.36 (0.07) 0.08 (0.11)
93 b* LC 3.72 0.0112 S0090-SW(C23 0.17 (0.04) 0.08 (0.07)
110 a* LC 3.07 0.0360 SWC23-SW2180 0.19 (0.05) 0.08 (0.08)
13 122 Last-rib backfat, mm HS 2.96 0.0488 SW398-SW2440
14 62 a* LC 3.30 0.0239 SW210-SW886 —0.29 (0.07) 0.06 (0.13)
73 Boston shoulder wt, kg HS 3.18 0.0336 SW210-SW886
136 Belly wt, kg LC 4.26 0.0041 SW1557-SWC27 0.06 (0.03) —0.26 (0.06)
15 70 Loin wt, kg HS 3.57 0.0160 S0088-SW1683
71 First-rib backfat, mm HS 3.1 0.0383 S0088-SW1683
72 10th-rib backfat, mm HS 3.77 0.0115 S0088-SW1683
74 Color, 1-6 HS 4.43 0.0033 SW1683-SW906
76 L* HS 4.74 0.0020 SW1683-SW906
78 Juiciness, 1-8 HS 4.56 0.0027 SW1683-SW906
78 Moisture, % HS 5.59 0.0004 SW1683-SW906
80 Warner-Bratzler shear force, kg HS 5.51 0.0005 SW1683-SW906
80 Overall tenderness, 1-8 HS 10.22 0.0000 SW1683-SW906
80 Protein, % HS 2755 0.0000 SW1683-SW906
80 Tenderness, 1-8 HS 9.72 0.0000 SW1683-SW906
81 a* HS 4.51 0.0029 SW1683-SW906
81 24-h pH HS 10.48 0.0000 SW1683-SW906
82 Firmness, 1-5 HS 3.35 0.0240 SW1683-SW906
83 Drip loss, % HS 10.36 0.0000 SW906-SW1983
85 Cook yield, % HS 16.06 0.0000 SW906-SW1983
87 Connective tissue, 1-8 HS 4.89 0.0015 SW906-SW1983
90 Belly wt, kg HS 3.38 0.0226 SW906-SW1983
16 42 LM area, cm? LC 3.58 0.0145 SW419-SW1454 0.80 (0.20) —0.23(0.32)
66 L* HS 3.48 0.0191 SW1454
70 a* HS 4.91 0.0015 SW1454-SW2517
97 Moisture, % HS 3.45 0.0199 SW2517-SW1897
143 Fat, % LC 3.24 0.0265 S0061 0.18 (0.06) 0.22 (0.09)
143 Moisture, % LC 3.35 0.0219 S0061 —0.14 (0.07) —0.31 (0.09)
18 0 10th-rib backfat, mm LC 3.00 0.0408 SW1808 0.96 (0.26) 0.04 (0.35)
4 Carcass length, cm LC 5.67 0.0003 SW2540-SW1023 —0.49 (0.10) —0.23 (0.14)
24 Spareribs wt, kg LC 5.13 0.0008 SW2540-SW1023 —0.04 (0.01) 0.00 (0.02)
30 Last lumbar vertebra backfat, mm LC 4.40 0.0031 SW2540-SW1023 1.60 (0.35) 0.01 (0.64)
33 24-h carcass temperature, °C CB 3.40 0.0339 SW2540-SW1023
70 Spareribs wt, kg HS 5.34 0.0007 SW1023-SW1984

'Chr, chromosome. ? Position in Haldane cM. *LC, QTL declared as line-cross type, HS, half-sib type,; CB, combined type. * Negative logarithm of the comparison-wise

p-value of the test statistic against the null hypothesis of no QTL at the most likely position for the inferred QTL model. °*FDR, false discovery rate. °Estimates of

additive effects with SE for LC QTL. The effects are expressed as (DD-PP)/2, where D, Duroc allele and F, Pietrain allele. ” Estimates of dominance effects with SE for

LC QTL. The effects are expressed as DP-PD, where D, Duroc allele and F, Pietrain allele.

scan, but QTL for carcass length and last-lumber backfat were also
newly identified in the second scan.

HALF-SIB ANALYSIS
Half-sib analysis revealed a total of 38 QTL on SSC2, 3, 5, 7-10,
13-16, and 18 (Table 2). Of these, 20 QTL identified on SSC3, 5,
7,8, 15, 16, and 18 were significant at the 1% FDR level including
13 QTL detected on SSC15.

A QTL affecting 45-min carcass temperature (g <0.01) was
detected at 47 cM on SSC3. On SSC5, a QTL for first-rib backfat

was declared as a HS QTL (g < 0.01) in the second scan, whereas
a first-rib backfat QTL had previously been identified in this loca-
tion with the LC analysis in the first scan (Edwards et al., 2008a).
On SSC8, a QTL affecting ham weight was identified at 39 cM,
and QTL for off-flavor and cook yield were mapped to the distal
region of SSC8 near S0178. In addition, a QTL for ham weight
on SSC9 and a QTL for protein percent on SSC10 were identified
(g <0.01). On SSC16,HS QTL were identified for L* (g < 0.02), a*
(g <0.01), and moisture percent (g < 0.02). A highly significant
HS QTL influencing spareribs weight (g < 0.0007) was detected
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FIGURE 1 | Genome scan results for ham weight determined using
different analysis models. A whole genome scan to identify QTL for the trait
ham weight was performed using three different analysis models (line-cross,

chromosome

red line; half-sib, blue line; combined line-cross and half-sib, green line). The
X-axis indicates positions of chromosomes 1-18. Horizontal lines indicate
significance thresholds (lower line, 5% FDR; upper line, 1% FDR).

on SSC18 with an estimated location at 70 cM. The location of the
LC QTL for spareribs weight on SSC18 was estimated at 24 cM so
these QTL were considered to be unique QTL.

On SSC7, QTL affecting ham weight and number of ribs were
identified in the SW859-SW2040-S0115 interval (g < 0.01), and
QTL for marbling score and loin weight significant at the 5%
FDR level were located in the same interval. For ham weight,
the QTL identified with the HS analysis was mapped to 139 cM
(9 <0.0002), whereas the ham weight QTL revealed with the
LC analysis was mapped to 104 cM (q < 0.006). Since these QTL
detected by the different models mapped to distinct locations, they
were considered to be separate unique QTL.

The HS analysis revealed evidence for QTL influencing meat
quality traits in the SW1683-SW906-SW1983 interval on SSC15
(Figure 3). In the SW1683—-SW906 interval, a QTL for protein per-
cent had the highest test statistic [-log;o(P) =27.55; q < 0.0001]
among the QTL detected on SSC15. In addition, a QTL for 24h
pH, a trait that is associated with many other meat quality traits,
was highly significant (g < 0.0001; Figure 3). The LC analysis also
revealed significant QTL for these traits in the same interval, but
the HS model showed much higher statistical evidence.

COMBINED ANALYSIS

In addition to QTL identified with the LC and HS analyses,
three additional QTL exceeded the 5% FDR significance thresh-
old using the CB analysis. A QTL for pH decline from 45-min

to 24-h was mapped to 117cM on SSC3, a QTL for spareribs
weight was detected in the SW2019-SW859 interval on SSC7 and
a QTL for 24-h carcass temperature was found in the SW2540-
SW1023 interval on SSC18. Although the statistical power was
sufficient to detect QTL, the CB model revealed a small number
of additional QTL because most QTL had been declared using
either the LC or HS models due to higher test statistics with
these analyses.

EFFECT OF ADDITIONAL MARKERS AND ANIMALS ON QTL DETECTION
The QTL analyses under three different models revealed QTL for
pH associated traits at different positions on SSC3 (Figure 4).
The first scan of this chromosome using the LC model had
revealed QTL for 45-min pH and pH decline from 45-min to 24-h
postmortem (Edwards et al.,2008a). The second scan included two
additional markers and genotypes for additional F, pigs. A QTL
for 45-min pH using the LC model (g <0.0076) was mapped at
135 cM near marker SW2047 (134.8 cM) and a QTL for pH decline
from 45-min to 24-h was detected using the CB model (q < 0.0469)
at 117 cM near marker ACTG2 (116.5cM) which did not reach
the significance threshold in the LC analysis (g < 0.065). In addi-
tion, a QTL for 45-min carcass temperature was detected using
the HS model (q <0.002) located at 47 cM in the SW2021-S0206
marker interval. These results confirm results of the first scan for
45-min pH and pH decline, and add new results for 45-min carcass
temperature.
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FIGURE 2 | Line-cross analysis indicated strong evidence for QTL
influencing fat deposition traits on SSC6. Highly significant QTL for traits
related to fat deposition were identified on SSC6. Confidence intervals for
fat percentage and 10th-rib backfat (BF10) were estimated using 10,000
bootstrap permutations as 136-146 cM (blue bar) and 159-165cM (red bar),
respectively. Marker positions are shown as triangles on the X-axis (black,
markers used for both QTL scans and genotyped only in 510 animals;
green, markers used for both QTL scans and genotyped in all animals; red,
markers used for second scan only and genotyped in all animals). Horizontal
lines indicate significance thresholds (lower line, 5% FDR; upper line, 1%
FDR).
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FIGURE 3 | Half-sib analysis indicated strong evidence for QTL
influencing meat quality traits on SSC15. Highly significant QTL for meat
quality traits were identified on SSC15. Confidence interval for protein
percentage was estimated by 10,000 bootstrap permutations as 77-85cM
(gray bar). Marker positions are shown as triangles on the X-axis (black,
markers used for both QTL scans and genotyped only in 510 animals;
green, markers used for both QTL scans and genotyped in all animals; red,
markers used for second scan only and genotyped in all animals). Horizontal
lines indicate significance thresholds (lower line, 5% FDR; upper line, 1%
FDR).

We have recently used LC, HS, and CB models to identify QTL
for growth traits in our Duroc X Pietrain resource population,
and we reported that additional markers and animals contributed
to reduce the confidence intervals and increase the test statis-
tics for QTL detection (Choi et al., 2010). For the present study,

APVAN
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FIGURE 4 | Quantitative trait loci results determined by different
models for pH related traits on SSC3. Line-cross model detected a QTL
(g <0.01) for 45 min pH (red line) and half-sib model detected a QTL

(g <0.01) for 45 min carcass temperature (blue line). Combined model
identified a QTL (g < 0.01) affecting pH decline from 45 min to 24 h (green
line). Marker positions are shown as triangles on the X-axis (black, markers
used for both QTL scans and genotyped only in 510 animals; green, markers
used for both QTL scans and genotyped in all animals; red, markers used
for second scan only and genotyped in all animals). Horizontal lines indicate
significance thresholds (lower line, 5% FDR; upper line, 1% FDR).

QTL affecting the a* and b* objective color measures were newly
detected on SSC12 (g < 0.04). In order to determine how the QTL
peaks for these traits were changed, analyses were performed under
4 different scenarios; 5 and 7 markers with 510 and 948 animals
(Figure 5). The results indicated that increasing the number of
animals or increasing the number of markers was effective in
increasing the power to detect QTL on this chromosome, and
that increasing the numbers of both animals and markers allowed
detection of the a* and b* QTL.

DISCUSSION

This study identified 91 QTL for pig carcass and meat qual-
ity traits located on all autosomes except SSC11 and 17 using
three least-squares Mendelian analysis models. The LC analy-
sis, which detected QTL segregating between breeds, revealed 50
QTL including 13 new QTL on 6 chromosomes (SSC3, 6, 7, 12,
16, and 18) that had not been identified in the first genome
scan of this population (Edwards et al., 2008a). The HS analysis,
which detected QTL segregating within breeds, revealed 38 QTL
including 18 on SSC15. Three additional QTL were detected using
the CB model (Kim et al., 2005).

Application of the three different models for SSC3 identified
not only QTL influencing muscularity under the LC model, but
also QTL affecting pH and carcass temperature using all three
models. The LC QTL for 45-min pH detected at 135cM near
SW2047 confirmed the 45-min pH QTL observed in the first scan
(Edwards et al., 2008a). Beeckmann et al. (2003) reported a QTL
for 45-min pH at the same interval in a Wild boar x Meishan F,
population. Several studies (Ovilo et al., 2002a; de Koning et al.,
2003; Evansetal.,2003; Wimmers et al., 2006) reported QTL affect-
ing muscle pH in the SW2021-S0206 marker interval, a region
where we identified a QTL for 45-min carcass temperature under
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FIGURE 5 | Effect of additional markers and animals for detecting
meat color QTL on SSC12. Effects of additional marker genotypes and
animals for detecting QTL for a* and b* objective meat color measures
on SSC12 were compared under 4 different scenarios (5 and 7 markers
with 510 F, animals, 5 and 7 markers with 948 F, animals). Blue lines
indicate 5 markers (black and green triangles on the X-axis) and red
lines indicate 7 markers (black, green and red triangles on the X-axis).
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Solid lines indicate 948 animals and dotted lines indicate 510 animals.
Marker positions are shown as triangles on the X-axis (black, markers

used for both QTL scans and genotyped only in 510 animals; green,
markers used for both QTL scans and genotyped in all animals; red,
markers used for second scan only and genotyped in all animals). Horizontal
lines indicate significance thresholds (lower line, 5% FDR; upper line,

1% FDR).

the HS model. In addition, Duan et al. (2009) reported a QTL for
pH decline from 45-min to 3-h in the SW2021-S0206 interval in
a White Duroc x Chinese Erhualian population. We also detected
a QTL for pH decline from 45-min to 24-h under the CB model,
however, our QTL was located at 117 cM near ACTG2.

Significant QTL affecting backfat thickness were located on
SSC6 within the SW1647-SW1881-SW322 marker interval at
160-174 cM. A 10,000 bootstrap permutation analysis showed the
average QTL positions for each backfat trait to be located in the
160.12-167.96 cM region. The 95% confidence interval for 10th-
rib backfat was estimated to be 159—165 ¢cM (6 Haldane cM), which
was considerably narrowed from the 38.5 Haldane cM interval
observed for the first scan (Edwards et al., 2008a). Not only were
QTL affecting fat deposition traits observed in this region, but QTL
influencing muscularity were also identified at the same marker
interval since Duroc alleles contributed to both fat accumulation
and reduced muscle content.

Our results for backfat thickness traits were in agreement with
other studies (Malek et al., 2001b; Ovilo et al., 2002b; Varona
et al., 2002) that identified QTL for fatness traits in this region
of SSC6. This region includes the leptin receptor (LEPR) gene
which is considered as a potential candidate gene for fatness (Ernst
et al., 1997; Ovilo et al., 2005; Mohrmann et al., 2006), and stud-
ies to identify a causal mutation in LEPR have been conducted
(Mackowski et al., 2005; Munoz et al., 2009). We also observed a
QTL for intramuscular fat percent using the LC model in a position
more proximal to this region of SSC6 at 141 cM, which coincided
with a backfat thickness QTL detected with the HS model in a
Duroc x Pietrain population by Liu et al. (2008). The SSC6 region
affecting intramuscular fat percent also included QTL for mar-
bling score and a*, which were all mapped to 141-152 cM in the
SW2173-SW1647 interval. The confidence interval for these QTL
did not overlap with the confidence interval for 10th-rib backfat.
This result was consistent with previous studies (Szyda et al., 2003;
Ovilo et al., 2005) which reported that QTL effects for backfat and

intramuscular fat content resulted from different closely linked
loci on SSC6. QTL affecting intramuscular fat content have been
reported (de Koning et al., 2000; Grindflek et al., 2001) in the same
region where we detected a QTL for marbling score, although no
other reports of subjective marbling score QTL in this SSC6 region
have been reported. Also, Harmegnies et al. (2006) identified QTL
for a* as well as fat thickness in this same region.

The different models revealed distinct QTL regions on SSC7
with LC and HS QTL identified at 84—104 cM and at 130-178 cM,
respectively. A highly significant QTL influencing muscle mass
identified in the SW2019-SW859 interval had an additive effect for
which Duroc alleles increased carcass length and decreased dress-
ing percent, LMA and ham weight. In this region, Yue et al. (2003)
found a 1% genome-wide level significant QTL influencing carcass
composition traits such as carcass length in a Wild boar x Meishan
population. Liu et al. (2008) reported QTL for carcass length and
dressing percent with similar allelic substitution effect in their
Duroc x Pietrain population as we observed in our study. How-
ever, Nezer et al. (2002) identified a QTL for carcass length at the
more distal position from our QTL in a Pietrain x Large White
population. In addition, Sato et al. (2003) detected a QTL for
dressing percent in a Duroc x Meishan population in the same
region as our study. A QTL for number of ribs was detected using
the HS analysis. A QTL for number of ribs had been detected in
this position at the 1% genome-wise significance level using the LC
analysis in the first scan (Edwards et al., 2008a), however, evidence
from the second scan suggests the HS model better describes the
QTL allele frequency in the parental breeds. Also on SSC7, analyses
using both the LC and HS models identified QTL for ham weight
at different locations, which were in the SW2019-SW859 interval
with the LC model and in the SW859—-SW2040 interval with the
HS model. Similarly, Milan et al. (2002) also reported suggestive
QTL for ham weight at different positions using LC and HS mod-
els, and their LC QTL detected in the SLA-S0102 marker interval
was in a similar region to our LC QTL.
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We have recently used LC, HS, and CB models to identify QTL
for growth traits in our Duroc x Pietrain resource population,
and we reported that additional markers and animals contributed
to reduce the confidence intervals and increase the test statistics
for QTL detection (Choi et al., 2010). In the present study, geno-
typing of additional markers and animals increased the statistical
power and facilitated discovery of new QTL which had not been
observed in the first scan (Edwards et al., 2008a). For example,
QTL for the objective color measures of a* and b* were identified
on SSC12 with the addition of more F, pigs and more marker
genotypes using the LC analysis. The LC analysis also identified
QTL on SSC12 related to intramuscular fat percent and moisture
at 47-50 cM and at 69 cM, respectively. A QTL for marbling was
located in the SW957-SW874 marker interval, whereas the posi-
tion of this QTL had been more distal for the first scan (Edwards
et al., 2008a). The additive effects of these QTL indicated that
Duroc alleles increased marbling and intramuscular fat percent,
and decreased moisture percent. Harmegnies et al. (2006) also
reported a QTL for a* although at a more distal position than
our current result, and Malek et al. (2001a) detected a QTL for
subjective color score in the same region as our result.

The HS analysis revealed strong evidence for QTL affecting
meat quality traits on SSC15 at 74—90 cM in the SW1683-SW1983
marker interval where 13 and 2 QTL were significant at the 1 and
5% FDR levels, respectively, including a highly significant QTL for
protein percent. Significant QTL had been identified in this region
using the LC analysis in the first scan (Edwards et al., 2008a),
and a negative additive effect had been seen for protein percent,
color, and tenderness traits suggesting contributions from segre-
gation of Pietrain alleles. The pleiotropic effects of Pietrain alleles
contributing to leanness resulted in effects on other meat quality
traits resulting in more muscularity, paler muscle color, and less
tenderness. QTL for 24-h pH, L*, and tenderness significant at the
1% genome-wise level were identified in this region of SSC15 in
a Berkshire x Yorkshire population (Malek et al., 2001a; Thomsen
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