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Many of the models used to optimize selection processes in livestock make the assump-
tion that the population is of infinite size and are built on deterministic equations.The finite
size case should however be considered explicitly when selection involves one identified
gene. Indeed, drift can cause the loss of a favorable allele if its initial frequency is low. In this
paper, a stochastic approach was developed to simultaneously optimize selection on two
traits in a limited size population: a quantitative trait with underlying polygenic variation and
a monogenic trait. We outline the interests of considering the limited size of the population
in stochastic modeling with a simple example. Such stochastic models raise some techni-
cal problems (uncertain convergence to the maximum, computational burden) which could
obliterate their usefulness as compared to simpler but approximate deterministic models
which can be used when the population size is large. By way of this simple example, we
show the feasibility of the optimization of this type of model using a genetic algorithm
and demonstrate its interest compared with the corresponding deterministic model which
assumes that the population is of infinite size.

Keywords: gene-assisted selection, optimization, small population, genetic algorithm, stochastic model

INTRODUCTION
Marker- or gene-assisted selection (MAS/GAS) was demonstrated
to be more efficient than classical selection schemes for traits
which are lowly heritable or difficult and/or expensive to mea-
sure (Lande and Thompson, 1990; Meuwissen and van Arendonk,
1992; Dekkers and van Arendonk, 1998). Hereafter, a classical
selection scheme is defined as a breeding plan where candidates
are sorted according to polygenic estimated breeding values (EBV)
only (i.e., without considering known genotypic information for
some QTLs or identified genes). The superiority of GAS/MAS has
been demonstrated on the short term (Gibson, 1994; Meuwissen
and Goddard, 1996; Larzul et al., 1997; Spelman and van Aren-
donk, 1997; Pong-Wong and Woolliams, 1998) but these results
were not always confirmed on the long term, one reason being
unfavorable linkage disequilibrium between the major locus and
the polygenic background created by the selection (Gibson, 1994;
Verrier, 2001).

Several procedures to optimize selection with overlapping gen-
erations have been proposed and include an optimal control
approach (Dekkers and Chakraborty, 2001; Chakraborty et al.,
2002), sequential quadratic programming (SQP, Manfredi et al.,
1998) or a genetic algorithm (Costard et al., 2009). Costard et al.
(2009) developed a mathematical approach to simultaneously
optimize the selection on two traits: a quantitative trait with
underlying polygenic variation and a monogenic trait (GAS). They
proposed to maximize the frequency of the favorable genotype for
the monogenic trait (e.g., resistance to a disease) while minimizing
the loss of genetic progress on the polygenic trait.

In GAS modeling, as the selection process is dynamic, the best
decision at time t + 1 depends on the values of the state variables
at time t, and it is needed to simultaneously optimize the whole
set of decision variables across time. In other words, optimization
results in a set of decisions which vary across time when the pop-
ulation state changes, especially for the genotype frequency of the
identified gene.

The models that are used to optimize the selection process in
livestock usually make the assumption that the population is of
infinite size. Few studies took into account the variability of the
response due to finite population size, mostly in the context of
a co-optimization of genetic gain and rate of inbreeding, in the
classical selection scheme situation (Meuwissen, 1997; Villanueva
et al., 2006; Pong-Wong and Woolliams, 2007). The finite size case
has clearly to be considered when selection involves an identified
gene. Indeed, it is likely that a favorable but rare allele may disap-
pear due to drift. This case was addressed by Fournet et al. (1997),
Meuwissen and Sonesson (2004), Villanueva et al. (2006).

As described by Sanchez et al. (2006), two approaches were
invented to describe the selection process to be optimized: the
“path method” which gives the QTL favorable allele frequency
path during this process, and the“weighting method”which aggre-
gates, with appropriate weights, the polygenic and QTL breeding
values. The first approach was followed by Meuwissen and Sones-
son (2004), Sanchez et al. (2006), Liu and Wooliams (2010) in the
finite population size context.

In this study, we address the question of the optimization of
a two traits MAS scheme that takes into account the response
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variability due to finite population size. The first trait was sup-
posed to be purely polygenic, the secondary trait, monogenic. Our
selection is similar to weighing method. To this aim, we extended
the deterministic model of Costard et al. (2009).

Our modeling has some similarities with the Meuwissen and
Sonesson (2004) “ANNEAL” scheme. This scheme used the simu-
lated annealing algorithm to optimize the path of the QTL allele
frequencies which maximizes a mean of 10 estimations of the
final genetic gain under an optimum contribution selection plan.
However, as quoted by the authors, sampling errors made estimat-
ing this mean genetic gain made it hard for ANNEAL to find the
optimal path.

Beyond the description of an alternative stochastic model, the
objective of this paper was to demonstrate the feasibility and rel-
evance of a dynamic stochastic selection optimization when large
numbers of replicates are used to estimate the objective function.
Following our previous choice (Costard et al., 2009) the Genetic
Algorithm was chosen as the optimization method.

MODEL FRAMEWORK
Before entering in the detail of a simple stochastic model in order
to provide proof of concept, we describe in this introductory
section why and how our new stochastic approach differs from
the previously published deterministic approaches.

THE DETERMINISTIC APPROACH
The model proposed by Costard et al. (2009) was developed to
optimize (1) selection of candidates after evaluation of their breed-
ing value for a main polygenic trait and for a secondary monogenic
trait, and (2) mating between selected individuals. The gene affect-
ing the secondary trait was supposed biallelic, the first allele being
favorable. As any other deterministic selection model, the Costard
et al. (2009) model is a set of equations that include fixed para-
meters, decision variables (e.g., selection rate), and state variables.
Table 1 gives a list of those elements. State variables were statis-
tics which described classes of individuals that shared the same
characteristics across the population, i.e., sex s, age a, genotype g
for a gene to be selected and category c (e.g., elite vs. non-elite for
mating males and females). The state of a class was described by
its relative frequency and by its polygenic trait means value. Equa-
tions modeled the time evolution of the state variables with respect
to natural (ageing or death) and artificial (selection) phenomena
with discrete steps.

The values of the state variables at time t + 1 depended on
state variables and the values of parameters at time t as well as the
values of decision variables corresponding to the applied decision
between times t and t + 1. The objective function was the fre-
quency of the favorable genotype in reproducers born in the last
year of the selection process, an implicit function of the parameters
and variables of the model.

A most essential feature of this type of modeling is that the
evolution of the state variables is unique for each set of parame-
ters and decision variable values. On the other hand, the objective
function is algebraically expressed as a combination of all those
elements (parameters, decision, and state variables). Thus, to a
given set of decision variable corresponds a unique set of state
variable and a single value of the objective function. The decision
variables were selection rates based on genetic values (EBV) for the

Table 1 | Definition of the model parameters.

Symbol Definition

s Sex

a Age

c Category (e.g., elite)

g QTL Genotype

t Generation number

Csacg Class of individuals defined by s,a,c,g at t

qsacgt Selection rate on Csacg

λsacgt EBV threshold for Csacg EBV

θsacgt QTL weight in Csacg EBV

gj j th Individual QTL genotype

mj j th Individual Polygenic value

fs,a,c,t,g Frequency of the genotype g in the animals defined by (s,a,c)

at time t

μs,a,c,t,g Mean polygenic value of animals defined by (s,a,c) at time t

Ns Number of sex s animals

τghk Probability to carry the g genotype when parents genotypes

are h,k

ηi Selection indicator (0/1) for the i th individual

Fs,t,k Frequency of genotype k in sex s at t

δsac Proportion of age a in sex s at t

I(j,t) Global EBV of the j th individual at t

c(t,g) EBV Penalty term for the genotype g at t

π Minimum proportion of obtained Genetic progress on the

main trait

�G Genetic progress on the main trait

φ(β) Normal distribution function

i (q) Selection intensity

λ Coefficient controlling the importance of the �G constraint on

the objective function

polygenic trait of individuals belonging to key classes of candidates
(defined by specific value of s, a, and c) in the population. (Note
that mating probabilities between elite individuals according to
their genotype were also introduced in the model). Optimization
provided the EBV selection rates qsacgt that should be applied to
candidates from the key class C sacg with genotype g at time t,
given the constraint that the mean selection rate across the three
genotypes (for a biallelic gene), must be equal to a fixed qsac.

It must be noted that other decision variables could have been
used without affecting the meaning of the model: an EBV thresh-
old value λsacgt above which candidates could be selected, or the
addition of a penalty term θsacgt to the EBV.

PROPOSED STOCHASTIC APPROACH
In the case where the population size is finite, one must take into
account the variability, due to the stochastic nature of the model,
of possible states at time t + 1 resulting from a decision taken at
time t. This variability generates three specific phenomena.

Firstly, the relationship between the parameters, decision, and
state variables (elementary statistics on the EBV and distribution
of the genotype among the elements of the population), must be
adapted, for instance using order statistics. However, the modeling
problem quickly becomes inextricable when the number of classes
and cycles of selection increases. A simple approach is to consider
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the individuals, rather than their classes, as the elements of the
model. For example, if the number of 4-year-old elite males is
limited to five individuals, the three elements of the correspond-
ing model (three classes defined by the possible genotypes for a
biallelic gene) will be replaced by five elements (the five individ-
uals sharing the same sex, age, and category), but each possessing
its own state defined by its genotype and polygenic value.

It must be emphasized that, with this stochastic modeling
approach, the decision variables (rates, thresholds or penalties:
qsacgt, λsacgt, ou θsacgt) are not equivalent, only the penalty terms
being easily applicable.

Secondly, the value of the objective function corresponding to
a set of decision variables is not unique. When individuals are
used as the elements of the model then the selection process can
be simulated easily, the distribution of possible responses can be
obtained, and the expectation of the objective function distribu-
tion can therefore be estimated (rather than algebraically derived),
for any set of decisions.

Thirdly, the search for the optimal selection process should take
into account the possible events to come: a decision taken at time
t will be optimal only if the set of following events weighted by
their probabilities are considered. These probabilities depend on
the decisions to be optimized at time t + 1, t + 2, . . ., T. Thus
the rule used in the deterministic model (simultaneous optimiza-
tion of the whole set of decision variables across time in order to
deal with the fact that the best decision at time t + 1 depends on
the state variables values at time t ) is not practically applicable.
For instance, dynamic programming, although often used in this
framework, cannot be applied in our particular case where the
state variables are numerous continuous variables and not just a
few discrete variables.

In the deterministic models proposed by Chakraborty et al.,
2002, Dekkers and Chakraborty (2001), Manfredi et al. (1998),
and Costard et al. (2009), the decision variables (e.g., the penal-
ties λsacgt) were optimized for each key class of candidates. Since
this procedure is not applicable in the present stochastic model
for the reason given above, we propose to focus optimization on
a simplified framework. The penalties will be defined as constant
(invariable with the time t ) functions of genotype frequency dis-
tribution and compared, the optimization thus being reduced to
a two-step procedure: (i) the choice of the function (e.g., a con-
stant value, a linear combination of genotype frequencies in new
born females etc.) and (ii) optimization of the coefficient of the
function.

To summarize, we propose the following approach: the popula-
tion is analyzed with simple elements, i.e., individuals characterized
by their sex, age, category (elite/non-elite). Their state is defined
by their genotype g and their polygenic value m (these state vari-
ables replace the genotype frequencies and polygenic mean values
of classes in the deterministic model).

1. Selection is optimized by choosing the penalties to be added
to the EBV. These penalties vary according to the genotype
of the identified gene and possibly according to the genotype
frequencies when applying the penalty.

2. For a given set of penalties, the evolution of the population is
simulated many times in order to obtain the distribution of the
state variables.

3. The objective function is a composite statistic of the distribu-
tion, at some stage in the selection process (e.g., the last year)
and across elements of the models defined by a given charac-
teristic (e.g., the 1-year-old females), of the genotypes for the
gene affecting the secondary trait and of the polygenic values
for the main trait.

Besides the computational time inherent to any stochastic
approach, the proposed approach can be invalidated for two
reasons:

1. All numerical optimization procedures are based on the evalu-
ation of differences between the values of the objective function
obtained for a decision variables vector and which become
closer and closer to each other as the optimum is nearly reached.
If the estimation errors for the objective function are of the
same order as these variations, then convergence toward an
optimum would be impossible.

2. We cannot exclude that the approximate solutions given by
a simpler deterministic model were sufficient if one is solely
interested in distribution expectations.

In this study, our aim is to show that our proposed approach is
feasible and efficient using a simple example. We will then illus-
trate how this approach can be used to choose amongst different
selection methods.

MATERIALS AND METHODS
PROOF MODEL
In most livestock populations, only the number of males is small.
Our illustrative model is therefore composite, as the population
elements are individuals for the males and classes for the females.
Consequently, the state variables which characterize these elements
are the genotype gj and the polygenic value mj for each male, the
genotypic frequency fs,a,c,t,g and the mean polygenic value μs,a,c,t,g

for each class of females (s = 2).
To facilitate the proof of concept, the selection scheme is

extremely simplified. There is no female selection, the male selec-
tion is performed in one step (Ns selected candidates amongst
N candidates), and we include random mating, non-overlapping
generations and constant genetic variability across time. We use the
notations of Costard et al. (2009) with appropriate modifications
to take into account the finite male population size.

Renewal of the female population
The genotypic frequency and the mean polygenic values of the
new generation (a = 1, c = 1) at time t are defined as:

f2,1,1,t ,g = 1

Ns

Ns∑
i=1

∑
k

τghi kηiF2,(t−1),k

μ2,1,1,t ,g = 1

2Nsf2,1,1,t ,g

Ns∑
i=1

∑
k

τghi kηi

∑
a2,c2

δ2a2c2 f2,a2,c2,t−1,k

F2,t−1,k
(mi + μ2,a2,c2,t−1,k)
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where ηi =
{

1 if the male i is selected
0 otherwise

τgh1k is the probability

that the progeny has a genotype g given that the parents have the
genotypes k (dam) and hi (sire i). F 2, t−1, k is the probability that
the dam has a genotype k, defined by:

F2,t−1,k =
∑
a,c

δ2ac f2,a,c ,t−1,k

Where δ2ac is the proportion of females of age a and class c.

Renewal of the male population
We randomly simulated the genotype gi = g and the polygenic
value mi of the sire i (i = 1. . .N ), which is the progeny of the
sire j of genotype hj, and of polygenic value mj. The genotype
was simulated from multinomial distribution with the parame-
ters pg = ∑

k τghj k F2,t−1,k (g = 1, 2, 3). The polygenic value was
sampled from normal distribution with constant variance and
expectation

1

2

∑
k

τghj k

∑
a2,c2

δ2a2c2 f2,a2,c2,t−1k

F2,t−1,k
(mj + μ2,a2,c2,t−1,k)

Selection of reproducers
For the generation t, an index I (j,t )=mj+c(t,hj) was assigned
to each male candidate j. This index is a linear combination of
the individual’s polygenic value mj and a weight c(t,hj), which
is function of its genotype hj (as the favorable genotype was
chosen to be the first one (hj = 1), the weights c(t, 2) and
c(t, 3) must be considered as penalties and are expected to be
generally negative). The Ns males with the largest index val-
ues I(j,t) were selected amongst the N candidates to renew the
population.

The weight formulation c(t,hj) can be optimized. For example,
a selection uniquely based on the main polygenic trait is obtained
using the index I (j,t )=mj Conversely, the criterion I (j,t )=c(t,hj)
corresponds to a selection that is only based on the secondary trait.
Generally, the coefficients c(t,hj) can be constant or depend on
generation t population characteristics such as genotypic frequen-
cies for the males and/or females. Optimization of the selection
of reproducers, and therefore of the selection process first consists
in choosing the type of weights, and then in determining the best
values to be assigned to decision variables for each type of weight.
In our proof model, three types of weight and indexes (I1, I2, I3),
which correspond to respectively 10, 6, and 2 decision variables
were compared:

1. Weights c(t,hj) can be a linear combination of the geno-
typic frequencies for males and females in the population at
generation t :

⎧⎨
⎩

c(t , 1) = 0
c(t , 2) = θ1f2,1,1,t ,1 + θ2f2,1,1,t ,2 + θ3f1,1,1,t ,1 + θ4f1,1,1,t ,2 + θ5

c(t , 3) = θ6f2,1,1,t ,1 + θ7f2,1,1,t ,2 + θ8f1,1,1,t ,1 + θ9f1,1,1,t ,2 + θ10

The 10 parameters to be optimized are in this case
θ1,. . .,θ10.

2. The information about male genotypic frequencies can be
neglected as they have a low economical impact for the
production given their small population size.

⎧⎨
⎩

c(t , 1) = 0
c(t , 2) = θ1f2,1,1,t ,1 + θ2f2,1,1,t ,2 + θ3

c(t , 3) = θ4f2,1,1,t ,1 + θ5f2,1,1,t ,2 + θ6

The six parameters to be optimized are θ1, θ2, θ3, θ4, θ5, θ6.
3. Lastly, the third type of weight is the simplest case where the

coefficients c(t, hj) are constant for any generation t :

⎧⎨
⎩

c(t , 1) = 0
c(t , 2) = θ1

c(t , 3) = θ2

In this particular case, there are only two parameters to optimize
θ1, θ2.

Objective function
To facilitate the comparison between the stochastic and deter-
ministic models, the objective function to be maximized was the
expectation of a composite function which describes the popu-
lation state at the end of the selection process for the secondary
trait (favorable female genotype frequency) and for the main trait
(deviation from the maximally achievable genetic progress):

max E
(
Fobj

) = max E

(
f2,1,1,T ,1 − λ

π�G − �G ′

π�G

)

where �G ′ is the genetic progress achieved on the main trait for the
simultaneous selection on both traits, �G is the genetic progress
that would have been achieved without selection on the sec-
ondary trait and 1 − π is the accepted fraction of genetic progress
loss (if, for instance, we accept only a maximal reduction of the
genetic progress of 5% on the main trait when putting some selec-
tion pressure on the secondary trait, then π = 0.95 and the term
(π�G − �G ′)/(π�G) will constraint �G′ to being not too far
below π�G, the λ coefficient allowing a control of the constraint
(higher λ, stronger the constraint)). As in Costard et al. (2009),
a genetic algorithm was used to optimize the objective function
with constraints.

SIMPLIFIED DETERMINISTIC MODEL
In order to evaluate the usefulness of the stochastic approach, as
compared to a much simpler deterministic approach, the model
of Costard et al. (2009) was simplified to fit into the stochastic
model framework described above. For any generation, selection
of males was performed with a constant rate W 111 as in Costard
et al. (2009). The characteristics of the selected males, genotypic
frequencies and polygenic values were obtained as follows:

f1,2,2,t ,g =
(

1 − φ
(

β2−μ1,1,1,t ,g −c(g ,t )

σ

))
f1,1,1,t ,g

W111

μ1,2,2,t ,g = μ1,1,1,t ,g + i

(
1 − φ

(
β2 − μ1,1,1,t ,g − c(g , t )

σ

))
σ
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Where β2 is the selection threshold, φ(β) the Normal cumulative
distribution function and i(q) the selction intensity corresponding
to a q selection rate.

Mating between the selected males and the females was
performed randomly. The genotypic frequency and the mean
polygenic value of the progeny were:

f (s, 1, 1, t + 1, g ) =
∑

h

∑
k

τghk f (1, 2, 2, t , h)f (2, 1, 1, t , k)

μ(s, 1, 1, t + 1, g )

=
∑

h

∑
k

τghk f (1, 2, 2, t , h)f (2, 1, 1, t , k)[μ(1, 2, 2, t , h) + μ(21, 1, t , k)]
2f (s, 1, 1, t + 1, g )

NUMERICAL APPLICATION
The population consists of a large number of females and
N = 10 males, amongst which the N s = 5 best ranked males
according to their index were selected. Following this selec-
tion, males and females were mated in a panmictic way with
identical male contribution (one male gives two male proge-
nies for each generation). This process is iterated over T gen-
erations (5, 10, 15, 20) and simulated 1000 times. The initial
frequencies for the three considered genotypes (g = 1,2,3) are
respectively 20, 50, and 30%. The genetic variance is equal to
σ2

g = 36. In this example, the coefficient λ is set to an arbitrary
value of 5.

RESULTS
FEASIBILITY OF THE APPROACH: DOES THE GENETIC ALGORITHM
CONVERGE TOWARD THE MAXIMUM IN THE STOCHASTIC MODEL?
We compared the results obtained using the genetic algorithm with
those obtained by a grid search for the third index I 3 with two deci-
sion variables (θ1,θ2). Three different cases were tested with 5, 10,
and 15 generations and a maximum loss of progress of 10%. Both
approaches gave similar results (Table 2). Results were slightly
better with the genetic algorithm (higher values of the objective
function). These results could be explained by the imprecise step
of the grid search (0.2) and by the limited number of simulations
(1000). Therefore, for this selection scheme, global optimization
using a stochastic modeling approach seems feasible with a genetic
algorithm.

Table 2 | Optimized weights (θ1 and θ2) of the unfavorable genotypes

in the selection index and objective function obtained with the grid

search and the genetic algorithm with a maximum loss of progress of

10%.

Resolution Number of

generations

θ1 θ2 Objective

function

Grid search 5 −5.8 −8,8 0.43

10 −4 −11,8 0.76

15 −7 −12 0.94

Genetic algorithm 5 −5.23 −9.15 0.44

10 −4.78 −10.8 0.77

15 −6.98 −11.99 0.96

SUPERIORITY OF THE STOCHASTIC MODEL COMPARED TO THE
DETERMINISTIC MODEL
Table 3 displays the optimization of the deterministic model given
the different configurations: 5, 10, 15, and 20 generations, 10%
maximum loss of genetic progress or no constraint on the loss.
The values of the objective function obtained with the determin-
istic model are in general greater or equal to those obtained with
the stochastic model. These results were logical as the deterministic
model did not consider the depressing effect of random sampling
on mean distributions (the convergence, increasing the popula-
tion size, of the stochastic model toward the deterministic one was
checked, result not shown). The finite population size therefore
has a noticeable effect on the outcome of selection. The (negative)
optimal values predicted for the coefficients θ1,θ2 obtained with-
out constraint on the loss of genetic progress were very low for
both stochastic and deterministic model. However, these values
strongly increase (in absolute terms) when a constraint on the loss
of genetic progress is imposed. In addition, under this constraint,
the values of the coefficients θ1,θ2 were very close for both mod-
els. At the optimum, the heterozygous genotype is less penalized
than the unfavorable homozygous genotype (θ2 < θ2). The ratio
between these weights vary between 0.34 and 0.83, mostly within
[0.4,0.6], showing that the penalty is not far to be proportional to
the number of unfavorable alleles.

In order to assess the difference in prediction between the two
models, simulations were performed with the stochastic model
using values of the coefficients θ1,θ2 obtained with the opti-
mization of the stochastic model (“stochastic coefficients”) and
values obtained with the optimization of the deterministic model
(“deterministic coefficients”; Table 4).

Table 3 | Results obtained with the optimization of the deterministic

and the stochastic models with the optimized weights (θ1 and θ2) of

the unfavorable genotypes in the selection index and the objective

function for different configurations: number of generation cycles,

percentage of tolerated loss of genetic progress.

Model Number of

generations

Accepted

loss �G

θ1 θ2 Objective

function

Deterministic 5 100% −47.19 −90.11 0.83

10% −3.70 −8.20 0.44

10 100% −34.02 −99.89 0.99

10% −4.04 −9.94 0.78

15 100% −32.92 −97.70 1.00

10% −6.54 −11.42 0.99

20 100% −47.70 −57.30 1.00

10% −10.81 −16.26 1.00

Stochastic 5 100% −40.67 −92.86 0.77

10% −5.23 −9.15 0.44

10 100% −37.33 −77.91 0.99

10% −4.78 −10.80 0.77

15 100% −37.74 −77.91 1.00

10% −6.98 −11.99 0.96

20 100% −60.71 −95.19 1.00

10% −9.37 −16.6 0.99
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Table 4 | Results obtained with different values of coefficients in the

stochastic model: coefficients from the optimization of the stochastic

model and coefficients from the optimization of the deterministic

model.

Number of

generations

Coefficients

from the

optimization

model

Objective

function

Favorable

genotype

frequencies

% Loss

Accepted loss = 100%

5 Deterministic 0.77 0.77 60%

Stochastic 0.77 0.77 60%

10 Deterministic 0.99 0.99 33%

Stochastic 0.99 0.99 33%

15 Deterministic 1.00 1.00 22%

Stochastic 1.00 1.00 22%

20 Deterministic 1.00 1.00 16%

Stochastic 1.00 1.00 16%

Accepted loss = 10%

5 Deterministic 0.32 0.2 9.3%

Stochastic 0.44 0.44 10%

10 Deterministic 0.66 0.59 9%

Stochastic 0.77 0.77 10%

15 Deterministic 0.90 0.87 9%

Stochastic 0.96 0.96 10%

20 Deterministic 0.97 1 10.5%

Stochastic 0.99 0.99 10%

In the case where no constraint was imposed on genetic
progress, use of a stochastic model is not justified as the results
obtained with both models were identical.

In the case where a constraint was imposed, there was a signifi-
cant difference between the outputs of the stochastic model using
stochastic or deterministic coefficients (p < 0.001): the value of the
objective function of the stochastic model was smaller when using
the deterministic coefficients compared to the stochastic coeffi-
cient, whatever the number of generations, with a lower loss of
genetic progress but much lower favorable genotypic frequency in
females. The stochastic model performed significantly better the
deterministic model.

APPLICATION OF THE STOCHASTIC MODEL TO CHOOSE A SELECTION
CRITERION
The stochastic model was evaluated with different indexes I 1,
I 2, I 3 on 5, 10, 15, and 20 generations, with different values of
accepted genetic progress loss: 5, 10, and 100%. Table 5 shows
that the values of the optimized objective function were simi-
lar for all indexes. Therefore, taking into account the population
structure with I 1, I 2 does not seem useful. In our setting with non-
overlapping generations and a one-step selection of males, the I3

index is sufficient.
Regarding the coefficient values θ1, θ2 for the index I 3 and

the different configurations tested, the coefficients assigned to the
males of genotype 2 and 3 were negative (Table 3). The coefficient
assigned to genotype 2 was less penalizing than the one assigned
to genotype 3.

Table 5 | Objective function values obtained with the different

indexes for 5, 10, 15, and 20 generations, 5, 10, and 100% of loss of

genetic progress.

Generation

number

Accepted

loss �G (%)

Objective function

1st Index 2nd Index 3rd Index

5 100 0.768 0.768 0.768

10 0.440 0.442 0.441

5 0.368 0.370 0.368

10 100 0.992 0.992 0.992

10 0.770 0.772 0.768

5 0.607 0.61 0.611

15 100 1 1.00 1.00

10 0.950 0.965 0.963

5 0.802 0.807 0.803

20 100 1.00 1.00 1.00

10 1.00 1.00 1.00

5 0.932 0.94 0.941

DISCUSSION AND CONCLUSION
To our knowledge, this paper is the first evaluation of a stochastic
dynamic model for GAS using a genetic algorithm. This approach
was developed to deal with selection in small populations where
drift plays an important role. To avoid useless numerical compli-
cations, this model was evaluated in a very simple situation. We
have been able to demonstrate that this new approach is feasible
and useful.

The feasibility of the optimization with a stochastic modeling
approach using a genetic algorithm was validated through a grid
search in a very simple framework.

The comparison of the deterministic and stochastic models
demonstrated that in populations of limited size, a deterministic
model, which assumes that the population is very large, overes-
timates the genetic progress and produces suboptimal selection
criteria. In the small example studied (Table 4), the frequency of
the favorable genotype reached in the short term (five generations)
was inferior to 50% of its optimal value obtained with the stochas-
tic model. The optimal selection strategy thus obtained with the
stochastic approach could not be obtained with a deterministic
model.

The dynamic stochastic approach may be used to optimize
and compare selection alternatives. Basic illustration was pro-
vided and showed that the simplest decision criteria were as
good as those obtained with a selection criterion that takes
into account the genotypic structure of the population, such
as genotypic frequency for females and/or males. However, our
framework was restricted to non-overlapping generations and
the selection of the males was performed in only one step. The
generalization of the results obtained should therefore be taken
with caution.

It would be interesting to evaluate the model in more com-
plex frameworks. For example, the “best” males could be kept
during several generations, or the uses of several selection
steps for both females and males could also be considered. It
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would also be interesting to take into account the evolution
of the genetic variance across generations. Finally, in the spe-
cific setting of a finite population size of reproducers, con-
sidering the relationship matrix between the individuals may
help minimizing the inbreeding rate and maintaining a genetic
diversity.

In this stochastic approach, the empirical distributions of
the objective function and its components (e.g., the polygenic
gain, the genotypic frequency in different classes of animal, etc.)

are produced. In our demonstration, we focused only on the
expectation of the objective function expectation. Modifica-
tion of the criteria, such as the maximization of the objective
function expectation with a constraint on variance, would be
straight-forward.
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