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Background: Both common and rare mitochondrial DNA (mtDNA) variants may contribute
to genetic susceptibility to some complex human diseases. Understanding of the role of
mtDNA variants will provide valuable insights into the etiology of these diseases. How-
ever, to date, there have not been any large-scale, genome-wide association studies of
complete mtDNA variants and disease risk. One reason for this might be the substan-
tial cost of sequencing the large number of samples required for genetic epidemiology
studies. Next-generation sequencing of pooled mtDNA samples will dramatically reduce
the cost of such studies and may represent an appealing approach for large-scale genetic
epidemiology studies. However, the performance of the different designs of sequencing
pooled mtDNA has not been evaluated. Methods:We examined the approach of sequenc-
ing pooled mtDNA of multiple individuals for estimating allele frequency using the Illumina
genome analyzer (GA) II sequencing system. In this study the pool included mtDNA sam-
ples of 20 subjects that had been sequenced previously using Sanger sequencing. Each
pool was replicated once to assess variation of the sequencing error between pools. To
reduce such variation, barcoding was used for sequencing different pools in the same lane
of the flow cell. To evaluate the effect of different pooling strategies pooling was done at
both the pre- and post-PCR amplification step. Results:The sequencing error rate was close
to that expected based on the Phred score. When only reads with Phred ≥ 20 were consid-
ered, the average error rate was about 0.3%. However, there was significant variation of
the base-calling errors for different types of bases or at different loci. Using the results of
the Sanger sequencing as the standard, the sensitivity of single nucleotide polymorphism
detection with post-PCR pooling (about 99%) was higher than that of the pre-PCR pool-
ing (about 82%), while the two approaches had similar specificity (about 99%). Among
a total of 298 variants in the sample, the allele frequencies of 293 variants (98%) were
correctly estimated with post-PCR pooling, the correlation between the estimated and the
true allele frequencies being >0.99, while only 206 allele frequencies (69%) were correctly
estimated in the pre-PCR pooling, the correlation being 0.89. Conclusion: Sequencing of
mtDNA pooled after PCR amplification is a viable tool for screening mitochondrial variants
potentially related to human diseases.
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INTRODUCTION
Mitochondria play a crucial role in ATP synthesis, heat produc-
tion, reactive oxygen species (ROS) generation, apoptosis, and
several metabolic pathways (Wallace, 2005). The mitochondrial
DNA (mtDNA) genome, which is essential for maintaining mito-
chondrial function, is a closed, double-stranded DNA molecule of
16,569 bp and encodes 13 subunits of the enzyme complexes of the
respiratory chain/oxidative phosphorylation (OXPHOS) system,
two rRNAs, and 22 tRNAs (DiMauro and Schon, 2003).

Mitochondrial DNA is highly susceptible to mutation
(Miyata et al., 1982; Wallace et al., 1987). Rare mtDNA variants
result in a variety of syndromes with neurological, muscular, or
metabolic manifestations. Indeed, it has been shown that more
than 250 mtDNA point mutations and deletions are linked to

human diseases, including, as examples, mitochondrial myopa-
thy, lactic acidosis, Kearns–Sayre syndrome (KSS [MIM530000]),
and maternally inherited diabetes and deafness syndrome (MIDD
[MIM520000]; Taylor and Turnbull, 2005).

Population genetics theory has suggested that common mtDNA
variants might have functional roles in human diseases. The sub-
stantial regional variation in mtDNA lineages suggested that there
is natural selection on mtDNA variants. It has been hypothe-
sized that variants that are selectively adapted to cold climates
during human evolution may predispose to energy metabolism
diseases (DiMauro and Schon, 2003; Ruiz-Pesini et al., 2004;
Wallace, 2005). Based on the “common disease–common vari-
ant” (CDCV) hypothesis (Lander, 1996; Chakravarti, 1999; Reich
and Lander, 2001), a growing number of studies have investigated
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associations between sets of selected common mtDNA variants
and common diseases, in particular neurodegenerative diseases,
such as Alzheimer (MIM104300), Parkinson (MIM 168600), and
Huntington (MIM143100) diseases (Schapira, 1999; Beal, 2005),
type 2 diabetes (Poulton et al., 1998, 2002; Lowell and Shulman,
2005; Savage et al., 2005), cardiovascular diseases (Castro et al.,
2006), and cancers (Canter et al., 2005; Petros et al., 2005; Bai
et al., 2007; Covarrubias et al., 2008; Ye et al., 2008). The impor-
tant alternative hypothesis is that multiple rare variants (including
mtDNA variants) are responsible for the heritability of common
diseases. Recently, it has been shown that even those signals that
have been detected for common variants could come from the
effects of rare ones (Dickson et al., 2010). The answer is likely that
a combination of both common and rare variants underlie heri-
tability (Bodmer and Bonilla, 2008; Manolio et al., 2009). A subset
of carefully selected common mtDNA variants may cover a large
proportion of all common mtDNA variants/haplogroups, but is
thought to have limited power for detecting rare ones because of
the weak linkage disequilibrium between them. As such, studies
using a subset of common mtDNA variants may not fully explain
the heritability of some mitochondrial diseases that are partially
explained by rare mtDNA variants.

To capture all associations, an ideal approach is to directly
sequence the mtDNA genome of all the samples in a study
(Bodmer and Bonilla, 2008). This is more appealing for mtDNA
than nuclear DNA because of the small size of mtDNA, which
allows the complete sequence of one individual to be obtained
by traditional Sanger sequencing at relatively low cost. However,
despite having a less severe multiple testing problem due to the
smaller variants in the mtDNA genome, mitochondrial genome
association studies require sample sizes comparable to those of
nuclear DNA whole-genome association studies because of the
haploid nature of mitochondria (McRae et al., 2008). As such,
sequencing mtDNA samples of the thousands of samples required
for genetic epidemiology studies is expensive and time consuming.

New sequencing technology, so-called next generation or
massively parallel sequencing, is now available for fast massive
sequencing in a less labor-intensive fashion. At present, three
platforms for massively parallel DNA sequencing read produc-
tion, including the Roche/454 FLX1 (Margulies et al., 2005), the
Illumina/Solexa genome analyzer2 (GA; Bentley, 2006), and the
Applied Biosystems SOLidTM System3, are widely used. For these
platforms, the throughput of a single run is greatly larger than that
required for sequencing an individual mitochondrial genome. As
such, an appealing approach is to sequence a large number of indi-
viduals together in a single sequence run (Shaw et al., 1998), so that
the cost and time of sequencing can be dramatically reduced. The
idea of detecting associations by using pooled mtDNA sequencing
is based on the premise that the allele frequency of a variant can
be estimated accurately in cases and controls. The pooling strategy
was proposed earlier for high throughput single nucleotide poly-
morphism (SNP) arrays (Shaw et al., 1998; Ito et al., 2003; Zeng and

1http://www.454.com/enabling-technology/the-system.asp
2http://www.illumina.com/pages.ilmn?ID=203
3http://marketing.appliedbiosystems.com/images/Product/Solid_Knowledge/flash/
102207/solid.html

Lin, 2005), but it was not widely accepted as SNP array technol-
ogy does not provide accurate estimates of the allele frequencies
in the pooled samples. Next-generation sequencing technology,
however, might provide more accurate estimates of allele frequen-
cies, as shown by recent studies on nuclear DNA (Druley et al.,
2009a; Nejentsev et al., 2009).

In this pilot study, we assessed the accuracy of the estimates
of allele frequencies using the Illumina GA II system to sequence
pooled mtDNA. Pooling was done both before and after the PCR
step to evaluate whether different pooling strategies are applicable
for mtDNA. We also investigated the use of barcoding to allow
sequencing of different pools in the same flow cell lane to improve
the comparability in terms of the sequencing error between differ-
ent pools, which is critical for identifying association when pools
of subjects with different phenotypes are compared.

MATERIALS AND METHODS
SUBJECTS
Mitochondrial genomes of 20 subjects, whose mtDNA had been
sequenced previously using Sanger dideoxy sequencing on an
ABI3730XL, were included in this study. These deidentified DNA
samples were submitted to the Mitochondrial Diagnostic Lab-
oratory of Molecular and Human Genetics, Baylor College of
Medicine, for the diagnosis of mitochondria disorders. To eval-
uate the performance of the pooled mtDNA sequencing in a range
of situations, the 20 subjects were selected to include individuals
with low, average, or large numbers of variants. The total distinct
SNP variants carried by these 20 subjects was 298. The average
number of variants carried by an individual was 34.2, ranging
from 11 to 84.

AMPLIFICATION
Total genomic DNA, which contains mtDNA, was isolated using
commercially available kit. MtDNA enrichment was done by long-
range PCR. The complete human mitochondrial genome was
amplified in two overlapping fragments. Long-Range PCR was
performed using the LA PCR Kit Ver. 2.1 (TaKaRa Bio Inc.). The
primer pair for amplification of fragment 1 was Mito 1-2 Forward:
5′-ACATAGCACATTACAGTCAAATCCCTTCTCGTCCC-3′ and
Mito 1-2 Reverse: 5′-ATTGCTAGGGTGGCGCTTCCAATTAGGT
GC-3′, resulting in a 9307-bp product, and the primer
pair for amplification of fragment 2 was Mito 3 Forward:
5′-TCATTTTTATTGCCACAACTAACCTCCTCGGACTC-3′ and
Mito 3 Reverse: 5′-CGTGATGTCTTATTTAAGGGGAACGTGTG
GGCTAT-3′, resulting in a 7,814-bp product.

POOLING
Two pooling strategies were evaluated in this study: first, equimolar
amounts of mtDNA were pooled before amplification (pre-PCR);
second, equimolar amounts of PCR products were pooled (post-
PCR). The concentrations of human DNA sample or fragments 1
and 2 were measured by UV spec. For both pooling designs, a final
amount of 500 ng was used as starting material for Illumina GA
libraries.

ILLUMINA GENOME ANALYZER SEQUENCING
Parallel DNA sequencing was performed using the Illumina GA
II Sequencing System in the Genomics Shared Facility at the
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Albert Einstein College of Medicine, according to the manufac-
turer’s protocol. Pooled, amplified mtDNA samples were sheared
and the resulting fragments were ligated to modified adapters that
included 8-bp indexing tags. Following this barcoding step, the
samples were multiplexed at four samples per lane in the Illumina
GA flow cell.

Read-lengths of up to 75 bp were obtained. The sequence reads
were aligned to the revised Cambridge reference sequence (rCRS;
GenBank accession NC_012920). The reads were mapped using
the BWA software package4 (Li and Durbin, 2009). Once the reads
were aligned, we counted the number of bases appearing at each
mitochondrial location using the pileup feature of the SAMtools
suite5 (Li et al., 2009).

SNP DETECTION AND ALLELE FREQUENCY ESTIMATION
For SNP detection and allele frequency estimation, we assumed
that, given the allele frequency τi and the number of individuals
in a pool n, the number of variants (mi) carried by subjects in a
pool has a distribution of Pr (mi|τi) = Binomial (n,τi). In addi-
tion, given the total number of reads Ri at this position, mi and n,
we assumed that the distribution of the number of reads calling a
variant (xi) is Pr (xi|M = mi) = Binomial (Ri, mi/n). Hence, xi is
drawn from a distribution

P(xi) =
∑

Pr(xi |M = mi) × Pr(M = mi |τi).

Based on these assumptions, we defined a threshold (T) for the
number of reads reporting the variant that needed to be exceeded
to be able to call a variant. This threshold was defined by the
upper α quantile of the reads for a given base-calling error rate,
i.e.,

∑T
t=0 Pr(t |M = 0, e) � α, where e is the defined error rate.

For such a threshold, the false positive rate of calling a variant is
expected to be less than α under the given base-calling error rate.

We estimated the allele frequency by the following iterative
procedure (Wang et al., 2010)

(1) Select the initial value of τi ;
(2) Calculate the weight wmi for mi = 0, . . ., n by

wmi = P(mi |xi)

=
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(3) Estimate τ̂i = Emi |xi (mi/n) = ∑n
mi=0 wmi (mi/n);

(4) Repeat (2) and (3) until convergence.

RESULTS
DEPTH OF COVERAGE
Pooled mtDNA samples were sequenced in the same lane using
the barcoding protocol, producing 2.34 and 2.86, and 3.48 and

4http://bio-bwa.sourceforge.net/bwa.shtml
5http://samtools.sourceforge.net/

3.12 Mb for two replicates of the pre-PCR pools and the two
replicates of the post-PCR pools, respectively, that were mapped
to the human mitochondrial genome with BWA software package
(75 bp, single-end reads; Table 1). Of these, 86, 86, 96, and 95%
were mapped to the 16.6-Kb mitochondrial genome. For each
pooled sample, each nucleotide position was covered reasonably
well. Except for two regions (8,753–9,068 bp and 16,331–16,566),
the fold coverage was quite consistent across the mitochondrial
genome (Figure 1). The reason for the increased fold coverage in
these two regions was the overlap of fragment 1 and fragment 2 of
PCR.

SEQUENCING ERROR RATES
The level of base-calling error is an important parameter for
pooled mtDNA sequencing, as high levels of base-calling error
could lead to either inflated type I errors or inflated type II errors
of association. To determine the accuracy of the sequencing sys-
tem, we analyzed the base-calling error rates at non-variant bases
for our 20 samples. Figure 2 shows the empirical base-calling error
rates as a function of Phred score. The empirical base-calling
rates were close to the theoretical ones based on Phred score,
i.e., 10(−phred/10). However, sequencing error was slightly more
common at A and T bases than at C and G bases.

To achieve a balance between accuracy of the reads while retain-
ing a sufficient number of reads to enable allele frequencies to be
estimated precisely, in our subsequent analyses we restricted atten-
tion to reads with Phred score ≥ 20, which is approximately equiv-
alent to a base-calling error of ≤ 1/100. As a result of this strategy,
there were 160,879,862 and 199,396,697 mapped read positions for
the two pre-PCR pools and 213,282,359 and 238,732,352 mapped
read positions for two post-PCR pools, respectively. For both pre-
PCR and post-PCR sequencing, the accuracy was excellent, with
an average base-calling error rate of around 0.3% (0.28 and 0.31%
for pre- and post-PCR sequencing, respectively). However, there
was high variation in the levels of the sequencing error. In partic-
ular, base A was called as G (or G was called as A) and the base C
was called as T (or T was called as C) more frequently than other
miss-callings (Table 2).

Uneven levels of base-calling error across different pools
could lead to spurious differences between the allele frequencies
of cases and controls. Therefore we explored the use of bar-
coding to simultaneously sequence different pools in the same
flow cell lane in order to reduce the variation of levels of the
base-calling error. The absolute differences (|�|) in the base-
calling error rates between two replicates of either the pre- or

Table 1 | Depth of coverage for targeted regions.

Sequence No of reads

successfully

mapped

No of reads

total

Alignment

%

Median fold

coverage

Pre-PCR 1 2,340,743 2,720,994 86 11,293

Pre-PCR 2 2,864,728 3,317,528 86 14,032

Post-PCR 1 3,479,461 3,628,774 96 16,737

Post-PCR 2 3,116,138 3,263,443 95 14,885
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FIGURE 1 | Coverage maps for the pooled mtDNA before amplification

(Top) and the pooled fragment 1 and 2 (Bottom). The x axis represents the
position of nucleotide on the mitochondrial genome (16,568 kb) and the y axis
stands for the fold coverage for each nucleotide position.

FIGURE 2 |The empirical base-calling error rates against Phred score.

The black line is the theoretical error rate based on the Phred score, i.e.,
10(−Phred/10). The red, orange and blue and green lines are for A, C, G, T bases,
respectively. The A and T bases have slightly higher error rates than those of
C and G.

post-PCR pools were very small (|�| < 1/1,000; Figure 3). We
further examined the position-specific base-calling error rates
between different pools (Figures A1 and A2 in Appendix).

Table 2 | Average accuracy and error rate of the base-calling for the

pre-PCR pooled mtDNA samples and the post-PCR pooled mtDNA

samples.

True

nucleotide

Reported nucleotide (1/1,000)

A C G T

A 996.3 (996.1) 0.13 (0.14) 3.4 (3.6) 0.08 (0.11)

C 0.37 (0.40) 997.9 (997.7) 0.07 (0.07) 1.4 (1.6)

G 2.5 (3.2) 0.14 (0.15) 995.0 (996.4) 0.31 (0.31)

T 0.11 (0.13) 2.7 (3.2) 0.11 (0.11) 997.0 (996.5)

This showed relatively high variation in the levels of base-
calling error across the mitochondrial genome. In some posi-
tions, the false error rate was as high as 0.1. However, the
patterns of the base-calling error at different positions were
quite similar for the two replicates of either pre- or post-PCR
poolings.

THE SENSITIVITY AND SPECIFICITY OF SNP DETECTION
To determine the sensitivity and specificity of SNP detection,
we sequenced the mtDNA genome of the pooled mtDNA of
20 subjects with 298 known SNPs identified previously by
Sanger sequencing. The allele frequencies in this sample ranged
from 0.05 to 0.95. Among them, the variant allele for 231 of
the SNPs (77.5%) was carried by only one individual in each
case, which leads to an allele frequency of 0.05 in the sample.
Because of high variation in the levels of the base-calling error
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FIGURE 3 |The absolute differences of the base-calling rates between two replicates (|�|) for the pooled DNA before amplification (left panel) and the

pooled PCR products (right panel).

between different loci, we considered a threshold to call a vari-
ant at a base-calling error rate of α = 1%, which was higher
than the average error rate, to reduce false SNP detection. As
a result, the average sensitivity was 81.5% and the specificity
was 99.0% for the pre-PCR pooling, while the post-PCR pools
had a much higher sensitivity (99.0%) and a similar specificity
(98.9%).

THE ALLELE FREQUENCIES
The allele frequencies estimated by both pre- and post-PCR
pooling correlated strongly with the allele frequencies measured
through individual Sanger sequencing (Figure 4). Pre-PCR pool-
ing had correlation coefficient (r) of 0.885 (95% CI: 0.857–
0.907) and 0.888 (95% CI: 0.861–0.910) for the two replicates,
respectively, while the two post-PCR pools had even higher
correlation coefficients (r) of 0.9982 (95% CI: 0.9977–0.9986)
and 0.9984 (95% CI: 0.9980–0.9987), respectively. Moreover,
the allele frequency estimates were quite consistent between

the two replicates of both the pre-PCR pooling (0.9974; 95%
CI 0.9968–0.9980) and the post-PCR pooling (0.9994; 95% CI
0.9993–0.9995).

The difference between the estimated allele frequency and the
true allele frequency (based on the Sanger sequencing results)
was also determined. The distribution is shown in Figure 5. For
pre-PCR pooling, the allele frequencies of 206 of the 298 vari-
ants (69%) were correctly estimated; the bias for the remaining
variants ranged from 0.05 to 0.25. For post-PCR pooling, the esti-
mation of the allele frequency was more impressive – the allele
frequencies of 292 or 293 of 298 variants (98%) were correctly
estimated for the two replicates, respectively; the absolute bias
of the remaining variant was 0.05, except for one variant with a
bias of 0.1.

DISCUSSION
Both common and rare mtDNA variants may contribute to genetic
susceptibility to human diseases. A better understanding of the
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FIGURE 4 | Accuracy of allele frequencies estimated from the pre- (upper)

and post-PCR pooling (below). The allele frequency as determined by
sequencing is plotted against the actual allele frequencies as determined by
individual Sanger sequencing for 298 SNPs in our dataset.

FIGURE 5 | Distribution of the difference between the estimated allele

frequencies from pooled mtDNA sequencing and true allele frequency

for 298 SNPs in the sample. The two pre-PCR pools are shown in the upper
row and the two post-PCR pools are shown in the lower row in each panel.

role of mtDNA variants will provide valuable insights into the
etiology of these diseases. Because of the shorter length of the
mtDNA genome compared to that of the nuclear DNA genome

and the availability of new sequencing technology, it is now
feasible to interrogate the association of any mtDNA variant
with human disease. However, to our knowledge, there have not
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been any large-scale, genome-wide association studies compre-
hensively searching for mtDNA variants related to human disease.
One major reason, among others, is that the cost of sequenc-
ing a large number subjects is still prohibitive. However, because
of the massive throughput achievable with new next-generation
sequencing technology, such a study may be conducted in a
more timely and cost-effective manner by pooling mtDNA of
multiple individuals. As such, the use of pooled sequencing is
particularly attractive in a two-stage design, in which sequencing
is used for identifying a few promising variants that are further
validated in an independent sample at the second stage. In this
pilot study, we examined the validity of the pooling approach by
pooling the mtDNA of 20 subjects and reporting the accuracy
and precision of the estimate of the allele frequency of mtDNA
SNPs.

In the current study pooling was done at either the pre- or post-
PCR amplification step to evaluate the effect of different pooling
strategies. The results indicated that the sensitivity of SNP detec-
tion with pre-PCR sequencing was significantly lower than that
with post-PCR sequencing, while both pooling strategies yielded
very high specificity. Moreover, the estimate of allele frequency
with pre-PCR sequencing was less accurate than that with post-
PCR sequencing. Such differences between pre- and post-PCR
sequencing were more significant than those reported in previ-
ous studies on nuclear DNA (Lavebratt et al., 2004; Ingman and
Gyllensten, 2009). Because pre-PCR and post-PCR sequencing
had similar levels of base-calling error, the poorer performance
of pre-PCR sequencing was most likely due to variation in the
copy numbers of mtDNA molecules among individuals, leading to
non-equimolar amounts of mtDNA being pooled. For sequencing
mtDNA pools representing a large number of individuals, pre-
PCR pooling has the advantage of efficiency in terms of time
and cost. However, because it is critical to accurately quantify
DNA for SNP detection and allele frequency estimation, pre-PCR
pooling of mtDNA may not be as good a strategy for detect-
ing associations as it is for nuclear DNA. As an alternative, one
can adjust the amount of pre-PCR mtDNA based on the mtDNA
copy number relative to nuclear DNA (Miller et al., 2003). How-
ever, estimating mtDNA copy number relies on an additional PCR
procedure.

In sequencing an individual genome, base-calling error, which
is usually less than 1%, is less of a concern because one easily
distinguishes a base-calling error from a true variant with a suffi-
ciently large coverage at the base, as the latter is expected to have
a probability of 50% if the locus is heterozygous. However, for the
pools of a large number of individuals, the base-calling error rate
is likely to be close to, or even higher than, the allele frequency.
As such it could be difficult to distinguish a true rare variant
from a base-calling error. Our results showed that the empiri-
cal base-calling error rates were close to those expected based on
Phred score, so one may use only those reads with high Phred
score to reduce the negative effects of the base-calling errors.
However, there was still significant variation for different types
of bases and between various mtDNA locations. In particular,
sequencing errors at some locations of mtDNA were present at
a much higher frequency than the average error rate of 0.3%.

This was not a major problem in the current study that showed
both excellent sensitivity and specificity (99%) and accuracy of
the estimate of the allele frequency (the correlation between the
estimated and the true allele frequencies was >99%) in the post-
PCR pooling. The robustness of the current study to relatively
high variation in the sequencing error may due to the fact that
there were high allele frequencies (≥5%) in the pool because of
the small pool size (n = 20). As a result, it was possible to tol-
erate to a large extent the variation in sequencing error rate.
However, sequencing errors could lead to more severe conse-
quences for pools with a larger number of individuals. In such
cases, sequencing of pools may serve as a screening tool and the
promising loci may be further validated by individual genotyp-
ing. In this study, we only consider estimating allele frequen-
cies of homoplasmic mtDNA variants. Recent study showed that
next-generation sequencing has a good performance in detect-
ing homoplasmy variants (Zaragoza et al., 2010). However, the
estimated allele frequency from the pooled mtDNA sequenc-
ing is indeed an estimate of the average heteroplasmic level of
samples.

Detection of a disease association using pooled mtDNA is based
on comparison of the estimated allele frequencies of cases and
controls. High levels of sequencing error could result in either
overestimation or underestimation of the allele frequency. Uneven
sequencing error levels in cases and controls could lead to false
discovery of an association. It has been shown that variation in
sequencing errors between different sequencing runs are not negli-
gible (Druley et al., 2009b). To remove such variation, we explored
the approach of sequencing different pools in the same lane of a
flow cell using the barcoding procedure. We found, for replicative
pools sequenced in the same lane, the patterns of the base-calling
errors of different mtDNA loci were very consistent, suggesting
that this may be a good strategy to reduce false positive associa-
tions due to uneven levels of sequencing error between cases and
controls. However, high levels of sequencing error can still lead to
loss of power, in particular for rare variants. For a rare variant,
the reference allele is much more common than the rare variant
allele, so false positive reads that occur at the reference base are
likely to occur much more often than false negative reads that
occur at the variant base, leading to an over-estimated allele fre-
quency in both cases and controls, with consequent reduction in
the associated signal-to-noise ratio. However, we have shown pre-
viously that statistical power can be improved using a statistic that
can take the levels of sequencing error into account (Wang et al.,
2010).

In brief, this pilot study indicates that the use of next-generation
sequencing for pooled mtDNA can accurately estimate allele fre-
quency and hence is a viable tool for screening mitochondrial
variants associated with human diseases.
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APPENDIX

FIGURE A1 | Position-specific base-calling error rates for Pre-PCR.
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FIGURE A2 | Position-specific base-calling error rates for Post-PCR.
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