
ncRNAs have been proposed (Rivas and Eddy, 2001; di Bernardo 
et al., 2003; Coventry et al., 2004; Washietl et al., 2005b; Pedersen 
et al., 2006). In general, most of these methods employ the fol-
lowing strategy: (1) construct a pairwise or multiple alignment of 
two or more RNA sequences; (2) predict whether each mutation 
in the alignment occurs under a structurally conservative model 
or an independent model. Rivas and Eddy (2001) have developed 
QRNA which classifies a given pairwise alignment as one of three 
models: the coding model (COD) in which substitutions between 
synonymous codons occur frequently to conserve amino acid 
sequences, the non-coding model (RNA) in which covariances of 
base pairs occur frequently to conserve secondary structures, and 
the others (OTH). Pedersen et al. (2006) have developed EvoFold 
based on phylo-SCFGs which assume that any mutations on each 
column of a given multiple alignment would occur under a given 
phylogenetic tree of sequences, and the mutation on single bases 
would occur more frequently than that on base pairs in conserved 
secondary structures. These assumptions improve the accuracy 
of predicting secondary structures (Knudsen and Hein, 1999). 
Washietl et  al. (2005b) have developed RNAz which detects a 
structurally conserved region from a multiple alignment by sup-
port vector machines. RNAz employs the averaged z-score of MFE 
for each sequence and the structure conservation index (SCI). 
The key idea is that MFE for the common secondary structure 
is close to that for each sequence if a given multiple alignment is 

1  Introduction
Many studies have recently discovered essential roles of non-
protein-coding RNAs (ncRNAs) in cells such as translation, post-
transcriptional gene regulation and maturation of rRNAs, tRNAs, 
and mRNAs (Eddy, 2001; Mattick and Makunin, 2006). Therefore, to 
identify ncRNAs in genomes and analyze their functions is a crucial 
task for not only molecular cell biology but also bioinformatics.

It is well-known that such biological functions of ncRNAs are 
deeply related to their secondary structures since most of ncRNA 
families share consensus secondary structures but contain highly 
diversed sequences in terms of sequence identity. This means that 
standard methods for sequence analysis based on the primary 
sequence may not help ncRNA analysis, and secondary structures 
should be employed as a key feature of ncRNA analysis.

An RNA secondary structure consists of hydrogen-bonded 
base pairs including the Watson–Crick base pairs (A-U and G-C), 
the wobble base pairs (G-U), and other non-canonical base pairs. 
These base pairs stabilize the structure of RNAs in terms of the 
free energy. Thus, the secondary structure with the minimum free 
energy (MFE) has been regarded as the most reliable prediction of 
RNA secondary structures.

However, Rivas and Eddy (2000) have indicated that MFE alone 
could not be an appropriate measure for identifying ncRNAs 
since the free energy is heavily biased by the nucleotide compo-
sition. Therefore, several comparative approaches for identifying 
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structurally conserved. Thus, SCI is defined as the rate of MFE 
for the common secondary structure to the averaged MFE for 
each sequence. MFE values for each sequence and the common 
secondary structure are calculated by RNAfold and RNAalifold 
in Vienna RNA package (Hofacker, 2003). Gruber et al. (2008) 
have employed the base pair distance (BPD) as a measurement 
of structure conservation. BPD has been originally defined as 
the normalized Hamming distance between two RNA secondary 
structures (Flamm et al., 2001). In (Gruber et al., 2008), BPD has 
been shown to be as accurate as SCI.

RNAz with SCI has been used for ncRNA screens in several 
organisms including humans (Washietl et al., 2005a), nematodes 
(Missal et al., 2006), plasmodium (Mourier et al., 2008), and arabi-
dopsis (Song et al., 2009), showing that RNAz is one of the most 
accurate tools for identifying ncRNAs. However, for practical 
use of RNAz on the genome-wide search, a relatively high false 
discovery rate has unfortunately been estimated (Washietl et al., 
2007). It is conceivable that multiple alignments produced by a 
standard aligner that does not consider any secondary structures 
are not suitable for identifying ncRNAs in some cases and incur 
high false discovery rate. Wang et al. (2007) have also suggested 
that the genome-wide alignments in the UCSC Genome Browser 
(Kent et al., 2002) produced by MULTIZ (Blanchette et al., 2004) 
should be improved in some regions for identifying ncRNAs. To 
improve the accuracy, two strategies can be considered: the one is to 
employ a structural aligner such as RAF (Do et al., 2008) to produce 
high quality alignments, and the other is to develop a more robust 
method against low quality alignments. Since the former strategy 
will consume impractical execution time for structural alignments, 
this study takes the latter strategy.

Recently, several researchers have studied high-dimensional 
space estimation based on maximizing expected accuracy (MEA) 
including sequence alignment and RNA secondary structure pre-
diction (Ding et  al., 2005; Do et  al., 2005, 2006; Carvalho and 
Lawrence, 2008; Hamada et al., 2009, 2011), showing that MEA-
based estimation is more reliable than the maximum likelihood 
estimation. CentroidFold and CentroidFold employ one of 
MEA-based estimators called g-centroid estimators for predicting 
RNA (common) secondary structures, and have been shown to be 
more accurate than other existing tools such as MFE-based methods 
(Hamada et al., 2009, 2011). Especially, CentroidFold can predict 
much more accurate common secondary structures for low quality 
multiple alignments produced by CLUSTAL W (Thompson et al., 
1994) than RNAalifold.

In this study, we propose improved measurements for structure 
conservation based on g-centroid estimators for RNA (common) 
secondary structure prediction, instead of MFE-based predictions 
by RNAfold and RNAalifold, to incorporate the robustness against 
low quality multiple alignments. We call them C-SCI and C-BPD, 
which use centroid structures instead of MFE structures to calculate 
SCI and BPD. Our experiments show that the proposed methods 
achieve higher accuracy than the original SCI and BPD for not 
only human-curated structural alignments but also low quality 
alignments produced by CLUSTAL W. Furthermore, the accuracy 
of C-SCI on CLUSTAL W alignments is comparable with that of 
the original SCI on RAF alignments for which twofold expensive 
computational time is required on average.

2  Materials and Methods
2.1  RNA secondary structure prediction with g-centroid 
estimator
CentroidFold implements a g-centroid estimator which predicts 
secondary structures with the maximum expected accuracy by a 
kind of posterior decoding methods on the base-pairing probability 
matrix (Hamada et al., 2009).

Let Σ  =  {A,C,G,U} and Σ* denote the set of all finite RNA 
sequences consisting of bases in Σ. For a sequence x = x

1
 x

2
…x

n
 ∈ Σ*, 

let |x| denote the number of symbols appearing in x, which is called 
the length of x. Let S(x) be a set of secondary structures of an RNA 
sequence x. An element y ∈ S (x) is represented as a |x| × |x| binary-
valued triangular matrix y = (y

ij
)

i < j
, where y

ij
 = 1 means that bases 

x
i
 and x

j
 form a base pair.

CentroidFold employs a gain function between a true sec-
ondary structure u ∈ S(x) and a predicted secondary structure 
y ∈ S(x) defined as

G y I y I I y Iij ij ij ij
i j x

γ u g u u, ,( ) = =( ) =( ) + =( ) =( ){ }
≤ < ≤
∑ 1 1 0 0

1 	

(1)

where g is a weight for base pairs, and I(condition) is the indicator 
function, which takes 1 or 0 depending on whether condition is 
true or false. The gain function (1) is equal to the weighted sum 
of the number of true positives and the number of true negatives 
of base pairs.

CentroidFold predicts a secondary structure y ∈ S(x) which 
maximizes the expectation of G

g
(u, y) with respect to an ensemble 

of all possible secondary structures S(x) which is distributed under 
a posterior distribution p(u|x),
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where C is a constant independent of y, and p
ij
 = E

u|x
[u

ij
] is the 

base-pairing probability that the i-th and j-th bases form a base pair. 
The optimal secondary structure ˆ [ ( , )]( ) |y G yy x x= ∈arg max S Eθ γ θ  can 
be calculated efficiently by using the following Nussinov-style DP 
algorithm:

M
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(3)

and tracing back from M
1,|x|

 to recover ŷ. The model of the posterior 
distribution p(u|x) can be chosen from various implementations 
including the McCaskill (1990) model based on the Boltzmann 
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min
y∈S(A)

 E
A
(y) is the consensus MFE structure of A calculated 

by RNAalifold (Hofacker et al., 2002; Bernhart et al., 2008). The 
free energy of a consensus structure is defined as the average of 
the energy contributions of the single sequences plus covariance 
scores for bonuses of compensatory and consistent co-mutation 
in the alignment.

The consensus MFE alone could be used to identify functional 
RNAs in terms of thermodynamic stability of consensus structures. 
However, it is difficult to make straightforward use of it, since the 
folding energy is heavily biased by the nucleotide composition and 
the length of the alignment. SCI solved this problem by normalizing 
E

A
[yMFE(A)] with the average of E

x
[yMFE(x)] for all x ∈ A. From a 

different view, SCI reflects the idea that for a well-conserved align-
ment the structure of each sequence resembles each other and the 
consensus structure resembles all of them, so E

A
[yMFE(A)] would 

have as low value as E
x
[yMFE(x)], otherwise E

A
[yMFE(A)] would not. 

SCI is near 0 for an alignment that is not structurally conserved, 
whereas SCI is near 1 or above for an alignment that is structurally 
conserved. Especially, if the alignment is structurally well-conserved 
and compensatory and consistent mutations often occur, SCI may 
be above 1.

As shown in the definition (5), SCI obviously depends on the 
accuracy of common secondary structure prediction, which is also 
deeply influenced by the quality of multiple alignments of RNAs. 
This fact is supported by a previous study (Gruber et al., 2008) and 
our results shown in Section 3. For the genome-wide search, high 
quality alignments that consider RNA secondary structures cannot 
be obtained easily due to the computational cost for calculating 
structural alignments. Therefore, a robust method that does not 
require high quality alignments is desired.

2.2.2  Base pair distance
The BPD evaluates secondary structure conservation of a given 
multiple alignment of RNA sequences by comparing predicted sec-
ondary structures directly rather than MFE (Flamm et al., 2001; 
Gruber et al., 2008). BPD is based on the normalized Hamming 
distance between two RNA secondary structures defined as:

D y y
y y y y

y y y y

ij ij ij iji j

ij ij ij ij
i j

( , )′ =
+ ′ − ′( )
+ ′ − ′( )

<

<

∑
∑

2

for y ∈ S(x) and y′ ∈ S(x′) for two RNA sequences x and x′ with 
the same length |x| = |x′|. Two variations of BPD can be defined: 
the first is the mean over all the combination of pairwise distances 
in the alignment A, that is,

BPD MFE MFE
pairwise

A x x A

A
C

D y x y x( ) = ( ) ′( )( )
′∈

∑1

2# ,

, .
	

(6)

The second is the mean distance from the consensus structure 
to each individual structure in the alignment A, that is,

BPD MFE MFE
consensus

x A

A
A

D y A y x( ) = ( )( )
∈
∑1

#
( ), .

	
(7)

Note that x,x′ ∈ A in Eqs (6) and (7) may contain the gaps (“−”) 
resulting from the alignment A so that the Hamming distance can 
be defined.

free energy and the CONTRAfold model (Do et al., 2006) based 
on a machine learning technique. In our experiments, we used 
the McCaskill model with Boltzmann likelihood parameters 
(Andronescu et al., 2010).

The weight g in the definition (1) controls the number of predicted 
base pairs, that is, the trade-off between specificity and sensitivity 
of predicted base pairs. If g = 1, this estimator is equivalent to the 
centroid estimator (Ding et al., 2005; Carvalho and Lawrence, 2008).

CentroidFold can predict a common secondary structure of 
a multiple alignment of RNA sequences by using the g-centroid 
estimator under the mixture of the RNAalifold model and the 
McCaskill model (Hamada et  al., 2011). Let A be an alignment 
of RNA sequences that contains #A sequences. CentroidFold 
employs a gain function defined as the sum of the gain function 
(1) for all x ∈ A:

G y G y
x A

g gu u∗

∈

, , .( ) = ( )∑
	

(4)

CentroidFold predicts a common secondary structure y ∈ S(A) 
which maximizes the expectation of G yg u

∗( , ) under the mixed dis-
tribution of the McCaskill model and the RNAalifold model:

p x w p x w p AA u u u| | | ,( ) = ⋅ ( ) + −( )⋅ ( )1

where p(u|x) and p(u|A) are the McCaskill model and the RNAalifold 
model, respectively. Here, w ∈ [0,1] is a weight between two distri-
butions (w = 0.5 in our experiments). The optimal common sec-
ondary structure can similarly be calculated by using the recursion 
(3) with the averaged base-pairing probability defined as

p
w

A
p w pij ij

x
ij

A

x A

∗

∈

= + −( )( ) ( )∑
#

,1

instead of p
ij
, where p p xij

x
y x ij

( )
( ) ( | )= ∑ ∈S u u  and p p Aij

A
y A ij

( )
( ) ( | ).= ∑ ∈S θ θ

CentroidFold and CentroidFold have been shown to be 
more accurate than other existing tools (Hamada et al., 2009, 2011). 
Especially, CentroidFold can predict much more accurate com-
mon secondary structures than RNAalifold for low quality multiple 
alignments produced by CLUSTAL W.

2.2  MFE-based Measurements of Structure Conservation
In this section, we introduce two existing measurements of struc-
ture conservation based on prediction of RNA secondary structures 
that minimizes free energy.

2.2.1  Structure conservation index
The SCI evaluates secondary structure conservation of a given 
multiple alignment of RNA sequences in terms of the MFE. SCI 
is defined as

SCI
MFE

MFE

( )

#

.A
E y A

A
E y x

A

xx A

=
( )( )

( )( )∑1
∈ 	

(5)

For a single sequence x, E
x
(y) denotes the free energy of a 

secondary structure y ∈ S(x), and yMFE(x) = arg min
y∈S(x)

 E
x
(y) 

is defined to be the MFE structure of x calculated by RNAfold 
(Hofacker, 2003). Similarly, for an alignment A, E

A
(y) is the free 

energy of a consensus structure y  ∈ S(A), and yMFE(A)  =  arg 
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et  al., 2006), which includes 18,990 reference alignments of 
36 RNA families. Reference alignments in BRAliBase 2.1 are 
human-curated alignments which are made from Rfam database 
(Griffiths-Jones et  al., 2005) aiming for evaluating structural 
alignments. We produced multiple alignments using CLUSTAL 
W (Thompson et al., 1994) version 1.83 with default settings to 
investigate the discrimination capability on low quality align-
ments. We also produced structural alignments using RAF (Do 
et al., 2008) version 1.00 with default settings. RAF is one of the 
most efficient structural aligners based on the Sankoff (1985) 
algorithm which simultaneously aligns and folds given RNA 
sequences. However, RAF is much slower than CLUSTAL W since 
secondary structures are taken into account. For each alignment, 
we generated 10 negative controls by utilizing SISSIz (Gesell and 
Washietl, 2008), which randomizes columns of a given alignment 
to destroy its common secondary structure, while maintaining 
gap patterns, dinucleotide compositions, and sequence length. 
These alignments were binned according to their normalized 
Shannon entropy by the size of 0.05. The normalized Shannon 
entropy is defined as the average of the Shannon entropy of the 
individual column over all columns in the alignment whose 
length is |A|:

H
A

p pj
i

j
i

ji

A

= − ∑∑
=

1
2

1

log ,
∈Σ 	

(11)

where j is in the alphabet Σ = {A,U,G,C, − } consisting of the four 
nucleotides and the gap character “−,” and pj

i
 is the relative fre-

quency observing the character j in the column i. We clustered the 
alignments into the bins from 0.05 to 1.15 stepping with 0.05 of 
normalized Shannon entropy. Figure 1 shows the distribution of 
the reference alignments on the bins of the normalized Shannon 
entropy.

To evaluate the performance of the various strategies, we per-
formed the receiver operating characteristic (ROC) curve analysis. 
An ROC curve is a plot of true positive rate versus false positive 
rate in varying the discrimination threshold of a classifier. The 
area under the ROC curve (AUC) is used for evaluation of the 
discrimination; the AUC value closer to 1 means better discrimi-
nation capability.

In our study, we compared C-SCI and C-BPD (pairwise, consen-
sus) with the original SCI and BPD. To compute SCI, we used the 
program scif available at http://www.biophys.uni-duesseldorf.de/
bralibase/. The two variants of BPD were calculated by a modified 
scif which uses a utility function for the BPD in Vienna RNA pack-
age. We implemented C-SCI and C-BPD based on CentroidFold 
package version 0.0.9 for predicting (common) secondary struc-
tures, and Vienna RNA Package version 1.8.5 for calculating the 
free energy of predicted structures.

3.2  Discrimination capability
Figure 2 shows the results of ROC curve analysis of C-SCI and 
C-BPD comparing with SCI and BPD on the BRAliBase refer-
ence alignments and the CLUSTAL W alignments for each bin of 
normalized Shannon entropy, indicating that C-SCI achieved the 
highest AUC, especially on low entropy region.

Both variants of BPD have the same drawback as SCI since MFE-
based structures are used, that is, unreliable prediction of (common) 
secondary structures will result in inaccurate identification of ncRNAs.

2.3  Centroid-Based Measurements of Structure 
Conservation
Now, we improve the above-mentioned measurements of sec-
ondary structure conservation by employing CentroidFold and 
CentroidFold instead of RNAfold and RNAalifold, respectively, 
for (common) secondary structure prediction to incorporate the 
robustness against low quality multiple alignments.

2.3.1  C-SCI
We propose C-SCI based on SCI which employs centroid structures 
instead of MFE structures. First, we predict the consensus centroid 
structure for an alignment A, denoted by yc(A), and centroid structures 
for each sequence x ∈ A, denoted by yc(x). We map a predicted struc-
ture onto each sequence x and calculate its free energy E

x
[yc(x)] for 

all of the sequences. For an alignment, we map a predicted consensus 
structure onto each sequence x and get rid of gaps and correspond-
ing parts of the structure. To calculate the energy, we use RNAeval 
(Hofacker, 2003) with the predicted structure on the sequence. The 
free energy of a consensus secondary structure is calculated from the 
averaged free energy for all sequences and the covariance score which 
is implemented according to RNAalifold (Hofacker et al., 2002).

Then, C-SCI is calculated as follows:

C-SCI( )

#

.A
E y A

A
E y x

A
C

x
C

x A

=
( )( )

( )( )∑1
∈ 	

(8)

C-SCI has two parameters which affect the discrimination 
capability. We denote g

A
 as the parameter g for predicting con-

sensus secondary structures on multiple alignments, and g
S
 as g 

for predicting secondary structures on individual sequences. The 
two parameters for centroid-based measurements were determined 
empirically; g

a
 = 1.0 and g

s
 = 6.0, which on average gave us accurate 

results in various conditions.

2.3.2  C-BPD
Since BPD directly compares RNA secondary structures, a more 
accurate and robust method for predicting RNA secondary struc-
tures is desired. We can employ centroid structures instead of MFE 
structures to calculate BPD. We call this C-BPD. As well as BPD, we 
can consider two variations of C-BPD:

C-BPDpairwise

A

C C

x x A

A
C

D y x y x( )= ( ) ′( )( )
′

∑1

2# ,

,
∈ 	

(9)

C-BPDconsensus
C C

x A

A
A

D y A y x( )= ( ) ( )( )
∈
∑1

#
, .

	
(10)

3 R esults
3.1  Dataset and Evaluation
To confirm the discrimination capability of C-SCI and C-BPD, 
we performed the experiments in accordance with the previous 
study (Gruber et  al., 2008) on BRAliBase 2.1 data set (Wilm 
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Figure 1 | The distribution of the reference alignments over the bins of the normalized Shannon entropy. The density of each bar indicates the number of 
sequences in the alignments.
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Table 1 shows the discrimination accuracies for all the align-
ments of all the methods. This indicates that the centroid-based 
measurements achieve higher AUC scores on the alignments by all 
the aligners than their MFE-based counterparts.

3.3  Computational complexity
To address the genome-wide search, the computational cost is a 
serious problem. As shown in Table 1, it is obvious that the use of 
reference alignments which are structurally corrected by human 
curation is desirable. However, it is impractical to always obtain 
such reference alignments since high quality alignments cannot 
be obtained due to limited human resources and knowledge. Two 
alternative approaches are to use structural aligners which can align 
RNA sequences conserving their secondary structures, and to use 
the standard aligners like CLUSTAL W.

As shown in Table 1, all the measurements on RAF alignments 
achieve as high accuracy as those on reference alignments, and 
much higher accuracy than those on CLUSTAL W alignments. 
However, huge computational time is required for producing 
structural alignments even by RAF (2.84 s on average), which is 
known as one of the most efficient structural aligner, compar-
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tim
e 
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SCI + RAF
C−SCI + CLUSTAL W

Figure 3 | Elapsed time of calculating SCI following RAF alignments and C-SCI following CLUSTAL W alignments for the alignments of five sequences 
with respect to the length of sequences. All the experiments were executed on a Linux machine with AMD Opteron 2200SE (2.8 GHz).

Table 1 | Area under the ROC curve of all the methods.

Method	 Reference	 RAF	 CLUSTAL W

C-SCI	 0.937	 0.942	 0.837

C-BPD (consensus)	 0.890	 0.896	 0.805

C-BPD (pairwise)	 0.744	 0.747	 0.655

SCI	 0.795	 0.776	 0.632

BPD (consensus)	 0.756	 0.755	 0.672

BPD (pairwise)	 0.711	 0.713	 0.621

Table 2 | Calculation time of each measurement.

Method	 RAF	 CLUSTAL W

	 Time	 Total time	 Time	 Total time

C-SCI	 0.965 ± 1.65	 3.05 ± 7.35	 0.979 ± 1.67	 1.01 ± 1.71

C-BPD	 0.948 ± 1.63	 3.03 ± 7.33	 0.961 ± 1.65	 0.989 ± 1.69 

(consensus)

C-BPD	 0.267 ± 0.444	 2.35 ± 6.67	 0.268 ± 0.444	 0.295 ± 0.477 

(pairwise)

SCI	 0.157 ± 0.270	 2.24 ± 6.56	 0.159 ± 0.273	 0.187 ± 0.306

BPD	 0.182 ± 0.881	 2.27 ± 6.61	 0.159 ± 0.274	 0.186 ± 0.307 

(consensus)

BPD	 0.095 ± 0.158	 2.18 ± 6.51	 0.111 ± 0.809	 0.138 ± 0.817 

(pairwise)

The result of calculation time is shown in seconds. Time: elapsed time for 
calculating the measurement only. Total time: total elapsed time for aligning 
sequences and calculating the measurement. All the experiments were 
executed on a Linux machine with AMD Opteron 2200SE (2.8 GHz).

ing with CLUSTAL W (0.0277 s on average). On the other hand, 
the centroid-based measurements have an advanced property of 
robustness against low quality alignments. In fact, Table 1 indi-
cates that C-SCI on CLUSTAL W alignments is more accurate 
than or comparable to SCI on RAF alignments. Furthermore, as 
shown in Table 2, the elapsed time for calculating SCI through 
RAF alignments is twice as long as that for C-SCI through 
CLUSTAL W alignments on average. Figure 3 shows the detailed 
analysis of elapsed time with respect to the sequence length of 
the alignments of five sequences, indicating that the non-neg-
ligible number of alignments took more than 5  s to compute 
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A positive, CSCI=0.70, normalized Shannon Entropy=0.18
(((((((..((((((((.............................))))))))........(((.....)))...................)))))))

U69587.1_125-223 CUCUGGUAACUAGAGAUCCCUCAGACCCUUUUAGUCAGUGUGAAAAAUCUCUAGCAGUGGCGCCCGAACAGGGACUUGAAAGCGAAAGAGAAACCAGAG
AF196724.1_579-677 CUCUGGUAACUAGAGAUCCCUCAGACUCAUUUUGUCAGAGUGGAAAAUCUCUAGCAGUGGCGCCCGAACAGGGACUUGAAAGUGAAAGUAGAACCAGAG
AF110963.1_68-166 CUCUGGUAACUAGAGAUCCCUCAGACCCUUCGUGGUAGUGUGGAAAAUCUCUAGCAGUGGCGCCCGAACAGGGACGCGAAAGUGAAAGUAAGACCAGAG
AY463237.1_28-126 CUCUGGUAGCUAGAGAUCCCUCAGACCCUUUGUGGUAGUGUGGAAAAUCUCUAGCAGUGGCGCCCGAACAGGGACUUAAAAGCGAAAGUAAGACCAGAG
AF196741.1_577-675 CUCUGGCAGCUAGAGAUCCCUCAGACCUCAUUUGUCAGUGUGGAAAAUCUCUAGCAGUGGCGCCCGAACAGGGACUUGAAAGCGAAAGUAAGGCCAGAG

B positive, SCI=0.78, normalized Shannon Entropy=0.18
(((((((..((((((((...(((.((...........)).)))...)))))))).....((.(((.....)))........)).........)))))))

U69587.1_125-223 CUCUGGUAACUAGAGAUCCCUCAGACCCUUUUAGUCAGUGUGAAAAAUCUCUAGCAGUGGCGCCCGAACAGGGACUUGAAAGCGAAAGAGAAACCAGAG
AF196724.1_579-677 CUCUGGUAACUAGAGAUCCCUCAGACUCAUUUUGUCAGAGUGGAAAAUCUCUAGCAGUGGCGCCCGAACAGGGACUUGAAAGUGAAAGUAGAACCAGAG
AF110963.1_68-166 CUCUGGUAACUAGAGAUCCCUCAGACCCUUCGUGGUAGUGUGGAAAAUCUCUAGCAGUGGCGCCCGAACAGGGACGCGAAAGUGAAAGUAAGACCAGAG
AY463237.1_28-126 CUCUGGUAGCUAGAGAUCCCUCAGACCCUUUGUGGUAGUGUGGAAAAUCUCUAGCAGUGGCGCCCGAACAGGGACUUAAAAGCGAAAGUAAGACCAGAG
AF196741.1_577-675 CUCUGGCAGCUAGAGAUCCCUCAGACCUCAUUUGUCAGUGUGGAAAAUCUCUAGCAGUGGCGCCCGAACAGGGACUUGAAAGCGAAAGUAAGGCCAGAG

C negative, CSCI=0.0, normalized Shannon Entropy=0.17
...................................................................................................

U69587.1_125-223 CAGAGACUAAGCAUGAGCCAGAGCUUUGAAGUGUAGACGUGAAGAGAUGAGGGGGCGGGGCUCAGAAUUCUGUCUUCUUUUGAAGCGAUGACUCGACAA
AF196724.1_579-677 CAGAGAGUAAGCAUGAGCCAGAGCUUUGGAGUGUGGACGUGAAGAGAUGAGGGGGCGGGGCUCAGAAUUCUGUCUCCUUUUGGAGCGAGAGCUCGACAA
AF110963.1_68-166 CAGAGAGUAAGCAUGAGCCAGAGCUUUGGAGGCUAGACGUGAGGAGAUGAGGGGGCGGGGCUCAGAAUUCUGUCUUCUUUUGAAGCGAGCAGUCGACAA
AY463237.1_28-126 CAGAGAGUGAGCAUGAGCCAGAGCUUUCAAGUGUAUACGUGAGGAGAUGAGGGGGCGGGGCUCAGAAUUCUGUCUUCUUUUGAAGCGAGAGGUCGACAA
AF196741.1_577-675 CAGAGACUGAGCAUGAGCCAGAGCUUUGAACUGUCCACCUGAAGAGAUGAGGGGGCGGGGCUCAGAAUUCUGUCUUCUUUUGAAGCGAAAGCUCGACAA

D negative, SCI=0.68, normalized Shannon Entropy=0.17
.............(((((....((((..((.......(((......)))(((((((((((.......)))))))))))))..))))....)))))....

U69587.1_125-223 CAGAGACUAAGCAUGAGCCAGAGCUUUGAAGUGUAGACGUGAAGAGAUGAGGGGGCGGGGCUCAGAAUUCUGUCUUCUUUUGAAGCGAUGACUCGACAA
AF196724.1_579-677 CAGAGAGUAAGCAUGAGCCAGAGCUUUGGAGUGUGGACGUGAAGAGAUGAGGGGGCGGGGCUCAGAAUUCUGUCUCCUUUUGGAGCGAGAGCUCGACAA
AF110963.1_68-166 CAGAGAGUAAGCAUGAGCCAGAGCUUUGGAGGCUAGACGUGAGGAGAUGAGGGGGCGGGGCUCAGAAUUCUGUCUUCUUUUGAAGCGAGCAGUCGACAA
AY463237.1_28-126 CAGAGAGUGAGCAUGAGCCAGAGCUUUCAAGUGUAUACGUGAGGAGAUGAGGGGGCGGGGCUCAGAAUUCUGUCUUCUUUUGAAGCGAGAGGUCGACAA
AF196741.1_577-675 CAGAGACUGAGCAUGAGCCAGAGCUUUGAACUGUCCACCUGAAGAGAUGAGGGGGCGGGGCUCAGAAUUCUGUCUUCUUUUGAAGCGAAAGCUCGACAA

Figure 4 | An example of the results on CLUSTL W alignments with low 
entropy. Predicted common secondary structures of five sequences in HIV_PBS 
family are shown. (A) The common secondary structure predicted by 
CentroidAlifold with a = 1.0. (B) The common secondary structure predicted by 

RNAalifold. (C) The common secondary structure predicted by CentroidAlifold 
with a = 1.0 for one of the negative control alignments generated by SISSIz. (D) 
The common secondary structure predicted by RNAalifold for one of the 
negative control alignments.

SCI through RAF alignments even for short sequences less than 
200 nt. Therefore, in case that structural alignments might be 
unavailable such as the genome-wide search, C-SCI is practical 
to use and is expected to have as high discriminant power as SCI 
on structural alignments.

4 Di scussion
We proposed centroid-based measurements of secondary structure 
conservation, and examined their performance. The results clearly 
show that C-SCI and C-BPD are more accurate than the original 
SCI and BPD. The discrimination capability of C-SCI for CLUSTAL 
W alignments is more accurate than or comparative to SCI for RAF 
structural alignments. This means that our methods are more suit-
able for genome-wide alignments which are low quality from the 
point of view on secondary structures.

As shown in Figure 2, the original SCI and BPD are inaccurate, 
especially for low entropy regions, that is, highly conserved align-
ments. For a highly conserved alignment, the common secondary 
structure predicted by RNAalifold will be very similar with the indi-
vidual secondary structure predicted by RNAfold for each sequence 
in the alignment. This means that the original SCI and BPD can-
not distinguish structurally conserved alignments from structurally 
non-conserved alignments for low entropy regions because of the 
definition of the original SCI and BPD. Therefore, important genes 

which are highly conserved would be undetectable as ncRNAs even if 
such genes could fortunately be aligned between related species by a 
sequence-based aligner. This is a serious drawback of SCI and BPD.

Figure 2 also indicates that our methods are robust on low 
entropy regions compared with SCI and BPD. For the centroid-
based measurements, we used g

a
 = 1.0 and g

s
 = 6.0, which are 

the weight for base pairs of predicting secondary structures for 
alignments and individual sequences, respectively. The previ-
ous study has shown that almost the best accuracy of predicting 
secondary structures for individual sequences can be achieved at 
g

s
 = 6.0 (Hamada et al., 2009), whereas only highly reliable base 

pairs for alignments might be predicted at g
a
 = 1.0. Therefore, our 

methods can detect only the alignments with reliable base pairs 
as structurally conserved. This results in reducing false detec-
tions of ncRNAs for low entropy regions as shown in Figure 4.
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