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The quest to identify genes that influence disease is now being extended to find genes
that affect biological markers of disease, or endophenotypes. Brain images, in particular,
provide exquisitely detailed measures of anatomy, function, and connectivity in the living
brain, and have identified characteristic features for many neurological and psychiatric dis-
orders. The emerging field of imaging genomics is discovering important genetic variants
associated with brain structure and function, which in turn influence disease risk and fun-
damental cognitive processes. Statistical approaches for testing genetic associations are
not straightforward to apply to brain images because the data in brain images is spatially
complex and generally high dimensional. Neuroimaging phenotypes typically include 3D
maps across many points in the brain, fiber tracts, shape-based analyses, and connectivity
matrices, or networks.These complex data types require new methods for data reduction
and joint consideration of the image and the genome. Image-wide, genome-wide searches
are now feasible, but they can be greatly empowered by sparse regression or hierarchical
clustering methods that isolate promising features, boosting statistical power. Here we
review the evolution of statistical approaches to assess genetic influences on the brain.
We outline the current state of multivariate statistics in imaging genomics, and future direc-
tions, including meta-analysis. We emphasize the power of novel multivariate approaches
to discover reliable genetic influences with small effect sizes.
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INTRODUCTION
Over the past decade, public and private funding institutions have
invested billions of dollars in the fields of human neuroimaging
and genetics (Akil et al., 2010). Recently, researchers have sought
to use quantitative measures from brain images to test how genetic
variation influences the brain. Imaging measures are thought to
have a simpler genetic architecture than diagnostic measures based
on cognitive or clinical assessments (Gottesman and Gould, 2003).
In other words, the penetrance of an individual genetic polymor-
phism is expected to be higher at the imaging level than at the
diagnostic level. As such, imaging-derived traits may offer more
power to detect how specific genes contribute to brain disease.
Genetic analysis of images has been used to discover how suscep-
tibility genes affect brain integrity (Braskie et al., 2011b). Recent
studies have revealed gene effects operating within an entire pop-
ulation, in the form of a 3D brain map (Thompson et al., 2001;
Stein et al., 2010a; Hibar et al., 2011).

Optimally merging these two well-developed fields requires
innovative mathematics and computational methods, guided by
genomics and neuroscience. Imaging genetics is still a nascent
field, and many studies are relatively simplistic – they generally
test how a single genetic variant, or a small set of such variants
(usually single nucleotide polymorphisms, or SNPs) are associ-
ated with a single summary measure of the brain. These studies
begin to bridge the gap between the two fields, but do not take full
advantage of advanced methods from either field, which can sur-
vey the entire genome or allow an image-wide search. By contrast,

multivariate statistical methods such as machine learning and
sparse regression can handle high dimensional datasets. Many of
these are being adapted to analyze a range of brain processes and
biological markers of disease.

In this review, we summarize the recent evolution of imaging
genetics, from candidate gene studies to multilocus methods and
genome-wide searches to genome-wide, image-wide searches. We
explain how images are used in different ways, ranging from sin-
gle region-of-interest (ROI) methods – that assess the volume or
shape of a specific brain region, such as the hippocampus – to
voxelwise approaches that survey the whole brain at once in 3D.
In these efforts, multivariate, “multilocus” techniques can model
how several genetic variants affect the brain at once. Specialized
approaches – such as sparse coding methods – can simultaneously
handle the high dimensionality and high degree of correlation
observed across the genome and in image-derived maps.

CANDIDATE GENE STUDIES
In studies that scan a large number of patients or controls, candi-
date gene studies have often been used to assess genetic effects
on the brain. This approach is appealing as one can test bio-
logically plausible hypotheses and determine how specific, well-
studied genetic variations affect brain structure and function.
Early studies, for instance, explored how genes related to serotonin
transport affected measures extracted from single-photon emis-
sion computed tomography (SPECT) and functional magnetic
resonance imaging (fMRI; Heinz et al., 2000; Hariri et al., 2002).
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Serotonin’s role in neurotransmission and neuromodulation – and
the well-known anatomy of the monoamine systems – made it
possible to frame and confirm testable hypotheses for pertinent
regions such as the raphe nuclei and amygdala (Munafo et al.,
2008).

Candidate gene studies, such as those above, may assess a single
measure derived from a specific ROI in the image. This may be the
whole brain, or a subregion such as the gray matter, or the volume
or mean activation of a subcortical region. More recently, voxel-
by-voxel searches have been conducted to assess candidate gene
effects throughout the whole brain in 3D. This unbiased search
across the brain makes no prior assumptions on which regions
may be affected. Statistical maps are also widely used in neu-
roimaging. Spatial statistics, such as principal components analysis
(PCA) or ICA, may also be performed for dimension reduction,
and multiple comparisons corrections, such as the false discov-
ery rate (FDR) method, can help to decide if a pattern of gene
effects is significant across the voxels searched. For example, Ho
et al. (2010) investigated the effects of a proxy SNP in the fat
mass and obesity-associated (FTO) gene reliably associated with
increased risk for obesity (rs3751812; Frayling et al., 2007) on
brain structure. They used MRI along with tensor-based mor-
phometry (TBM), to evaluate 206 healthy elderly subjects. FTO
risk allele carriers had lower frontal and occipital lobe volumes
(Figure 1). In such studies, maps of statistical associations are
created by performing separate association tests at each imag-
ing voxel in the brain. As the number of statistical tests is very
large, a standard correction for multiple comparisons can be used,
such as the FDR method (Benjamini and Hochberg, 1995) or its
more advanced variants such as topological FDR (Chumbley et al.,
2010), which consider the geometry of the effects. These correc-
tions assess how likely it is that the overall pattern of associations
could be observed by chance. Voxel-based analyses may also be
informed by prior hypotheses: ROI may be defined as search
regions, such as the temporal lobes, to include prior informa-
tion on the expected location or patterns of effects (Stein et al.,
2010a).

Brain imaging measures used in genetic studies should ide-
ally be highly heritable and be genetically related to a biological
process affected by genetic variation, such as a disease process
(Gottesman and Gould, 2003; Glahn et al., 2007; Winkler et al.,
2010). Some argue that the use of imaging endophenotypes should
boost power to detect genetic variants that have reliable but
small effects on disease status (Meyer-Lindenberg and Weinberger,
2006). One neuroimaging modality that shows great promise in
candidate gene studies is diffusion tensor imaging (DTI), which
assesses the fiber integrity of the brain’s white matter. DTI is
based on the observation that myelination restricts water diffu-
sion, and disease processes typically increase water diffusion across
cell membranes (Beaulieu, 2002). Some DTI-derived measures,
such as the fractional anisotropy (FA) of diffusion, are widely
accepted as measuring brain integrity. FA is highly heritable (Chi-
ang et al., 2009; Kochunov et al., 2010) and is consistently altered
in a range of developmental and psychiatric disorders (Thomason
and Thompson, 2011). Candidate polymorphisms already associ-
ated with brain disorders may be surveyed to discover associations
with maps of DTI parameters such as FA. One recent DTI study

of young healthy adults (Braskie et al., 2011a), studied the vox-
elwise effects of the rs11136000 SNP in the recently discovered
Alzheimer’s disease (AD) risk gene, CLU. Significant associations
were detected in several anatomical regions that undergo atro-
phy in AD (Figure 2). In similar candidate gene studies using
DTI, other genes such as BDNF (Chiang et al., 2011a) and COMT
(Thomason et al., 2010) have been found to influence white matter
structure, with carriers of one variant showing consistently higher
or lower FA.

GENOME-WIDE ASSOCIATIONS WITH SINGLE IMAGING
MEASURES
Candidate gene studies have successfully discovered patterns of
brain differences associated with genetic variants whose function
is relatively well-known (such as ApoE, for example – a risk gene
for late-onset AD; Shaw et al., 2007). The choice of a candidate
gene, however, requires a strong prior hypothesis, and most of
the genetic determinants of the highly heritable imaging measures

FIGURE 1 | p-values (corrected using the false discovery rate method;

left panel) and corresponding regression coefficients (right) show the

statistical associations between a candidate single nucleotide

polymorphism in the FTO gene (which is associated with higher risk of

obesity) and tensor-based morphometry maps derived from

anatomical MRI scans of the brain. Significant associations with regional
brain volumes are detected in the occipital and frontal lobes. Clearly, if
other regions had been specified in advance as the target of study,
association effects may have been missed. Adapted from Ho et al. (2010).

FIGURE 2 | Corrected p-values (A) and regression coefficients (B) are

shown for the voxelwise effects of a candidate polymorphism in the

CLU gene – a highly prevalent Alzheimer’s susceptibility gene – on

fractional anisotropy maps derived from DTI scans of 398 young

adults. The axial slice shows the extensive influence of the genetic variant
on white matter structure. Adapted from Braskie et al. (2011a).
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(connectivity or cortical thickness, for example) are unknown.
In most candidate gene studies in imaging, there is a correction
for multiple comparisons to control the rate of false discoveries
across the image, but this does not take into account the genetic
variant tested, or the fact that it could have been selected from a
wide list of possibly associated genes. In genetics, and by exten-
sion imaging genetics, there is a high risk of false-positive findings
unless appropriate corrections are made. Moving beyond candi-
date gene studies to an unbiased search of the whole genome clearly
requires an appropriate genome-wide significance criterion. Oth-
erwise,many false-positive associations will be reported that would
not be replicated in the future (Ioannidis, 2005).

Genome-wide association (GWA) studies typically assess asso-
ciations between hundreds of thousands of SNPs and a phenotype
of interest (such as a disease, or a specific image-derived mea-
sure). GWA studies have discovered hundreds of common risk
loci for diseases and traits in recent years (Hindorff et al., 2009).
GWA studies are frequently conducted for discrete, case–control
phenotypes, such as the diagnosis of a specific disease (such as
AD or schizophrenia vs. healthy control). These studies, however,
are limited as participants do not always fall clearly into unique
diagnostic categories, and may vary in dimensions not relevant
to disease (Pearson and Manolio, 2008). For neuropsychiatric dis-
orders in particular, symptoms expressed by members of specific
diagnostic groups may be highly heterogeneous – and there may
also be substantial co-morbidity and overlap in symptom profiles
across disorders (Psychiatric GWAS Consortium Coordinating
Committee et al., 2009; Hall and Smoller, 2010).

Measures derived from brain images in principle are closer
to the underlying biology of gene action, offering an alternative
target for genome-wide searches, by serving as intermediate phe-
notypes or endophenotypes for GWA studies (Gottesman and
Gould, 2003; Hall and Smoller, 2010). Several imaging GWA scans
have been published: Potkin et al. (2009b) identified SNPs in two
genes (RSRC1 and ARHGAP18) that showed associations with a
blood-oxygen-level dependent (BOLD) contrast measure from a
brain region implicated in schizophrenia. Similarly, Stein et al.
(2010a) discovered a SNP in the GRIN2B gene (rs10845840) and
an intergenic SNP (rs2456930) associated with an MRI-derived
TBM) measure of temporal lobe volume in 740 elderly subjects
from the AD Neuroimaging Initiative. In these and other stud-
ies, linear regressions are used to assess the additive or dominant
allelic effect of each SNP, after adjusting for covariates such as
age and sex, and the confounding effects of population stratifica-
tion (e.g., Potkin et al., 2009a). This yields p-values assessing the
evidence for the association of each SNP with the imaging sum-
mary chosen. The overall significance of any one SNP effect is then
assessed through a form of genome-wide correction for multiple
comparisons. Commonly, a nominal p-value less than 5 × 10−8 is
used.

The GWA study design has been extended to analyze whole
images, but one of the shortcomings of all GWAS studies is their
limited power (or alternatively, the large sample sizes needed) to
detect relevant gene variants. Most SNPs affecting the brain have
modest effect sizes (often explaining <1% of the variance in a
quantitative phenotype). Meta-analysis can provide added statis-
tical power to discover variants with small effects. Replication, and

meta-analysis in particular, have been widely embraced as a way to
aggregate evidence from multiple genetic studies, including stud-
ies of disease risk, and normally varying traits such as height (de
Bakker et al., 2008; McCarthy et al., 2008; Zeggini and Ioannidis,
2009; Yang et al., 2010).

Even so, most imaging GWA studies consider under a
thousand subjects, so are limited in detection power. This
led many researchers in the field to band together to search
for relevant genetic associations with imaging traits meta-
analytically, in many large samples. One promising initiative is
called Enhancing Neuro Imaging Genetics through Meta-Analysis
(ENIGMA) and is currently accepting research groups who want
to become involved in meta-analytic imaging genomics projects
(http://enigma.loni.ucla.edu/). The ENIGMA pilot project is a
large meta-analysis to discover genes associated with hippocampal
volume on brain MRI in over 9,000 subjects scanned by 21 research
centers (The ENIGMA Consortium, 2011). Future imaging genet-
ics studies may rely on large meta-analyses and international
collaborations to overcome the low power and relatively small
effect sizes. However, some genetic associations can be found and
replicated without vast meta-analytic approaches like ENIGMA.
For example, Stein et al. (2011) discovered and replicated an asso-
ciation between caudate volume and the SNP rs163030 located
in and around two genes, WDR41 and PDE8B. These genes are
involved in dopamine signaling and development; a Mendelian
mutation in one leads to severe caudate atrophy. Similarly, Joyner
et al. (2009) replicated an association with cortical surface area in a
common variant (rs2239464) of the MECP2 gene, which is linked
to microencephaly and other morphological brain disorders.

GENETIC ANALYSIS OF MASS UNIVARIATE IMAGING
PHENOTYPES
Studying a single imaging measure with a genome-wide search is as
limited as picking a single candidate gene from the entire genome –
it may not fully reflect how a given genetic variant influences the
brain, or it may miss an important effect by being too restrictive.
Important links may be overlooked if a gene variant influences a
brain feature present but not measured in the images. To broaden
the range of measures surveyed in each image, Shen et al. (2010)
studied patients with AD and mild cognitive impairment (MCI)
using whole-brain voxel-based morphometry (VBM; Good et al.,
2001) and split the brain into 142 cortical and subcortical ROIs
using the segmentation software package FreeSurfer (Fischl et al.,
2002). The VBM measure within each ROI was averaged for each
subject and those values were used as traits for GWA scans. One
SNP, rs6463843, from the NXPH1 gene, was significantly associ-
ated with gray matter density in the hippocampus, and had broad
morphometric effects in a post hoc exploratory analysis. While this
study found plausible results, the computation of summaries from
ROI may miss patterns of effects that lie only partially within the
chosen ROI. As such, a combination of map-based and ROI-based
methods seems ideal.

Some researchers have combined unbiased tests of associa-
tion across the genome with unbiased searches of the entire
brain, instead of relying on summary measures derived from
ROI. Combining GWA scans with an image-wide search is com-
putationally intensive, requiring new methods to handle the

www.frontiersin.org October 2011 | Volume 2 | Article 73 | 3

http://enigma.loni.ucla.edu/
http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Hibar et al. Genetic analysis of brain images

high dimensionality and multiple statistical comparisons. Three
dimensional brain images may contain over 100,000 voxels, and a
completely unbiased search may test up to one million SNPs for
association at each voxel. This is extremely computationally inten-
sive, but can be completed in a feasible time frame if the process
is parallelized. Stein et al. (2010b) performed a full GWA scan at
each voxel in maps of regional brain volume calculated by TBM
(Leow et al., 2005). Sixteen billion tests of association were con-
ducted – in a so-called “voxelwise genome-wide association study”
(vGWAS). To accommodate the huge number of statistical tests
performed, only the most highly associated SNP at each voxel was
stored. The p-value distribution for the top SNP was modeled as
a beta distribution, Beta(1, n), where n is an estimate of the effec-
tive number of independent tests performed (Ewens and Grant,
2001). The resulting distribution of minimum p-values across the
genome, assembled from voxels across the image, was transformed
into a uniform distribution in the null case for multiple compar-
isons correction across the image. FDR was used to correct for
multiple comparisons across the image,and to assess whether cred-
ible effects had been detected (Benjamini and Hochberg, 1995).
Several top SNPs were associated with moderate regional brain
volume differences; many were in genes that are expressed in the
brain (Figure 3). However, no SNPs passed the strict correction for
multiple comparisons. The Stein et al. study was a proof of concept,
showing that a completely unbiased search of the genome is fea-
sible with imaging phenotypes. However, the huge correction for
multiple comparisons across the image and genome are practically
insurmountable unless the effect size or cohort size is very large. In
addition, the vGWA study required 27 h when spread across 500
CPUs; this is more computational power than most researchers
typically have access to. Clearly, an optimal balance must be made
between pure discovery methods,unconstrained by prior hypothe-
ses, and those that invoke prior biological information to boost
power and reduce the multiple comparisons correction.

FIGURE 3 |The five most highly associated SNPs identified by vGWAS

are shown on slices of an averaged brain MRI template, indicating

regions where these SNPs were the most highly associated out of all

SNPs (in purple). Coordinates refer to the ICBM standard space, and the
cohort is the ADNI sample. Adapted from Stein et al. (2010a).

MULTIVARIATE IMAGING GENETICS METHODS
Multivariate methods can be used to assess the joint effect of
multiple genetic variants simultaneously, and are widely used in
genetics (Phillips and Belknap, 2002; Gianola et al., 2003; Can-
tor et al., 2010). For example, set-based permutation methods use
gene annotation information and linkage disequilibrium values to
group univariate p-values from traditional GWA studies into gene-
based test statistics (Hoh et al., 2001; Purcell et al., 2007). Set-based
approaches use prior information on gene structure to incorpo-
rate all genotyped SNPs in a given gene into a single test statistic.
This can offer, in some cases, greater power than univariate statis-
tical tests to detect SNP effects. Combining univariate p-values
into a single gene-based test also reduces the total number of
tests performed, alleviating the multiple comparisons correction.
It can also aggregate the cumulative evidence of association across
a gene block to account for allelic heterogeneity (Hoh et al., 2001).
Individual SNP p-values may not achieve the genome-wide signifi-
cance level for a traditional GWA study (nominally p < 5 × 10−8),
but if several SNPs in the same LD block show moderate asso-
ciation, the combined evidence for association may be enough
to beat a gene-wide significance level (nominally p < 5 × 10−6).
For example, one study examined SNPs from the SORL1 gene for
association with hippocampal volume in healthy elderly controls
(Bralten et al., 2011). While they did not find evidence for asso-
ciation of individual SNPs in a discovery and replication dataset,
a gene-based test found evidence of association in both datasets.
Some set-based statistics may be derived from the separate p-values
from the individual univariate tests, enabling post hoc analysis of
published studies. A major issue in applying set-based statistics
in imaging genetics is that the permutation procedure applied
across SNP groupings would be very computationally intensive.
Set-based methods are currently not feasible to apply at >100,000
voxels, as a single gene test takes around 5 min (or 22.8 years to test
a single gene at every voxel of the full brain on one CPU). In addi-
tion, combining SNPs by p-value may miss an important effect
where a set of SNPs from the same gene have moderate covari-
ance, but explain different portions of variance in the phenotype.
In other words, if they were considered together in the same model,
the overall variance explained may be greater than its univariate
significance level would imply.

An alternative to set-based methods is to group SNPs into a
single statistical model and then test that model for overall asso-
ciation. One classical example of this strategy is multiple linear
regression (MLR). However, a problem with applying MLR to
genetic data is that SNPs tend to be highly correlated, as they
co-segregate in haplotype blocks (Frazer et al., 2007). The MLR
is highly sensitive to collinearity among predictors; the inversion
step in calculating regression coefficients involves a matrix that is
not full rank as the variables are collinear. This leads to wildly inac-
curate Beta value estimates and SE (Kleinbaum, 2007). To avoid
collinearity in multivariate analysis of genetic data, dimensionality
is often reduced using sparse regression methods, such as penalized
or principal components regression (PCReg).

Some data reduction methods compute a new set of statisti-
cally orthogonal variables, for inclusion in a classical MLR model.
A data reduction method such as PCA transforms a matrix of
SNP predictors into a new orthogonal set of predictors, ranked in
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descending order based on the amount of the variance in the data
that each component explains (Jolliffe, 2002). The output of PCA
is typically a matrix that explains the same amount of the overall
variance as the original predictors, but without the collinearity.
As the individual components are sorted by amount of variance
they explain, the resulting statistical models can strike an efficient
balance between the total variance explained (the number of com-
ponents to include) and the number of degrees of freedom used
(model complexity increases as more variance components are
included).

One method, known as PCReg first performs PCA on a set
of predictors. It then builds a multiple partial-F regression model
where the number of components included is based on the desired
proportion of variance to be explained (Massy, 1965). Wang and
Abbott (2008) used PCReg to group SNPs into a single multivari-
ate test statistic. Hibar et al. (2011) extended this method to be
applicable to images, conducting gene-based tests at each voxel
with PCReg. They used an automated method (Altshuler et al.,
2005; Hemminger et al., 2006; Hinrichs et al., 2006) to group
SNPs based on gene membership, resulting in 18,044 unique genes.
Using the set of SNPs in each individual gene as predictors, Hibar
et al. used PCReg to assess the degree of association for every gene
at every voxel in the full brain. The resulting method was termed a
voxelwise“gene-wide”association study vGeneWAS. By compress-
ing the SNPs into gene-based tests, the total number of tests was
reduced to around 500 million tests from the 16 billion tests in
vGWAS. However, even with this much smaller number of tests,
no genes identified passed correction for multiple comparisons.
The most highly associated gene, GAB2, showed strong credibility
as it is consistently associated with neurodegenerative disorders
such as AD (Reiman et al., 2007). In addition, Hibar et al. (2011)
simulated full brain parametric maps using statistical priors based
on their observed data to show that observed clusters of associ-
ated genes were larger than would be expected by chance. This
provides evidence that vGeneWAS is a valid and powerful multi-
variate method to detect gene effects in full brain neuroimaging
data. A head-to-head comparison of vGWAS and vGeneWAS was
also performed on the same datasets. The cumulative distribution
function (CDF) plots of p-values for each study show that the FDR
in the multivariate vGeneWAS was controlled at a lower rate than
in the mass univariate vGWAS method (Figure 4).

An extension of PCReg and other data reduction techniques
is to perform data reduction on both the genome and the 3D
brain imaging traits. One approach that appears to be promis-
ing is parallel independent components analysis (Parallel ICA or
PICA; Liu et al., 2009). Parallel ICA works by first performing
PCA on a set of SNPs and also a different PCA on a voxelwise
imaging measure. Next, a modified version of ICA is applied to
both modalities and independent factors from each modality are
chosen simultaneously by a correlation measure (hence “parallel”
ICA). Selecting imaging features and SNPs together can be more
powerful than mass univariate tests of voxelwise imaging traits as
the total number of tests is greatly reduced. For example, Liu et al.
(2009) used pre-processed fMRI maps from 43 healthy controls
and 20 schizophrenia patients and a pre-selected set of 384 SNPs
chosen for their potential associations with schizophrenia. Via a
t -test, Liu et al. (2009) demonstrated that genetic components

FIGURE 4 | Cumulative distribution function (CDF) plot of corrected

p-values from vGeneWAS (Hibar et al., 2011) and vGWAS (Stein et al.,

2010b) analyses. vGWAS could only be controlled for false-positives at
q = 0.50 threshold, while vGeneWAS could be controlled for false-positives
at q = 0.30. The difference in q-value thresholds for the CDF of the p-values
obtained from both studies on the same dataset suggests that the
gene-based analysis is more powerful, though neither study controlled the
false-positive rate at the nominal q = 0.05 threshold.

(p = 0.001) and fMRI BOLD (p = 0.0006) response loadings from
parallel ICA were able to distinguish healthy subjects from patients
with schizophrenia, with reasonable accuracy. Similar approaches
have been applied to structural MRI (Jagannathan et al., 2010). The
PICA method is quite promising, but several challenges remain.
As Parallel ICA requires an initial round of PCA, it is difficult to
recover which SNP sets are contributing to a given component
and similarly it is difficult to localize the 3D spatial effect con-
tributing to each component from the image. This may make it
difficult to interpret and replicate specific findings. In addition, it
is not clear how data reduction methods will perform with whole
genome and full brain data. Liu et al. (2009) and Jagannathan
et al. (2010) both performed considerable downsampling of the
images, reducing the total number of voxels included in the Par-
allel ICA model. In addition, both studies tested only small sets
of pre-selected SNPs instead of data from the full genome, or a
standard 500,000 SNP genome-wide scan. The power of Parallel
ICA to find common components may be greatly reduced if there
is additional noise from genome-wide data. Liu et al. (2009) found
that as the amount of random noise increased, so did the num-
ber of independent components. As the number of independent
components increases, the power to detect associations decreases.
Also querying full brain phenotypes for effects of genetic vari-
ants, another recently proposed multivariate method by Chiang
et al. (2011b), identified patterns of voxels in a DTI image with
a common genetic determination, and aggregated them to boost
power in GWA (Figure 5). Approximately 5,000 brain regions were
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FIGURE 5 | Clustering regions of a brain image that have

common genetic determination. In a DTI study of twins, the
known kinship structure made it possible to estimate the genetic
correlation matrix and a “topological overlap (TO)” index matrix.
This was used to gage the similarity of genetic influences on all
pairs of brain regions (A). The 18 largest clusters – parts of the
image with common genetic influences – were selected as
regions of interest (ROIs) for GWAS. By associating the mean white

matter integrity of these regions with genetic variants, a genetic
interconnection network was obtained (B), where each network node
represents a single SNP (colored circles). The figure shows only those SNPs
associated with white matter integrity in at least one ROI with a significance
p-value < 10−5. SNPs whose associations reach genome-wide significance are
colored in red, with their names labeled. White lines indicate that SNPs are
“connected,” i.e., their effects on white matter integrity are strongly
correlated. Adapted from Chiang et al. (2011b).

selected, where genetic influences accounted for >60% of the total
variation of white matter integrity. From these, a 5,000 × 5,000
correlation matrix was obtained. Hierarchical clustering was used
to select the largest clusters, and these voxels were defined to be
ROIs. The mean FAs for these ROIs were then tested for evidence of
association with all SNPs genotyped across the genome. By iden-
tifying a genetic network that influences white matter integrity
over multiple brain regions, Chiang et al. (2011b) were able to
boost power to detect associations between FA in these brain areas
and SNPs from the whole genome. In all, they identified 24 SNPs
with genome-wide significance, which is unusual for a study with
fewer than 1,000 subjects. To ensure the findings are not false-
positives, however, simulations of imaging and genomic data may
be necessary (as carried out by Vounou et al., 2010 see below).

Variants near each other on the genome can be highly corre-
lated due to linkage disequilibrium. This leads to problems if all
variants are included in a standard multiple regression model to
predict the values of a trait. To address this, many new mathemat-
ical methods have been used to handle the high dimensionality in
the genome (a p � n problem) and interactions between genetic
variants. These include penalized and sparse regression tech-
niques, such as ridge regression (Hoerl, 1962), the least absolute
shrinkage and selection operator (LASSO; Tibshirani, 1996), the
elastic net (Zou and Hastie, 2005), and penalized orthogonal-
components regression (Malo et al., 2008; Cho et al., 2009; Lin
et al., 2009; Zhang et al., 2009; Chen et al., 2010). The various
penalty terms (e.g., L1 in LASSO and L2 in ridge) in the regularized
regression methods can incorporate large numbers of correlated
variants with possible interaction terms, in single models. These
methods show high statistical power in analyses with both real

and simulated data. Although these studies are almost invariably
applied to case–control GWA studies, similar approaches may
be applied to imaging phenotypes. Kohannim et al. (2011a), for
instance, implemented ridge regression to study the association of
genomic scanning windows with MRI-derived temporal lobe and
hippocampal volume. They reported boosting of power in detect-
ing effects of several SNPs, when compared to univariate imaging
GWA. One statistical challenge of such sliding-window approaches
is finding optimal window sizes, which can capture the correlation
structure in the genomic data without adding excessive degrees of
freedom to the model. Kohannim et al. considered several fixed,
scanning window sizes (50, 100, 500, and 1000 kbp) in their study,
and found boosting of power in detecting SNPs with different win-
dow sizes for different genomic regions. A more flexible approach
may incorporate information such as the sample size and variant-
specific LD structure into the selection of optimal window sizes
for each genomic region (e.g., Li et al., 2007). This could ensure
that SNPs are not missed due to inappropriate window sizes. In
addition, L1-driven methods, such as LASSO, may provide greater
detection power by selecting sparse sets of genomic variants in
association with imaging measures (Kohannim et al., submitted).
As discussed above, however, multivariate methods can be applied
not only to the genome, but also to the images, which are also high
dimensional and show high spatial correlations. Sparse and penal-
ized models can be useful in these situations as well. Vounou et al.
(2010) applied a sparse reduced-rank regression (sRRR) method to
detect whole genome-whole image associations. They computed a
matrix of regression coefficients, C, whose rank was p (number of
SNP genotypes) times q (the number of imaging phenotypes, or
pre-defined anatomical ROIs in their case). They reduced the rank
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of this large matrix to r, by factorizing the matrix into the product
of a p × r matrix, B, and an r × q matrix,A, and constraining A and
B to be sparse (Figure 6). To evaluate the power of their method
and compare it to that of mass univariate modeling, Vounou et al.
generated realistic, simulated imaging and genetic data. Using the
FoRward Evolution of GENomic rEgions (FREGENE) software,
and the ADNI baseline T1-weighted MRI dataset, they obtained
a simulated dataset, to which they introduced genetic effects in a
number of ROIs. It was not feasible for the investigators to con-
sider all possible genetic effect sizes and sample sizes, but they
were able to show boosted power for all parameter settings they
explored. Setting the desired, reduced-rank r equal to 2 or 3, they
obtained higher sensitivities with sRRR at any given specificity for
a sample size of 500. When they increased the sample size from
500 to 1,000, they noted gains in sensitivities with sRRR, which
were more considerable than the merely linear gains obtained
with univariate modeling. They also demonstrated that boosted
sensitivities obtained with sRRR increase with higher numbers of
SNPs; sensitivity ratios (sRRR/mass univariate modeling) could
be boosted even further to ratios far exceeding 5 (observed with
40,000 SNPs) with numbers of SNPs considered in a typical GWAS
(e.g., 500,000 SNPs). Direct power comparisons between associ-
ation methods on DNA microarray data show that models that
incorporate linear combinations of variables perform better than
those that perform simple data reduction (Bovelstad et al., 2007).
Bovelstad et al. found that the penalized method, ridge regression,
was more powerful than LASSO, PCReg, supervised PCReg, and
partial least squares regression (PLS), when it comes to predicting
survival rates in cancer patients from DNA microarray data. In the
future, direct comparisons of methods on imaging genetics data
could inform the direction of new methods development.

Comprehensive modeling of whole-brain voxelwise and
genome-wide data remains challenging, due to the high

FIGURE 6 | Imaging and genomic data are incorporated into a sparse,

reduced-rank regression model, where regions of interest (ROIs), and

single nucleotide polymorphisms (SNPs) attain sparse coefficients,

simultaneously. This approach can select pertinent SNPs and ROIs. In
simulations, it demonstrates higher power than mass univariate models for
detecting effects of genetic variants. Adapted with authors’ and publishers’
permission from Vounou et al. (2010).

dimensionality of the data. This causes both statistical and
computational problems. Recently, there have been new develop-
ments applying sparse regression methods to genome-wide data;
one such method is iterative sure independence screening (ISIS; Fan
and Lv, 2008; Fan and Song, 2010; He and Lin, 2011). ISIS is an
iterative selection procedure that builds a marginal model using
the cyclic coordinate descent (CCD; Friedman et al., 2010) algo-
rithm with the LASSO and combines it with a conditional model of
interactions based on pairwise correlations. The combined model
has lower dimensionality, but effects of individual SNPs are still
identifiable, as are SNP–SNP interactions. This method appears
to be promising for discovery-based searches of the genome. ISIS
has not yet been applied to brain images, but it should be feasi-
ble. Methods such as ISIS could also be modified to jointly select
imaging phenotypes and genomic data as done by Vounou et al.
(2010) but without first having to select ROI or only a small subset
of SNPs from the genome.

CONCLUSION
The field of imaging genetics started with candidate gene studies,
where hypotheses about gene action on brain structure and func-
tion could be tested in a novel way. More recently, candidate gene
studies have been extended to investigate voxelwise associations
between genetic variants and images of the brain, to map 3D pro-
files of genetic effects without requiring a priori selection of ROI.

To consider the entirety of the genome and discover potentially
new variants, however, GWA studies have been introduced to the
field of imaging genetics. In these studies, quantitative measures
derived from images are considered as intermediate phenotypes,
which are in some respects closer to the underlying biology of
brain disorders and processes of interest. Despite their unbiased
consideration of the whole genome, the standard, univariate GWA
approach considers only one SNP at a time and has several limi-
tations. From a genetic perspective, it does not take into account
the interdependence between genetic variants due to linkage dis-
equilibrium; and in regard to imaging, such studies typically rely
on single summary measures from images, which only weakly
represent the wealth of information in a full 3D scan.

Among the most promising applications of imaging genetics
are those that use sparse methods to reduce the data dimension-
ality. Sparse methods create efficient models, and boost power to
identify patterns of association. A major advantage of penalized
or sparse regression methods is that they accommodate collinear-
ity inherent in the genome and in the images, but they still offer
a familiar regression framework to accommodate covariates and
confounding variables. Penalized regression models may include
a large number of genetic predictors. This may discover genetic
effects undetected by other data reduction methods, such as PICA
and PCReg. For studies of large 3D statistical maps of imaging
phenotypes, methods to penalize the selection of both voxels from
the image and associated genetic variants from the genome seem to
have higher power than related discovery-based methods. Even so,
this is largely an empirical question that depends on the structure
of the true signal. Indeed, Vounou et al. (2010) demonstrated the
increased power of the sRRR method, which favors the selection
of an efficient set of ROI and a reduced number of SNPs has
increased power. A major limitation of penalized methods is that
they may fail to converge on a solution when the data dimensions
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are very high. Even methods designed for p � n problems such as
least angle regression (Efron et al., 2004) tend to fail when given
a full 3D imaging phenotype. This illustrates why current imple-
mentations of penalized regression in imaging genetics often rely
on prior “groupings” of voxels or sliding windows in the genome.
These prior groupings do not appear to be motivated by strong
prior hypotheses, but by limitations in the statistical modeling.
Methods similar to ISIS (Fan and Lv, 2008; Fan and Song, 2010;
He and Lin, 2011) designed for ultra-high dimensional datasets
will likely be useful for future imaging genetics projects.

Once we have a set of validated genetic variants that affect
the brain, multivariate models may be used to combine imaging,
genetics, and other physiological biomarkers to predict outcomes
in patients with brain disorders. The resulting combination of
imaging and genetic data, with other biomarkers, can be used
to predict an individual’s personalized aggregate risk for specific
types of brain disorders. As genomic and proteomic data are added,
prognosis and diagnosis may be possible at an earlier stage or
more accurate than is possible with current biomarkers. Machine
learning algorithms (e.g., decision trees, support vector machines,
and neural networks) have shown promise for making disease

predictions from genomic and proteomic data (Cruz and Wishart,
2007). Similar approaches may be useful in psychiatry research,
and neuroimaging measures such as fiber anisotropy from dif-
fusion imaging may help in making early predictions of brain
integrity from genes. In a recent, preliminary study, our group
incorporated several candidate polymorphisms in a multi-SNP,
machine learning model, to predict personal measures of fiber
integrity in the corpus callosum (Kohannim et al., 2011b). Ide-
ally, by incorporating both genomic and proteomic data from
larger cohorts, one may be able to obtain personalized “scores”
for brain integrity from biomarker profiles. This has consider-
able implications for prevention and early treatment of brain
pathology.
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