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ncRNAs are key genes in many human diseases including cancer and viral infection, as
well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses,
and protists. Until now the identification and characterization of ncRNAs associated with
disease has been slow or inaccurate requiring many years of testing to understand com-
plicated RNA and protein gene relationships. High-throughput sequencing now offers the
opportunity to characterize miRNAs, siRNAs, small nucleolar RNAs (snoRNAs), and long
ncRNAs on a genomic scale, making it faster and easier to clarify how these ncRNAs con-
tribute to the disease state. However, this technology is still relatively new, and ncRNA
discovery is not an application of high priority for streamlined bioinformatics. Here we
summarize background concepts and practical approaches for ncRNA analysis using high-
throughput sequencing, and how it relates to understanding human disease. As a case
study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where
large evolutionary distance has meant difficulties in comparing ncRNAs with those from
model eukaryotes. A combination of biological, computational, and sequencing approaches
has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided
the identification of novel classes. It is hoped that a higher level of understanding of
ncRNA expression and interaction may aid in the development of less harsh treatment
for protist-based diseases.
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INTRODUCTION
The discovery and analysis of ncRNAs has become an important
step in the understanding of the genomics behind human disease.
Genomics in humans has in the past tended to concentrate on
the small percentage (1–2%) of genomic space coding for pro-
teins. Since the vast majority of human ncRNAs lie in non-coding
regions including introns and intergenic spaces, there is a need
for fast and flexible methods of ncRNA identification. ncRNA
classes in general, and in particular microRNAs (miRNAs) and
short interfering RNAs (siRNAs) are of great interest in disease
studies. In some cases miRNAs have been implicated in various
cancers with altered expression levels appearing to be associated
with the genetic alterations seen in malignancies (Ryther et al.,
2003). miRNAs and siRNAs to be important effectors in host–
pathogen interaction networks between humans and their viruses
(Aurrecoechea et al., 2009), most of which use RNA interference
processes. RNA interference (RNAi) has also been raised as an
option for medical treatment of human diseases including cancer
(Garlapati et al., 2011), viruses (Khaliq et al., 2010; Haasnoot and
Berkhout, 2011), and transplantation (Zhang et al., 2011b).

RNA interference in general, is a process where small RNAs
(e.g., miRNAs and siRNAs) are used by a protein macromolecule,
to target and then to cleave transcribed mRNAs, hence “interfer-
ing” with the expression of a targeted gene. There are a number
of different pathways for this interference (Collins and Penny,
2009; Batista and Marques, 2011; Ketting, 2011), with three main

proteins or their like, being typically required. These proteins are
Dicer, Argonaute, and RNA-dependent RNA polymerase (RdRp).
Finding homologs to these proteins in protist species is usually the
first step in determining that RNAi exists in that species. However,
as can be seen in species such as Giardia lamblia and Entamoeba
histolytica, some of these proteins may not contain all the domains
we expect to find (Macrae et al., 2006; Carlton et al., 2007; Batista
and Marques, 2011). It is thus, very likely that protist RNAi path-
ways will differ from their well-studied multicellular counterparts,
and that understanding these differences will enable a far more
efficient use of RNA as a molecular tool.

RNA interference has been used to understand gene expression
levels and the changes that occur at different stages of disease,
different stages of life cycle or development, and differences in
environmental conditions (typically with miRNA studies). Genes
can also be specifically “knocked-out” using gene silencing studies
to investigate the effects of particular parts of metabolic pathways.
This has been done in some protists, in particular Kinetoplasts
where RNAi has been used as a tool in genomic studies for Try-
panosoma brucei (reviewed in Kolev et al., 2011), and to a lesser
extent in Leishmania braziliensis subgenus Viannia (Lye et al.,
2011). The difficulty in protist RNAi research is that the small
RNAs that are used in RNAi (i.e., miRNAs and siRNAs), are not
easily isolated and characterized.

Genomic-wide sequencing is also furthering studies on how
a host species reacts to pathogens in immune and preventative
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responses. One non-protist example is where high-throughput
sequencing was used to characterize miRNA levels and identify
novel miRNAs involved in avian influenza virus (AIV) infection
of chicken (Aurrecoechea et al., 2009). In this study, sequences
were matched not only to genomic sequences but to mature
miRNA sequences previously lodged in miRbase (Finn et al.,
2006), allowing for insertions and deletions of 1–4 nt. Profiling
analysis compared infected and non-infected tissue to identify
miRNAs that changed expression upon infection. Mapping of
the sequences also revealed that many miRNAs are grouped in
clusters on the chicken chromosomes and up- or down-regulated
together. Results from this study suggest that different miRNA
regulation mechanisms may exist on host response to virus infec-
tion with some genes up regulated to aid host immune response
and down regulation of targets to aid inhibition of virus repli-
cation. Different tissues may express different levels of miRNAs.
For example in the Wang et al. study 377 miRNAs were identified
from chicken lung tissue but only 149 miRNAs were identified
from tracheae. Clearly this type of study will soon extend to
the host response to protists. The techniques for analysis will
be similar but will require a greater understanding of the typ-
ical features of the different miRNA classes in the protist of
study.

There are many different classes of ncRNAs found in protists
(Table 1), and only some of these such as miRNAs and siRNAs
and sometimes small nucleolar RNAs (snoRNAs) are involved in
RNAi. Other ncRNAs such as tRNAs and rRNAs are relatively easy
to characterize because they look familiar to those already stud-
ied, but there are classes such as snoRNAs, that are harder to find
and classify because either their sequence or their action, is novel.
Previously, there were two main approaches to ncRNA identifi-
cation (Figure 1). The first, the “traditional” approach, involved

the isolation of expressed RNA in a designated size range, cloning,
sequencing then finally, Northern blotting to confirm size and con-
formational isotopes from RNA modifications. This approach was
costly both in laboratory expenditure and time, and was not very
practical on a genomic scale. The other approach took a sequenced
genome and computationally screened it for candidate ncRNAs,
using mathematical models based on the sequence and struc-
tural characteristics of a class of ncRNA. This second approach,
although it could be applied on a genomic scale, often produced
masses of candidates that would then have to be experimentally
tested by the first approach. Another issue with the computational
approach is that only a single class could be searched at a time,
and one had to know what that class looked like both in sequence
and secondary structure in order to find it. Permitting more flexi-
bility however, results in more false positives, a circumstance that
can quickly overload the computer and its user. High-throughput
sequencing permits the genome-wide sequencing of ncRNAs from
expressed RNA (the power of the first approach), and for rapid
comparison to known classes (the power of the second approach),
as well as the characterization of novel ncRNAs (Figure 1). The
disadvantage of this type of sequencing is that it demands a dif-
ferent type of computational analysis than previously used with
ncRNAs (see later).

Short interfering or silencing RNAs (siRNAs) are similar to
miRNAs but are produced from double stranded precursors
instead of folded single-stranded precursors. What makes this
mechanism of great interest is that the gene silencing is highly
specific, and also highly potent in where only a few copies of an
small RNA (22–25 nt long) can demonstrate wide ranging affects.
In plants, they have been highly investigated for their role in virus
response (Ridanpaa et al., 2003; Pantaleo, 2011), but in humans
and mice they are under intense study for therapeutic medicine

Table 1 | Summary of ncRNA discovery in human pathogenic protists.

Protist Lineage Disease ncRNAs+ RNAi proteins Functional RNAi

Giardia lamblia Diplomonad Giardiasis miRNA, siRNA Dicer-like, Argonaute, RdRp

(Macrae et al., 2006)

Not proven natively with

miRNA but long dsRNA

shown to control specific

gene down regulation

(Rivero et al., 2010)

Trichomonas vaginalis Parabasalid Trichomoniasis miRNA, siRNA Dicer-like, Argonaute, RdRp

(Carlton et al., 2007)

Yes (Lin et al., 2009)

Plasmodium falciparum Apicomplexa Malaria – Absence of proteins with

a PAZ or piwi domain (Baum

et al., 2009)

No (Baum et al., 2009)
dsRNA triggering down

regulation (see review in

Kolev et al., 2011)

Entamoeba histolytica Amebozoa Amoebic dysentery siRNA Argonaute, Dicer-like*, RdRp Yes (Reviewed in Zhang

et al., 2011a)

Trypanosoma spp. Kinetoplastid T. brucei (sleeping

sickness), T. cruzi

(Chagas disease)

siRNA, miRNA

(T. gondii )

Argonaute, Dicer-like (not

in T. cruzi )

Yes in T. brucei but not in

T. cruzi (reviewed in Lye

et al., 2011)

Leishmania spp. Kinetoplastid Leishmaniasis siRNA Argonaute, Dicer-like Some species (reviewed

in Lye et al., 2011)

+These protists all contain RNase P RNA, RNase MRP RNA, tRNAs, rRNAs, snRNAs, and snoRNAs; ∗atypical protein structure.
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FIGURE 1 | Genomic approaches to ncRNA identification. Both the
traditional laboratory approach and the more recent high-throughput
sequencing approach begin with the isolation of total RNA from culture,
followed by size selection of the RNA by excising a given band from a
polyacrylamide gel. Under the traditional approach the excised RNA is
cloned then sequenced by Sanger Sequencing to obtain candidate miRNA
sequences. With High-throughput sequencing the RNA is sequenced
directly without cloning and bioinformatics is used to select the best
candidates. Computational approaches do not begin with biological
samples but instead use mathematical models based on known ncRNAs to
search an already sequenced genome. Both the traditional and
computational approaches require that candidate gene expression be
confirmed by additional laboratory work. Key: Molecular biology stages are
represented by the flask icon. All other stages use RNA genomic and
bioinformatics procedures.

(recently reviewed in Burnette et al., 2005; Khaliq et al., 2010;
Vaishnaw et al., 2011). In an example, a combination of host and
viral genes has been used as a siRNA-based treatment for hepati-
tis C virus (HCV; Ashfaq et al., 2011). Developing RNAi based
treatments for HCV are an important are of research, since there
is currently no vaccine available for HCV due to a high degree of
strain variation. Another factor is that the current drug treatment
(with a pegylated interferon α/ribavirin combination) is costly,
has significant side effects and is not always effective (Ashfaq et al.,
2011). RNAi offers new and less harsher types of treatment espe-
cially for viral diseases, but there are still challenges in this area in
systematic siRNA delivery and distribution to appropriate tissue
(Vaishnaw et al., 2011).

Small nucleolar RNAs typically have roles in the modification
of other ncRNAs such as rRNA, small nuclear RNAs (snRNAs),

and possibly even mRNAs (Ridanpaa et al., 2003; Bompfunew-
erer et al., 2005; Gardner et al., 2010; Khanna and Stamm, 2010).
snoRNAs are between 60 and 150 nt long and fall into two main
classes based on conserved sequence motifs, H/ACA (sometimes
called SNORAs), and C/D (sometimes called SNORDs). snoRNAs
may have a high potential for use as markers for diseases either by
having mutated sequences or differential expression. In one exam-
ple some snoRNAs were discovered to have a higher expression in
some lung cancer cells than in non-cancerous cells, and thus have
a potential as markers for the early detection of this cancer (Liao
et al., 2010).

The examples above focus on how ncRNAs from the host can
be used to study gene expression from healthy, diseased, and some-
times treated tissue. A second type of study looks at the ncRNAs
from the pathogen itself to understand where the pathogen could
be vulnerable and hence open to new treatment options. This
is where there is less work published since until now the dis-
covery and characterization of ncRNAs in most pathogens was
slow and laborious. Until very recently ncRNAs in prokaryotes
(often called “small RNAs”) were not commonly thought of as
being important in pathogenic studies. The characterization of
the CRISPR system and small RNA pathways (e.g., Hfq-binding
sRNAs) has made us more aware that an RNA-based backbone
exists just as much in prokaryotes as in eukaryotes (for review
see Biggs and Collins, 2011; Collins and Biggs, 2011). Eukaryotic
pathogens (e.g., nematodes, yeast, and protists) have received a lit-
tle more attention but lag behind our understanding of host (typ-
ically human and mice) ncRNAs (review by Batista and Marques,
2011).

RNA interference in the protist T. brucei (causative agent of
sleeping sickness) was characterized early on as functional (Ngo
et al., 1998), only months after it was demonstrated in the nema-
tode Caenorhabditis elegans (Fire et al., 1998; reviewed in Kolev
et al., 2011). However, RNAi mechanisms can be lost from a lin-
eage, as demonstrated in some yeast (Drinnenberg et al., 2009,
2011) and some trypanosomatids (Lye et al., 2011). Thus, even
though RNAi is considered to be an ancient system that was
likely to be present in the last common ancestor of eukaryotes
(Collins and Chen, 2009), it does not follow that it will be still
be present. Further studies (reviewed in Kolev et al., 2011) have
revealed that RNAi in trypanosomatids loss in multiple lineages are
in most cases correlated with the lack of mobile elements (Kolev
et al., 2011; Lye et al., 2011). The lack of RNAi but presence of
mobile element-like sequences in one lineage of trypanosomatids
T. cruzi falls against that trend (Kolev et al., 2011) indicating that
there is much more to be learned about the evolution of RNAi
mechanisms.

One of the issues contributing to the slow progress in under-
standing protist RNAi is that many of these pathogens (and
especially the protists) do not yet have well annotated genomes.
Others may have genomes sequenced (some fungi and nema-
todes) but genes are annotated based on sequence similarity
to the few very well known genomes. ncRNA genes change
rapidly and mis-annotation is common. Very small genes such
as those for miRNAs and siRNAs can be extremely hard to
characterize based on sequence similarity. Hence, the arrival
of high-throughput sequencing has enabled these ncRNAs to
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be tackled in a slightly easier manner, but it has meant the
incorporation of more bioinformatics into these projects. High-
throughput sequencing of pathogens and especially protists in
practice uses the power of computational biology combined
with the expression from real RNA. With this technology we
can look at miRNAs, siRNAs, snoRNA, and even longer ncR-
NAs from a pathogenic protist and potentially link some of
them to host responses. However, first we have to characterize
the ncRNA classes from our species of choice. Here we will use
the two pathogenic protists, G. lamblia and Trichomonas vagi-
nalis as examples to highlight the issues and possible solutions
with high-throughput small RNA sequencing. It should be noted
however, that these issues and solutions are not confined to pro-
tist genomics, but are also generally applicable to other species
including prokaryotes.

ncRNAs FROM PATHOGENIC PARASITIC PROTISTS
Pathogenic protists are responsible for a host of human dis-
eases that affect millions worldwide, but not surprisingly ncRNA
research in these pathogens has lagged behind protein-based
research. Over the last decade, there are two protist species, G.
lamblia and T. vaginalis that are of interest in the characterization
of their RNAs because of their evolutionary distance from other
eukaryotes (Collins and Penny, 2005, 2009; Collins and Chen,
2009; Chen et al., 2011). G. lamblia is a Diplomonad anaerobic
protist that infects humans and other mammals. When ingested,
the cysts hatch into trophozoites in the small intestine causing
diarrhea and growth hindrance in children. It is a significant
pathogen for the immune-compromised and those in developing
countries affected by malnutrition. The most common treatment
for giardiasis is Metronidazole (Flagyl), which unfortunately has
unpleasant side effects including nausea and dizziness, but more
importantly has potential carcinogenic properties. Metronidazole
is not approved by the FDA in the USA for treatment in human
medicine for this reason.

Trichomonas vaginalis is an anaerobic Parabasalid protist that
causes the sexually transmitted disease trichomoniasis in humans.
Despite its name, infections are common in men but are typi-
cally asymptomatic. In women trichomoniasis is symptomatic as
an STD, but it can also lead to adverse pregnancy outcomes and
be associated with an increased risk of human immunodeficiency
virus (HIV) transmission (Cudmore et al., 2004). Trichomonas dif-
fers from Giardia in that it does not have a cyst stage, so infection
is directly by the trophozoites being transferred from patient to
patient. Treatment of trichomoniasis also includes Metronidazole,
but studies have shown at least 5% of cases are resistant to this
drug (Cudmore et al., 2004).

Other pathogenic protists include Plasmodium falciparum
(malaria), E. histolytica (amebic dysentery) and T. brucei (sleeping
sickness) and T. cruzi (Chagas disease). Although drug treatments
for all these diseases are available there is still a need for further
development, especially for Giardia and Trichomonas where prob-
lems with treatment persist. Thus, the use of ncRNAs and RNAi is
especially applicable to eukaryotic pathogens such as Giardia and
Trichomonas as both a tool and a potential treatment option.

High-throughput sequencing has been used to assemble protist
genomes. Giardia and Trichomonas were “completed” before this

technology appeared meaning that their assembly was slow and
most is still in the form of large pieces (supercontigs). This should
not put any researcher off using such genomes since genomes
like this are very usable for high-throughput small RNA studies.
From a number of studies, all using these annotated genomes,
we can see that Giardia and Trichomonas like their distant mul-
ticellular human host contain a rich collection of ncRNAs (Chen
et al., 2007, 2008, 2009). These include RNase P (Piccinelli et al.,
2005), RNase MRP (Chen et al., 2011) snoRNAs (Yang et al., 2005;
Chen et al., 2007, 2011), spliceosomal snRNAs (Chen et al., 2008),
miRNAs (Saraiya and Wang, 2008; Chen et al., 2009; Zhang et al.,
2009), and antisense transcripts (Teodorovic et al., 2007). Studies
on Trichomonas ncRNAs show that the currently known ncRNAs
also exhibit typical features of eukaryotes (Piccinelli et al., 2005;
Simoes-Barbosa et al., 2008; Lin et al., 2009; Smith and John-
son, 2011) including RNase P (Piccinelli et al., 2005), RNase MRP
(Piccinelli et al., 2005), snRNAs (Simoes-Barbosa et al., 2008),
and some snoRNAs (Chen et al., 2007, 2009, 2011). However,
some classes of ncRNAs (especially the snoRNAs) contain some
features that are not typical. It is high-throughput sequencing
that offers the opportunity to investigate these novel classes of
ncRNA.

HIGH-THROUGHPUT SEQUENCING AND ANALYSIS
High-throughput sequencing of small RNAs requires an RNA
sample of high quality and reasonably high concentration. An
issue with many protists is that they are not culturable so RNA is
sometimes extracted from patient samples. Therefore, obtaining
enough clean and uncontaminated RNA for genomic sequencing
is sometimes not easy or possible unless from a culturable strain.
Additionally, lab strains carry the risk that they may contain genetic
differences from their clinical relatives. Advances in sequenc-
ing protocols have meant that the amount of RNA required for
sequencing (genomic, transcriptomic, and to some extent small
RNA) is reduced, and it is hoped that with further improvements
in protocols, more protists will be sequenced. Once a sample of
RNA is obtained, then the next stage is to decide which ncRNAs are
going to be sequenced. A sample of total RNA contains some RNAs
that can drown out any underrepresented ncRNAs in samples so
mRNAs, rRNAs, and tRNAs must be removed as much as possi-
ble. A typical procedure is to run the sample on a polyacrylamide
gel, then excise a band corresponding to the size for sequenc-
ing (e.g., miRNAs, siRNAs:19–30 nt, snoRNAs:50–200 nt; Chen
et al., 2009). Gel isolation, although contributing to the reduction
in the amount of RNA available for sequencing, offers flexibility
and selectivity in the class of ncRNA being examined. Overall,
small RNA sequencing experiments are individualistic with all the
advantages and disadvantages that come with the use of developing
technology.

The actual sequencing of small RNA samples is typically per-
formed by the operator of the technology, whether at a ser-
vice provider or in-house facility. There are currently choices of
sequencing platforms for high-throughput sequencing, and highly
likely that there will be even more choice in the near future. For
small RNA sequencing the platform selected will depend on the
length of the ncRNA to be sequenced. Some platforms such as
the Roche 4541 produce long sequences (400–1000 nt) which is
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really only suitable if trying to sequence very long ncRNAs. Small
RNAs can be done on this platform but it is not optimized for
this type of work. Presently available platforms that generate short
sequences are the Illumina systems (HiSeq, MiSeq, and Genome
Analyzer2) and the SOLiD system3.Because they enable sequences
of short length to be obtained (36–50 nt) these systems are ideal
for sequencing small ncRNAs such as miRNAs and siRNAs and as
you will see later, can also be used to sequence ncRNAs of longer
lengths. For a review of these platforms and their use in small RNA
studies in general please see McCormick et al. (2011). There are
also different RNA-based protocols available, including those that
combine mRNA and ncRNA sequencing (i.e., without need for the
mRNA to have polyA tails; Yang et al., 2011). This is very useful
for prokaryotic sequencing and also for combining mRNA and
ncRNA data in a single run. However, “small RNA sequencing” is
the typical protocol used for human ncRNA analysis. The field of
high-throughput sequencing is very dynamic with platforms and
protocols constantly being added and upgraded. It is therefore best
to consult with the platform operator on what is available, prior
to submitting samples.

If the idea is to compare miRNAs and their expression lev-
els across different conditions (i.e., ncRNA gene expression) then
there is one further consideration. There can be affects in run-
ning samples in different partitions of the sequencing apparatus
(e.g., in different lanes or partitions on a “flowcell”). To avoid an
excess of statistical analysis to take “lane-effect” into account, it
is suggested that both samples are run in the same partition or
partitions and barcoded to aid sorting after the sequencing. This
is now common practice for digital gene expression analysis with
mRNAs.

The analysis of data from high-throughput sequencing is quite
unlike other genomic analysis and can be daunting to the new-
comer. Unfortunately the analysis of ncRNA data is one of the
lesser-described protocols in high-throughput sequencing mean-
ing that there are fewer automated pipelines, and the software is
primarily at a command-line level. Only now are guidelines to
small RNA analysis being published (e.g., McCormick et al., 2011)
and this is primarily for mammalian and plant research. What fol-
lows in this section is a general approach to the analysis of short
(<25 nt) and medium/long (>50 nt) ncRNA sequencing data
from high-throughput sequencing (Figure 2).

The output from high-throughput sequencing is typically a file
of short sequences (often termed short-reads or reads) accom-
panied by a quality score for each nucleotide in each sequence.
This is termed FASTQ format with four lines for each sequence
(Cock et al., 2010). However, because of the high sensitivity of
this type of sequencing, the “raw” data will also contain sequences,
including sequencing primers and contaminants, which occur in
all high-sequencing datasets. Data filtering is therefore the first
step to analysis and for small RNA sequencing it can permit the
separation of reads into those likely to be from small ncRNAs
(miRNAs and siRNAs) and those from medium ncRNAs. Sequenc-
ing adaptors and sequencing primers will occur in small RNA

1www.my454.com
2www.illumina.com
3www.appliedbiosystems.com

FIGURE 2 | A general approach for using high-throughput sequencing

data to search for small and larger ncRNAs. Total RNA can contain
ncRNA sequences of different sizes. Small ncRNAs such as miRNAs and
siRNAs will produce data containing the ncRNA sequence plus adaptor
sequence. Once the adaptor is trimmed off, the sequence is ready for
mapping and further genomics. When longer ncRNAs are sequenced, they
are fragmented to a predetermined size by the sequencing process. After
sequencing they can be assembled by mapping (see text) into their longer
sequences. This approach was successfully used for the analysis of
ncRNAs from Giardia lamblia (see text for details).

sequencing datasets. Adaptors are the short sequences that are
added to the ends of the RNA fragment during the sequencing
process. Additionally, during RNA work (due to the fragments
being very short) we can also get adaptor dimers forming and
these will show up in the results. Adaptor sequence information
is available from the sequencing vendors and can be removed
from the data using text-mining or sequence manipulation soft-
ware. One example is the FASTX-toolkit4 that contains scripts not
only to remove adaptor sequences, but can also remove sequences
containing too many N’s and those sequences of lower quality.
Other quality assessment tools include many commercial software

4hannonlab.cshl.edu/fastx_toolkit/index.html
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packages, and freeware such as FastQC5, which can help guide
data-filtering requirements.

Biologically ncRNAs may be of different lengths in the cell, and
this can cause numerous issues for downstream analysis where
computer programs prefer the data length to be consistent. It is
therefore particularly recommended that sequences are trimmed
to a common nucleotide length before mapping. For work with
protist small RNA data such as that from Giardia and Trichomonas
(used in studies by Chen et al., 2007, 2008, 2009, 2011), this basic
approach of filtering sequences prior to further analysis was used.
It was found that by filtering those sequences with adaptors, and
those without, into different datasets, ncRNAs of different length
ranges (small and medium) could be characterized (Figure 3).

Mapping (or matching) of the short-read sequences to a ref-
erence genome is the easiest approach for finding ncRNAs from
protists. One approach is to map sequences to ncRNAs already
characterized. Since there are still only a relatively few classes of
ncRNAs characterized for many protists this approach can yield
limited results but is worth doing to characterize medium length
ncRNAs such as snoRNAs, snRNAs, RNase P, and RNase MRP.
Smaller ncRNA classes such as miRNAs and siRNAs may have
too many sequence differences over their short length to permit
accurate mapping directly to known sequences, but mapping of
miRNAs is possible to their longer pre-miRNA precursors, and
siRNAs to potential target sequences. Mapping tools such as BWA

5www.bioinformatics.bbsrc.ac.uk/projects/fastqc

(Li and Durbin, 2009), Bowtie (Langmead et al., 2009), and SOAP2
(Aurrecoechea et al., 2009), as well as commercial options are avail-
able for mapping small RNA short-read sequences. However, all of
this software was designed for dealing with sequences longer than
22 nt, so software parameters must be changed for mapping short
ncRNAs such as miRNAs and siRNAs. One of the key parameters
to adjust is the “seed length” for the alignments, which is where
the initial contact between the read and the reference genome is
made. This should be set to about 17–18. Allowing more mis-
matches, e.g., up to n = 3 mismatches per seed (the standard is
n = 2) may only be beneficial if the species being sequenced is
different from the reference genome. However, this can cause spu-
rious “false” mappings and typically n = 2 should suffice. Another
useful parameter is in the reporting of the results. Often when
a short-read maps to multiple places, only one place is reported
and this is typically assigned by random. Since we commonly have
miRNAs and siRNAs match both at their place in the genome and
at their target position in the genome, multiple matches are nor-
mal, thus reporting settings should be adjusted for the reporting
of all hits.

In practice, miRNAs have been characterized from pro-
tists using a mixture of traditional, computational, and high-
throughput sequencing approaches. Some miRNAs from Giardia
have been shown to be derived from snoRNAs (Saraiya and Wang,
2008; Kolev and Ullu, 2009), with two of these, miR2 and miR4
consequently shown to regulate the expression of variant surface
proteins (VSPs), involved in resistance to host intestinal proteases
(Prucca et al., 2008; Garlapati et al., 2011). A computational study

FIGURE 3 | ncRNAs processes characterized in Giardia lamblia

and their likely cellular locations in the trophozoite stage, and in

relation to the major RNA processes ofTranscription and

Translation. Giardia has two nuclei which appear identical and replicate at the
same time and all of the processes within Transcription, RNP Biogenesis,
Transcriptional regulation, and Core RNA processing could be expected to be

found in both nuclei. RNAi may also be important in viral defense since some
siRNAs found in high-throughput sequencing do map to the stable
Giardiavirus (unpublished results). It is not known yet whether Giardia has
RNA storage granules but their presence in Trypanosoma does not preclude
them here. A similar diagram can be visualized for Trichomonas except that it
only has one nucleus.
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of miRNAs from Giardia (Zhang et al., 2009) identified 50 mature
miRNA candidates, some of which also targeted VSP genes. Using
high-throughput sequencing these VSP targeting miRNA candi-
dates were also found (Chen et al., 2007, 2009) as well as many
other miRNAs conforming to the expected size range of 25–27 nt
(Macrae et al., 2006; Chen et al., 2007).

In Trichomonas, miRNAs have been characterized using tra-
ditional (Lin et al., 2009), and high-throughput sequencing
approaches (Chen et al., 2009). Here, the use of miRNA-based soft-
ware such as miRanda6, aided in the selection of strong miRNA
candidates. In practice, although high-throughput sequencing is
sequencing biologically expressed RNAs (unlike computational
analysis), there may also be some mRNA degradation products and
contaminants that may slip through filtering. Studies in Giardia
and Trichomonas have highlighted that confirmation procedures
from another source (including miRNA-based software), is still
required. Expression levels of some Trichomonas miRNAs have
also been examined showing that one miRNA tva-miR-001 has a
significantly lower expression level in the ameboid stage (Lin et al.,
2009).

Most of the small RNA work to date in Giardia and Trichomonas
has focused on miRNAs but siRNAs are also present (Chen et al.,
2009). Some siRNAs appear to map in Giardia to a long-tandem
repeat RNAs (Girep-1–5) which show a high degree of sequence
similarity with a number of VSP genes (Chen et al., 2009) indicat-
ing yet another connection between RNAi and VSP gene selection.
In addition, both Giardia and Trichomonas contain stable RNA
viruses and high-throughput sequencing has resulted in some
reads mapping to these viruses (unpublished results).

Small RNAs from other protists have also been characterized
using traditional or computational methods. In T. cruzi, where
there standard RNAi proteins have not been found, small RNAs
derived from tRNAs have been characterized which are usually
recruited to specific cytoplasmic granules (Garcia-Silva et al.,
2010). T. brucei does contain standard RNAi pathways and com-
putational studies have uncovered miRNAs that target another
type of antigenic variation variant surface glycoproteins (VSGs;
Rudra et al., 2007). Some miRNA candidates have also been char-
acterized in E. histolytica using a computational study (De et al.,
2006), but research here has focused on using dsRNA for gene
silencing (reviewed by Kolev et al., 2011; Zhang et al., 2011a).
Studies of protist miRNAs to date are showing that RNAi has an
important role in antigenic variation and hence the parasite’s sur-
vival in its host. Learning more about this system could enable
more effective strategies to prevent and treat a range of protist
diseases.

To characterize medium length ncRNAs, such as snoRNAs,
RNase P, and RNase MRP RNAs, it can be useful to generate “con-
tigs” (overlapping consensus fragments) from the mapping data.
De novo assembly tools such as Velvet (Zerbino and Birney, 2008)
and Abyss (Simpson et al., 2009) which assemble fragments with-
out any prior alignment to a reference genome, are again primarily
designed for working with longer sequences, and in practice did
not perform well with data from Giardia and Trichomonas data

6www.microrna.org

(Chen et al., 2007, 2008, 2009, 2011). However, with careful para-
meter choice and a bit of experimentation, it is not inconceivable
that these tools could be useful in the assembly of long (>200 nt
long) ncRNAs, such as those discovered to be crucial for human
and mouse epigenetics. An easier way to generate consensus con-
tigs can be to use the results from mapping and convert them to
contig sequences using software such as the mpileup function of
SAMtools (Li et al., 2009), or the now depreciated tools in Maq (Li
et al., 2008). The use of a reference genome to guide the assembly
of contigs means that areas separated by low coverage of reads
can be joined for further analysis. This technique was used to find
medium length ncRNAs such as RNase P and RNase MRP RNAs
from Giardia (Chen et al., 2011). Although the RNase P RNA has
been previously identified from Giardia, the closely related RNase
MRP RNA was found by forming larger contigs from short-reads
then using the INFERNAL RNA comparison software (Nawrocki
et al., 2009) to compare these contigs to ncRNAs from Rfam. Using
this method RNase P and MRP RNAs were either characterized,
confirmed for had ambiguous genomic positions clarified (Chen
et al., 2011). Comparative genomes has been used to character-
ize snoRNAs from trypanosomatids including Leishmania (Liang
et al., 2007) and T. brucei (Uliel et al., 2004; Barth et al., 2008;
Gupta et al., 2010).

Specialist software such as snoScan (Schattner et al., 2005) can
be used to characterize snoRNAs from both classes C/D box and
H/ACA. Often it can be necessary to change parameters within
this software to permit changes in expected secondary structure.
C/D box snoRNAs direct 2′-O methylation, and are relatively easy
to identify based on conserved sequence elements (stem-loop fea-
tures) and complementary binding to the target RNAs. H/ACA
box snoRNAs direct pseudouridylation, and often exhibit more
variable features due to their shorter length of conserved ele-
ments and discontinuous complementary target binding regions.
A combined experimental and computation approach using high-
throughput sequencing enabled both of these snoRNAs classes to
be characterized in G. lamblia (Chen et al., 2007). Here, snoScan
was modified to search for snoRNAs in the Giardia WB genome
but these adjustments caused a loosening of parameters, and
hence, an increase in false positives being reported. Positive hits
were compared to high-throughput sequencing results to filter
through the large number of false positives. When the sequencing
results were combined with information from potential ribosomal
pseudouridylation sites, other snoRNAs were characterized from
both Giardia and Trichomonas (Chen et al., 2011).

There are many snoRNAs even from well characterized species
(i.e., humans) that do not have identified targets. These are termed
orphan snoRNAs (Bazeley et al., 2008) and it is likely that such
snoRNAs will be found in protists, but perhaps not as closely asso-
ciated with splicing (Giardia and Trichomonas have few introns).
However, without potential binding sites to check results against,
much more laboratory work will be required to characterize
these orphan snoRNAs, even those potential candidates found by
high-throughput sequencing.

CONCLUDING REMARKS
High-throughput sequencing has opened the door on more
research into the use of ncRNAs either as tools for investigating
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protist biology, markers for disease detection or progression, or as
potential avenues for treatment. Although there is a long way to go
to catch up with ncRNA analysis from host species (e.g., human
and mouse), the genomic sequencing of many pathogenic protists
is already permitting genome-wide screens of ncRNAs such as
miRNAs and siRNAs. Studies of protist miRNAs to date are show-
ing that RNAi has an important role in antigenic variation and
hence the parasite’s survival in its host. Learning more about these
systems could enable more effective strategies to prevent and treat
a range of protist diseases. Other areas of active research are now
looking at the integration of regulatory RNA (miRNA and siRNA)
data with protein gene expression sequencing data (i.e., RNA-seq,
or mRNAseq), to characterize how miRNAs control their targets,
and are themselves controlled, in different environments. In effect,
this is a combination of miRNA expression and target expression,
all coming from the same sample.

The use of high-throughput sequencing to uncover and char-
acterize ncRNAs has both the biological relevance of tradi-
tional laboratory approaches and the genome-wide scale of the
computational approaches. However, it does require the under-
standing of both the biological and computational aspects of

RNA analysis. Although software both for mapping, assembly
and sequence manipulation was written for longer mRNAs and
genomic sequencing, it can be applied to short ncRNAs such
as miRNAs and siRNAs with careful parameter adjustment. It
is likely that in the next few years we will see further develop-
ment of the small RNA sequencing protocols that are available
especially as they rise in importance in the medical research
world. What is needed to meet this rise is a general upskilling
of molecular researchers to deal with the increased bioinformat-
ics that this new technology brings, and further development of
software pipelines to make it easier to adapt RNA software to
non-mammalian and non-plant species. Protist biology is very dif-
ferent and their ncRNA systems are delivering us many surprises
(Collins and Penny, 2009). It is clear that genome biology of host
and pathogens can no longer exclude the analysis of non-coding
sequences.
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