frontiers in
GENETICS

ORIGINAL RESEARCH ARTICLE
published: 06 January 2012
doi: 10.3389/fgene.2011.00099

o

QTL analysis of type | and type IlA fibers in soleus muscle
in a cross between LG/J and SM/J mouse strains

Andrew M. Carroll’, Abraham A. Palmer?? and Arimantas Lionikas'*

" School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, UK
2 Department of Human Genetics, The University of Chicago, Chicago, IL, USA
? Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA

Edited by:
Rongling Wu, Pennsylvania State
University, USA

Reviewed by:

David C. Airey, Vanderbilt University,
USA

Hadi Al-Hasani, German Institute for
Human Nutrition Potsdam, Germany

*Correspondence:

Arimantas Lionikas, School of Medical
Sciences, University of Aberdeen,
Health Sciences Building, Room 106,
Foresterhill, Aberdeen AB25 2ZD, UK.
e-mail: a.lionikas@abdn.ac.uk

Properties of muscle fibers, i.e., their type, number and size, are important determinants
of functional characteristics of skeletal muscle, and of the quality of meat in livestock.
Genetic factors play an important role in determining variation in fiber properties, however,
specific genes remain largely elusive. We examined histological properties of soleus mus-
cle fibers in two strains of mice exhibiting a twofold difference in muscle mass, LG/J and
SM/J, and their F2 intercross. The total number of muscle fibers (555 4 106; mean 4 SD)
did not differ between the strains or between males and females. A higher percentage of
type | fibers was observed in the LG/J compared to the SM/J strain (P < 0.001) in both
males (45 £+ 3 vs. 37 £4%) and females (58 £ 4 vs. 41 £ 3%). Across strains, females had
a higher percentage of type | fibers than males (P < 0.001), and the sex effect was greater
in the LG/J strain (strain-by-sex interaction, P < 0.001). The cross-sectional area (CSA) did
not differ between type | and type IIA fibers, but was greater in the LG/J than the SM/J
strain (1365 4+ 268 vs. 825+ 229 um?2, P < 0.001). Three significant quantitative trait locus
(QTL) affecting CSA for type | and type IIA fibers mapped to chromosomes (Chr) 1, 6, and
11 and three suggestive QTL for percentage of type | fibers mapped to Chr 2, 3, and 4.
Within each significant QTL, regions of conserved synteny were also implicated in variation
of similar traits in an analogous study in pigs. Our results provide the evidence that the
intercross between the SM/J and LG/J strains is a promising model to search for genes

affecting muscle fiber properties.
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INTRODUCTION

Skeletal muscle has numerous biological functions including loco-
motion, thermoregulation, respiration, postural support, protec-
tion of bones and viscera, and also serves as a repository of amino
acids in times of starvation or disease. Muscle tissue in livestock
provides an essential source of dietary proteins containing a rich
supply of micronutrients and essential amino acids for the growing
human population.

Properties of skeletal muscle are determined mainly by the
number, type, and size of muscle fibers. Based on rodent stud-
ies, the number of fibers is set during embryogenesis (Ontell
et al., 1988), while fiber growth occurs mainly during postna-
tal life (Wirtz et al., 1983). Muscle fibers are heterogeneous and
can vary in size and functional properties, such as their abil-
ity to develop contractile power and resistance to fatigue (Bot-
tinelli and Reggiani, 2000). Human skeletal muscles are mainly
comprised of a mixture of type I, IIA, and IIX muscle fibers
(Schiaffino, 2010). Varying proportions of those fiber types affect
functional properties of the muscle. Postural muscles, such as
the soleus, predominantly consist of oxidative, fatigue resistant,
type I fibers, whereas the proportion of glycolytic, fast twitch,
type II fibers is higher in the phasic muscles (Johnson et al.,
1973).

However, there is a substantial individual variation in the
proportion of fiber types of homologous muscles in humans
(Thorstensson et al., 1976). This variation has both functional and
metabolic consequences. For instance, in sports, a high proportion
of type I fibers appeared favorable for endurance events, whereas
a low proportion of these fibers is suitable for speed, strength, and
power events (Costill et al., 1976). Fiber types also appeared to be
associated with the overall metabolism. For example, the risk of
insulin resistance, obesity, and high blood pressure declines with
an increasing proportion of type I fibers (Lillioja et al., 1987; Wade
etal.,, 1990; Hernelahti et al., 2005). In livestock, the proportion of
different fiber types is an important determinant of the commer-
cial value of meat. A high proportion of type I fibers is a desirable
trait leading to more tender and favorable meat quality (Sosnicki,
1987).

Genetic factors play an important role in the individual varia-
tion of muscle fiber types. Heritability estimates of the proportion
of type I fibers range between 0.4 and 0.9 in humans (Komi et al.,
1977; Simoneau and Bouchard, 1995). The effect of genetic fac-
tors has also been demonstrated for muscle fiber properties in mice
(Nimmo et al., 1985; Totsuka et al., 2003; Girgenrath et al., 2005;
Rehfeldt et al., 2005; Guderley et al., 2008), cattle (Stavaux et al.,
1994), sheep (Koohmaraie et al., 1995; Carpenter et al., 1996), and
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pigs (Van den Maagdenberg et al., 2008). However, specific genes
underlying these effects remain largely unknown.

Mice have been extensively used to study the biology of skeletal
muscle. The soleus, unlike most of the muscles in mouse, consists
of type I and type IIA fibers (Timson et al., 1985), which is sim-
ilar to the composition of fiber types in humans. Furthermore,
because all fibers pass through the belly of mouse soleus, a single
cross-section can provide an accurate estimate of the abundance
of muscle cells (Timson et al., 1985).

The LG/J and SM/J strains were divergently selected for large
(Goodale, 1938) and small (MacArthur, 1944) body size, respec-
tively. These strains provide a model for the elucidation of the
genetic mechanisms underlying differences in body size. As muscle
tissue constitutes a substantial portion of body weight, this selec-
tion resulted in approximately twofold difference in muscle mass
(Lionikas et al., 2010). A set of tools were developed by Cheverud
et al. (2004), including recombinant inbred strains and advanced
intercross lines (Ehrich et al., 2005), for examination of the genetic
architecture underlying phenotypic differences between the two
strains. An F2 intercross between phenotypically diverging strains
provides a first step of a classical quantitative trait locus (QTL)
mapping strategy. The aim of this study was to initiate the search
for genes affecting variation in the number of fibers, their size, and
proportion of type I fibers in soleus muscle between the LG/J and
SM/]J strains of mice.

MATERIALS AND METHODS

MUSCLE SAMPLES

This study was carried out on soleus muscles dissected from males
and females of the LG/] and SM/J inbred strains and the F2
intercross (see Table 1). Animals were maintained as previously
described (Cheng et al., 2010) and sacrificed at 94 £ 4 days. All
procedures were approved by the Institutional Animal Care and
Use Committee of the University of Chicago. The methods for
harvesting muscle tissue have been described previously (Lionikas
etal.,, 2010). Because the extremes of the population are the main
contributors of the linkage information in QTL mapping (Lander
and Botstein, 1989), the top and bottom quartiles of 497 F2 mice
stratified for soleus muscle weight within males and females were
selected for histological analyses. The final sample size used in this
study, after discarding cases with poor tissue quality, was 122 F2
mice, approximately equally divided between the upper and lower
quartiles.

PHENOTYPES

The soleus muscles were frozen in isopentane cooled in liquid
nitrogen. Transverse sections from the belly of the muscle were
cut at a thickness of 10 um with a cryotome (Leica CM1850UV) at
—20°C. The muscle samples were then subjected to ATPase stain-
ing (acid preincubation, pH 4.47) to distinguish between fiber
types (Brooke and Kaiser, 1970).

Microscopic images of stained sections were taken at x5 and
%20 magnification (Figure 1). Muscle fiber traits were manually
analyzed using Image] software (NIH — version 1.43). The fol-
lowing phenotypes were assessed; muscle fiber number (type I
and ITA) and percent of type I muscle fibers, cross-sectional area
(CSA) of type I and type IIA fibers.

Fiber CSA’s were measured on x 20 images. For each fiber type,
25 measurements were taken to obtain a value representing the
mean CSA of type I or type IIA fibers for that muscle. This was
deemed as a representative sample by empirical testing (the mean
of 25 randomly selected fibers, ~10% of the same type of fibers
per muscle, deviated only 1 out of 100 times from that of all fibers
of the muscle at P < 0.05). Muscle fiber numbers were assessed on
x5 images. As all fibers in mouse soleus pass through the belly of
the muscle (Timson et al., 1985), this method provides an accu-
rate estimate of the number of fibers constituting the muscle. Total
number of type I fibers and total number of type IIA fibers were
counted, permitting derivation of percentage of type I fibers.

STATISTICAL ANALYSES
The SPSS statistical package was used (SPSS Statistics 17.0). Data
are presented as mean & SD, unless otherwise stated.

A two-way ANOVA was used to examine the effects of strain
and sex on total number of fibers and percentage of type I fibers
in the parental strains. The CSA of type I and type IIA fibers
was analyzed using a two-way paired-measures ANOVA. In the F2
intercross, Pearson or Spearman correlation analyses were carried
out depending on Kolmogorov—Smirnoff tests of normality.

QTL MAPPING

The F2 mice genotyped at 160 SNP markers approximately evenly
distributed across the genome were used (Cheng et al., 2010).
Interval mapping analysis was performed using the R/qtl pack-
age (R 2.10.1; Broman et al., 2003). Due to the sex differences in
muscle mass in these mice (Lionikas et al., 2010), and the dis-
covery of sex-specific QTL in other studies (Lionikas et al., 2003,

Table 1 | Muscle fiber phenotypes of the LG/J and SM/J strains and their intercross population (mean + SD).

Population Sex Fiber number Type | fiber, % Type | CSA, pm? Type Il CSA, pm?
SM/J M 562+ 102 (n=7) 3744 (n=9)* 875+190 (n=9)' 957 +£195 (n=9)*'

F 514+ 141 (1=6) 41+3 (h=7)*" 701 +247 (n=7)" 7134220 (n=7)*"
LG/J M 586+62 (n=7) 45+3 (n=7)**" 14054299 (n=7)" 1423262 (n=7)"

F 5524123 (n=7) 58 +4 (n=0)**" 13484279 (n=9)"" 13044269 (n=9)""
F2 M 645+ 102 (n=56)* 42 +6 (n=58)*** 1058+ 281 (n=68)** 1155 £ 329 (n=68)***

F 595 + 107 (n=238)* 5O+ 7 (n=46)*** 912 4223 (n=54)** 886209 (n=54)***

* ** or ***: sex effect significant at P< 0.05, P< 0.01, or P< 0.001, respectively (comparison within population).

', or'": strain effect significant at P< 0.01, or P< 0.001, respectively (comparison within sex).

Frontiers in Genetics | Genetic Architecture

January 2012 | Volume 2 | Article 99 | 2


http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetic_Architecture
http://www.frontiersin.org/Genetic_Architecture/archive

Carroll et al.

Muscle fiber QTL in mouse

500 pm

FIGURE 1 | Representative images of LG/J (left) and SM/J (right) male soleus cross-sections following myosin ATPase staining (acid preincubation).
(A,B) x5 Magnification, (C,D) x20 magnification. Dark fibers type |, pale fibers type IIA.

500 pm

2005), we included sex as an additive and interacting covariate.
Although solei from top and bottom quartiles of muscle weight
were selectively phenotyped, the distribution of muscle fiber traits
did not significantly deviate from the normal distribution. Signif-
icance thresholds were derived using 1000 permutations for each
phenotype using R/qtl. The confidence intervals for each of the
QTL were defined as the 1.5-LOD drop off on either side of the
peak of the QTL (note that 1.5-LOD intervals may not be 95%
confidence intervals; Manichaikul et al., 2006). This interval was
expressed in physical map units (megabase) by using the nearest
genotyped SNP that flanked the support interval. Limited sample
sizes precluded a meaningful search for epistatic interactions.
Terms for all significant QTL and for sex were included in a
multiple regression model using the fitqtl function of the R/qtl
package (Broman et al., 2003). Because of the limited sample size
only the most robust QTL were subjected to this analysis. Terms
not significantly (P > 0.05) contributing to the regression model
were dropped one at a time until only significant terms remained.

COMPARATIVE GENOMICS

The search for the regions of conserved synteny between mouse
(Build 37.2), pig (Sscrofa9.2), and cattle (Build 5.2) implicated
in QTL influencing muscle fiber traits in each species was car-
ried out using comparative genomic methods. First, in the Animal
QTL database', we identified QTL affecting muscle fiber properties

! www.animalgenome.org/QTLdb

in pig and cattle. Then these QTL were projected to the regions
of mouse genome using Synteny function in Ensembl genome
browser?. Only significant QTL from each species were subjected
to this analysis.

RESULTS

PHENOTYPIC ANALYSES OF PARENTAL STRAINS

Number of fibers

The soleus muscle consisted of an average of 555+ 106 fibers.
There were no statistically significant effects of strain (P =0.107)
or sex (P=0.155) on this variable, however, the strain-by-sex
interaction approached statistical significance (P = 0.053).

Percentage of type I fibers

There was a significant strain-by-sex interaction (P < 0.001) char-
acterized by a greater proportion of type I fibers in the LG/J strain
which was particularly apparent in females (Table 1).

CSA of muscle fibers

The CSA was similar between type I and type IIA fibers
(P=0.516), and larger in the LG/J] compared to the SM/J strain
(P < 0.0001). Fibers in males tended to have larger CSA compared
to females although the difference did not reach statistical signifi-
cance (P =0.088; Table 1). The strain-by-sex interaction term was
not statistically significant either.

Zwww.ensembl.org
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MUSCLE FIBER TRAITS IN THE F2 INTERCROSS

The total number of soleus fibers in the F2 mice was compara-
ble to that of the parental strains (Table 1) and slightly higher in
males than females (P < 0.03). The percentage of type I fibers was
higher in females than males (P < 0.0001). There was a significant
sex-by-fiber type interaction (P < 0.0001) for CSA, type I fibers
were smaller than type IIA fibers in males (P < 0.0001) but not in
females (P =0.11).

The CSA of type I and type IIA fibers were the only two traits
that were significantly correlated (correlation corrected for sex,
r=10.879, P < 0001). The total number of fibers and CSA of type
I and type IIA fibers was positively correlated with soleus weight
in both males and females (Table Al in Appendix), whereas the
inverse association of soleus weight with the percentage of type I
fibers in males or females was not statistically significant.

QTL ANALYSES

We identified significant and suggestive QTL for CSA of type I
and type IIA fibers, and suggestive QTL for the percentage of type
I fibers, however, no QTL was detected for the total number of
fibers (Figure 2).
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FIGURE 2 | Genome wide LOD plots of QTL analyses of fiber number,
percentage of type I fibers, and CSA of type | and type IIA muscle
fibers in the F2 intercross. The X-axis indicates the relative position in
the linkage map and the Y-axis represents the LOD score. Solid line
marks 5% genome wide threshold, dotted line marks 37% genome wide
threshold.

Significant QTL for CSA on chromosomes 1, 6, and 11 over-
lapped between type I and type IIA fiber types. We named these
muscle fiber QTL Mfql, Mfq2, and Mfq3, respectively. The LG/]
allele conferred a greater CSA at all significant QTLs. Similarly, for
all but one of the suggestive QTL the LG/] allele also conferred a
greater CSA of the fibers (chromosomes 2, 5, 13, and 16, but not 3;
see Table 2). Significant QTL individually explained between 6.1
and 11.2% of phenotypic variation, in aggregate accounting for
~30and ~28% of variance of type  CSA and type ITA CSA, respec-
tively. The effect of the Mfg3 locus appeared to be male-specific
(Figure 3).

Suggestive QTL for the percentage of type I fibers were detected
on chromosomes 2, 3, and 4 with the SM/]J increasing allele increas-
ing type I fiber percentage on chromosomes 2 and 3 and the
LG/J allele increasing on chromosome 4. The position of the QTL
affecting CSA of type IIA fibers and percentage of type I fibers
overlapped on chromosome 2, however, different alleles conferred
an increasing effect (LG/J and SM/], respectively). There was also
some positional overlap between QTL for CSA of the fibers and
percentage of type I fibers on chromosome 3. In both instances an
increase was associated with SM/J allele.

ANALYSES OF CONSERVED SYNTENY

Using comparative genomics methods, we identified several con-
cordant QTL mapping to conserved syntenic regions of mouse and
pig genomes. Four regions within the MfgqI locus and one in Mfg2
and Mfq3 loci were implicated in variation of muscle fiber diam-
eter in pig (Figure 4). No concordant QTL mapping to conserved
syntenic regions between mouse and cattle were found.

DISCUSSION

A recent study on muscle weight in LG/J and SM/] strains identified
a twofold difference in soleus muscle size between them (Lionikas
et al., 2010). The present report provides some insight into the
mechanisms underlying this difference. It appeared that there is
no difference in the number of muscle fibers between the LG/J and
SM/J strains, however, the percentage of type I fibers was higher
and CSA, of both type I and type IIA fibers, was greater in LG/J
strain. This difference in the percentage of type I fibers could not
noticeably contribute to the muscle mass difference between the
strains because the CSA of both types of fibers was similar. The
between-strain comparison revealed that the CSA of LG/J strain
fibers were 1.5-1.9-fold larger compared to that of SM/J strain
fibers, and could explain a substantial fraction of the difference in
muscle weight.

Based on the findings on the muscle fiber traits, we hypoth-
esize that the between-strain differences have arisen at different
developmental and growth stages and that distinct mechanisms
are responsible for the differences in the percentage of type I fibers
and CSA of the fibers. Specifically, the number of soleus fibers
is set prenatally (Wirtz et al., 1983; Ontell et al., 1988) while the
CSA increases with postnatal growth (Wirtz et al., 1983). At birth,
all mouse soleus fibers histologically appear as type I, then the
composition of fibers undergoes a rapid transformation and the
proportion of type I and type IIA fibers acquired by the third week
of age remains constant throughout most of their lifespan (Wirtz
etal., 1983). The hypothesis of an independent control of the two
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Table 2 | Characteristics of muscle fiber QTL in F2 intercross of LG/J and SM/J strains.

Trait Chr Start, Mb* Peak, Mb End, Mb % Var** Increasing allele*** Locus**** LOD
CSAI/CSAIIA 1 68.6 109.4 148.7 11.2/6.1 LGR Mfq1 6.43/5.43
% Type | 2 116.3 1570 178.8 SIVA 4.58
CSAIIA 2 139.9 1570 168.7 LGP 3.96
CSAI/CSAIIA 3 16.2 32.4 91.4 SMR 3.56/3.61
% Type | 3 48.7 914 112.1 SMR 3.19
% Type | 4 50.6 104.9 1475 LGA 4.27
CSAT 5 132.7 139.7 1479 el 3.58
CSAI/CSAIIA 6 88.4 118.4 144.9 9.5/11.7 LGA Mfq2 5.16/6.16
CSAI/CSAIIA 11 11.1 278 62.7 8.9M/10.1M LGA Mfg3 5.04/6.36
CSAl 13 17.0 39.8 69.7 LGP 3.23
CSAIIA 16 20.9 50.7 92.1 LGP 3.77
*Physical map position is based on Build 37.2.
**Percent of variance of cross-sectional area of type | and type IIA fibers (CSAI/CSAIIA) explained by significant QTL, ™ indicates male-specific effect.
***Marker genotype plot examination indicated that the effect of the increasing allele was additive #, dominant °, or recessive .
****| ocus name was assigned to significant QTL only.
1400 4
el Chr1 Chr6 Chr11
1200 4 ¢ 0 Mfg3
1000 - ¢
" ? ? o
S 8004
s
600 DIAMF
50 1 ssc2
400 - @ Males Mfq1
OFemales DIAME
200 - SRS Mfq2
He]
0 = DIAMF
LG H M 100 - ssc2
FIGURE 3 | Sex specificity of Mfg3 locus on cross-sectional area (CSA) glsAch’; g/sséff oM
of soleus type I fibers in F2 intercross. Mean and SEM. LG, homozygous
for LG/J allele; H, heterozygous; SM, homozygous for SM/J allele. Type 1A DIAMF
fiber data showed similar pattern (not shown). SsCo
150 |
traits is consistent with the fact that the CSA of type I and type
ITA fibers in the F2 population correlated positively and strongly
but neither correlated with the total number of fibers. Similarly,
the percentage of type I fibers did not correlate with the total fiber 200
number either.

To the best of OLTI‘ k.HOWIedge’ this is the first QTL _StudY on FIGURE 4 | Comparative genomics of concordant mouse and pig QTL
muscle fiber properties in the mouse. The QTL analysis identified | of muscle fiber area. Thick bars depict mouse chromosomes. Thin black
three muscle fiber QTL affecting the CSA of type I and IIA fibers, bars with black circle depict the 1.5-LOD drop off interval and peak position,
qul, quZ, and qui together explaining more than a quarter of respectively, of muscle fiber QTL identified in the present study. Thin gray

. : . . . bars represent regions of conserved synteny of pig chromosomes (SSC)
the phenotypic variance. However, quantification of the effect sizes . T : !
R . involved in variation of diameter of fibers (DIAMF, Wimmers et al., 2006) or
has to be treated cautiously for two reasons; the bias due to selec- diameter of lIA fibers (FIB2ADIAM, Estellé et al., 2008).
tion of a subset of samples makes the effect size estimate uncertain

(Saunak Sen, personal communication), furthermore, the R? val-
ues tend to be inflated particularly in small samples (McClendon,
1994). The overlapping effect of these loci on both types of fibers
is not unexpected considering the strong phenotypic correlation

between these two variables. The Mfg2 and Mfq3 loci also encom-
passed the confidence intervals of several QTL affecting muscle
weight in crosses between LG/J] and SM/J (Lionikas et al., 2010).
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Some overlap between soleus weight and the CSA of its fibers was
anticipated based on a significant correlation between these vari-
ables (Table A1 in the Appendix). Interestingly the Mfg! locus on
chromosome 1 appears to be fiber-specific as it has not been impli-
cated in muscle weight analyses. This finding indicates that tissue
analyses at the cellular level (e.g., size of the fibers and proportion
of different fiber types) can lead to novel QTL not captured in the
analyses of composite phenotypes such as weight.

The effect of the Mfg3 locus appeared more pronounced in
males than in females. Sex-specific QTL of muscle traits in mouse
are not uncommon (Brockmann et al., 2000; Lionikas et al., 2003,
2005) and suggest involvement of sex-specific hormones, however,
the precise underlying mechanisms remain unknown.

The percentage of type I fibers was higher in the soleus of the
LG/] strain compared to SM/J by 8 and 17 percentage points in
males and females, respectively (Table 1). Strain differences in this
trait have been reported before (Van der Laarse et al., 1984; Nimmo
etal., 1985; Totsuka et al., 2003) but the underlying genetic mech-
anisms remain poorly understood. We mapped three suggestive
QTL affecting the percentage of type I fibers. The SM/J allele con-
ferred increasing percentage of type I fibers in two of those QTL.
Observation of an increasing allele from the strain with lower over-
all phenotypic value is not unusual in polygenic traits particularly
when the strains were not selected for divergence in the phenotype
in question (Lionikas et al., 2003, 2005).

Previous fiber typing studies on the soleus in various genetic
backgrounds of mice found that soleus fiber numbers ranged from
anywhere between 450 and 984 muscle fibers (Rowe and Gold-
spink, 1969; Luff and Goldspink, 1970; Timson, 1982; Wirtz et al.,
1983; Ontell et al., 1988; Summers and Medrano, 1994; Rehfeldt
et al., 1999). The total number of soleus fibers identified in the
present study was within this range. Interestingly, however, it did
not differ between the two strains suggesting that there might be
not any alleles segregating that affect fiber formation. However,
it is also possible that both increasing and decreasing alleles in
each strain can result in similar phenotypic values between strains
(Darvasi and Soller, 1992; Jin et al., 2004; Sen et al., 2009).

Several studies have reported genetic effects on muscle fiber
properties in the mouse model. The “mini muscle” locus which
is known to affect muscle fiber area has been mapped to 67.4—
70.1 Mb on chromosome 11 (Guderley et al., 2006; Hartmann
et al., 2008) in close proximity of the Mfq3 locus, however the
underlying gene(s) remain unknown. Effects of single genes on
muscle fiber area were observed in several knockout or mutant
models. Those genes code for proteins involved in regulation of
transcription, Stat5a and Stat5b (Klover et al., 2009), Ppargcla
(Leick et al., 2009); growth, Ky (Blanco et al., 2001); growth and
metabolism-related signaling, myostatin (McPherron etal., 1997),
leptin (Sainz et al., 2009), calcineurin (Parsons et al., 2003); defense
against oxidative stress, SodIl (Bordet et al., 1999); structural
integrity, alpha-actinin-3 (Macarthur et al., 2008), dystrophin
(Briguet et al., 2004); and contractile function, IIB myosin heavy
chains (Allen et al., 2001). Disruption of those genes often led to
pathological phenotypes not observed in the present study. How-
ever, it is conceivable that our population contains different alleles
that result in milder phenotypes. None of these genes, however,
reside within support intervals of significant QTL identified in the

present study. Thus the cross of LG/] and SM/J strains has the
potential to uncover genes which have not been previously impli-
cated in muscle fiber properties. Processing of solei samples from
an advanced intercross (Lionikas et al., 2010) will permit us to
improve the resolution of QTL mapping facilitating nomination
of the candidate genes.

Because the variation in the number of muscle fibers and their
size can contribute to the variation in body weight, some over-
lap between the genetic architecture of these variables is plausible
in the crosses involving the LG/J] and SM/J strains. In support
of this assumption, the MfgI locus was found to coincide with
the body weight locus Bwtn2 indentified in a cross between the
two strains (Kenney-Hunt et al., 2006). In addition, the Mfql and
Mjfq2 loci overlapped with the Obesity and body weight QTL in a
cross between the SM/] and NZB/BIN]J inbred strains, ObwgqI and
Obwq3, respectively (Stylianou et al., 2006).

COMPARATIVE GENOMICS

It is reasonable to assume that the same genes are involved in
variation of concordant traits in different species. The myostatin
gene affecting mouse (Rehfeldtetal., 2005), cattle (McPherron and
Lee, 1997), dog (Mosher et al., 2007), and human (Schuelke et al.,
2004) muscle is an important illustration of such across-species
effects on this tissue. While this study presents the first QTL scan
for muscle fiber traits in mouse, similar analyses in pig and cattle.
The order of genes across chromosomal segments is often pre-
served across different species. Such regions are called syntenic
or regions of conserved synteny (Nadeau and Taylor, 1984). Syn-
teny can be used to obtain supportive evidence for the identified
QTL and it can also help narrow down the area of search for
the underlying genes (Burgess-Herbert et al., 2008). Four regions
(between 69-96, 97-100, 115-118, and 133-149 Mb) within the
Mfgl locus overlapped with syntenic regions in pig that contain
QTL affecting the diameter of fibers, DIAMF, on SSC2, 4, 9, and
15 (Wimmers et al., 2006). We found only one syntenic region in
the Mfq2locus (116-118 Mb), which was also implicated in diam-
eter of pig ITA fibers QTL, FIB2ADIAM, on SSC14 (Estellé et al.,
2008). The Msf3 locus contained a syntenic region (48-51 Mb)
implicated in DIAMF QTL on SSC2 (Wimmers et al., 2006). Thus,
comparative genomics findings supported the role of all Mfq loci
in determining the size of muscle fibers. Furthermore, this analysis
suggested that homologous genes within the regions of conserved
synteny could be underlying the effects of the QTL.

In conclusion, we identified three significant QTL contributing
to the difference in CSA of muscle fibers between the LG/] and
SM/J strains. Regions of conserved synteny from the identified
loci were also implicated in fiber phenotypes in pig supporting the
importance of these genomic regions in determining muscle fiber
properties.
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APPENDIX

Table A1 | Phenotypic correlations in F2 intercross between LG/J and SM/J strains.

Soleus, mg Total no. of fibers % of type | CSAI CSAIIA
Soleus, mg r 0.415 —0.149 0.551 0.639
P (two-tailed) X 0.001 0.264 5.06E-09 3.03E-13
df 56 58 68 68
Total no. of fibers r 0.334 —0.075 —0.147 —0.052
P (two-tailed) 0.04 X 0.473 0.16 0.618
df 38 91 91 91
% of type | r -0.117 0.014 —0.041
P (two-tailed) 0.439 X 0.886 0.684
df 46 101 101
CSAl r 0.421 0.879
P (two-tailed) 0.002 X 3.76E-40
df 54 119
CSAIIA r 0.539
P (two-tailed) 2.64E-05 X
df 54

Within sex Spearman’s rho test was used for correlations involving soleus weight (numbers italicized, males — above and females — below the diagonal). Partial

correlations correcting for sex effect were used for the remaining comparisons. Correlations statistically significant at P < 0.05 or better are bolded.
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