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Mutation in RAS proteins is one of the most common genetic alterations observed in
human and experimentally induced rodent cancers. In vivo, oncogenic mutations have
been shown to occur at exons 12, 13, and 61, resulting in any 1 of 19 possible point muta-
tions in a given tumor for a specific RAS isoform. While some studies have suggested a
possible role of different mutant alleles in determining tumor severity and phenotype, no
general consensus has emerged on the oncogenicity of different mutant alleles in tumor
formation and progression. Part of this may be due to a lack of a single, signature pathway
that shows significant alterations between different mutations. Rather, it is likely that sub-
tle differences in the activation, or lack thereof, of downstream effectors by different RAS
mutant alleles may determine the eventual outcome in terms of tumor phenotype. This
paper reviews our current understanding of the potential role of different RAS mutations
on tumorigenesis, highlights studies in model cell culture and in vivo systems, and dis-
cusses the potential of expression array and computational network modeling to dissect
out differences in activated RAS genes in conferring a transforming phenotype.
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INTRODUCTION
The RAS gene family consists of three small G proteins – Ha-,
N-, and Ki-ras (with Ki-ras existing as the predominant Ki-ras4B
and the alternatively spliced Ki-ras4A isoforms) – that play a
central role in cell signaling (Barbacid, 1987; Malumbres and
Barbacid, 2003). RAS proteins are anchored on the cytoplasmic
side of the cell membrane, where they mediate signal transduc-
tion downstream from tyrosine kinase membrane receptors to
a variety of effector molecules, stimulating a cascade of paral-
lel phosphorylation reaction pathways that ultimately culminate
with the activation of nuclear transcription factors. The three
main effector pathways that are activated downstream of RAS –
RAF/MEK/MAPK, PI3K/AKT, and RAL–GDS – play major roles
in mediating signals relating to cell proliferation, cell survival, cell
adhesion, and cell motility (Fan and Bertino, 1997; Campbell et al.,
1998; Gille and Downward,1999; Zuber et al.,2000; Bounacer et al.,
2004). Each of the RAS isoforms appears to differentially regulate
its downstream effectors in vivo, resulting in marked differences in
the strength and type of signal produced (Hancock, 2003; Ehrhardt
et al., 2004; Moon, 2006; Omerovic et al., 2008). This differential
signaling appears to be mediated partly by the trafficking path-
ways used by each RAS isoform to reach the plasma membrane, as
well as the location of each isoform in the plasma membrane itself
(Chiu et al., 2002; Hancock, 2003; Moon, 2006); N- and Ha-ras
associate with lipid rafts in the plasma membrane, whereas Ki-ras
appears to be located in non-raft domains.

Abbreviations: AC, adenocarcinomas; AD, adenomas; CCSP, Clara cell secre-
tory protein; DOX, doxycycline; IHC, immunohistochemistry; RT-PCR, reverse
transcription-polymerase chain reaction; rtTA, reverse tetracycline trans-activator;
tet, tetracycline.

The RAS pathway is one of the most prevalent oncogenic alter-
ations in both human and experimentally induced animal tumors
(Bos, 1989; Conti, 1992; Malumbres and Barbacid, 2003). In vivo,
oncogenic mutations have been shown to occur at exons 12, 13,
and 61, resulting in any 1 of 19 possible point mutations for each
RAS isoform. When stimulated by upstream signaling molecules,
wild type RAS proteins interact with guanine nucleotide exchange
factors to replace GDP with GTP, resulting in an activated pro-
tein conformation. RAS activity is terminated by interaction with
GTPase activating protein, which stimulates the GTPase activity
of the protein and converts GTP back to GDP, thereby restor-
ing the inactive form of RAS. Mutations in RAS inhibit the
GTPase activity and lock the protein in the active GTP bound
conformation (Barbacid, 1987; Bos, 1989; Malumbres and Bar-
bacid, 2003) In particular, mutations in the Ki-ras gene have
been shown to play a key role in the pathogenesis of a variety
of human tumors, with mutations occurring in 95% of pancreatic
tumors, 50% of colon tumors, and 30% of lung adenocarcino-
mas (Barbacid, 1987; Bos et al., 1987; Conti, 1992; Malumbres
and Barbacid, 2003). Of these cancers, lung and colon cancer are
the first and second leading cause of cancer-related deaths in the
U.S., respectively (Jemal et al., 2010). Among the candidate genes
implicated in the initiation of these cancers, Ki-ras has received
considerable attention as mutations in Ki-ras appear in early neo-
plastic lesions in both human and experimentally induced murine
lung and colon tumors, and influence both tumor progression
and drug resistance (Cerny et al., 1992; Reynolds et al., 1992;
Hruban et al., 1993; Westra et al., 1993, 1996; Li et al., 1994a;
Miller, 1994; Gryfe et al., 1997; Grady and Markowitz, 2002;
Agbunag and Bar-Sagi, 2004; Fleming et al., 2005). The spec-
trum of RAS mutations differs by organ site and allele frequency,
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probably as a result of different environmental exposures and
tissue specific differences in RAS expression. The Sanger Insti-
tute’s COSMIC database (Catalog of Somatic Mutations in Cancer;
http://www.sanger.ac.uk/genetics/CGP/cosmic/add_info/) inte-
grates data from the published literature on type and frequency of
somatic mutations in human cancers. Using the database search
tools, we examined the spectrum and frequency of Ki-ras muta-
tions (Table 1). Consistent with the literature, Ki-ras mutations
were observed most frequently in cancers of the lung, large intes-
tine (including colon, rectal, and anal), pancreas, and biliary tract
(including bile duct and gall bladder). Based on a collective muta-
tional analysis involving >15,000 tumors, the most frequent alter-
ations observed were point mutations at codons 12, 13, and 61. A
spectrum of predominant mutant alleles were observed, and their
relative frequencies are shown in Table 1 as the percentage of all
mutant alleles observed for a given tumor type. Consistent with
historical observations, ASP12, VAL12, and CYS12 emerged as the
predominant mutant Ki-ras alleles. However, that the alleles dis-
tributed with large variation within each cancer type may reflect
the non-redundant functions of the different alleles in tumorigen-
esis. Large variation across cancer types was also observed for some
alleles, such as CYS12, ASP12, and ASP13, suggesting that mutant
allele functionality may also depend, to some extent, on the tumor
tissue of origin.

Although some studies have provided evidence for mutation
specific effects of different mutant RAS alleles, most studies and
therapeutic approaches have treated RAS mutations as a single
entity – the gene is either mutated or wild type. We believe that
the different RAS mutations exhibit subtle differences in their
ability to signal to their downstream effectors, which may impact

Table 1 | Relative frequencies of the major Ki-ras mutations by cancer

type: analysis of the Sanger COSMIC database.

Ki-ras mutation# Lung Large intestine* Pancreas Biliary tract∧

CYS12 41.77 8.62 3.25 8.33

ASP12 17.23 34.56 49.12 48.06

VAL12 20.25 22.59 29.85 18.02

ALA12 6.35 6.26 2.05 4.26

SER12 4.49 6.14 2.63 11.43

ARG12 2.21 1.34 12.02 4.07

PHE12 0.74 0.10 0.06 0.00

ASP13 2.39 18.70 0.61 3.10

CYS13 3.19 0.48 0.09 0.97

ARG13 0.11 0.23 0.00 0.78

SER13 0.14 0.11 0.00 0.58

VAL13 0.04 0.11 0.03 0.00

ALA13 0.04 0.10 0.00 0.00

HIS61 0.32 0.29 0.29 0.19

LEU61 0.42 0.21 0.00 0.19

ARG61 0.32 0.14 0.00 0.00

ASP61 0.00 0.01 0.00 0.00

#The relative percentage of each mutant allele within a cancer type (i.e., of the four

predominant Ki-ras mutation-bearing cancer types) is shown; *includes colon,

rectal, and anal cancer; ∧ includes cancers of the bile duct and gallbladder.

their relative contribution to the carcinogenic process, their role
as driver mutations, and tumor responsiveness to novel therapeu-
tic agents that target RAS or its downstream effectors. Thus, this
manuscript reviews the evidence obtained from biochemical, cell
culture, and animal model data, as well as the limited number of
human studies available, documenting the differential response of
cells to different mutant RAS alleles.

IN VITRO EVIDENCE FOR DIFFERENTIAL EFFECTS OF
DIFFERENT MUTANT RAS ALLELES
Studies on the potential differences in the mutagenic-
ity/oncogenicity of different RAS mutant alleles began shortly after
the identification of RAS as a transforming oncogene. Initial stud-
ies demonstrated that different Ha-ras mutant alleles exhibited
differences in their ability to transform mouse fibroblasts (Fasano
et al., 1984; Seeburg et al., 1984; Der et al., 1986). Focusing on the
Ha-ras gene, Fasano et al. (1984) found that the VAL12 mutation
was the most potent in terms of the induction of focus forma-
tion in the NIH3T3 assay, with ARG12, ASP12, SER12, ASP13, and
SER13 exhibiting transforming efficiencies that were 60, 50, 40, 20,
and 0.1% relative to the VAL12 mutant. Seeburg et al. (1984), found
somewhat similar results in Rat-1 cells with mutants to both Ki-ras
and Ha-ras. Although not as quantitative as Fasano et al. (1984),
these authors found that alleles of both Ki- and Ha-ras containing
the VAL12 and ARG12 mutations exhibited greater transforming
activity than alleles with the CYS12, ASP12, ASN12, and SER12

mutations. All of the mutant alleles exhibited growth in soft agar.
Der et al. (1986) examined 17 different codon 61 mutations in the
Ha-ras gene and found that the transforming activity in NIH 3T3
cells varied by more than 300-fold between the different mutant
alleles.

Several groups (Gibbs et al., 1984a,b; McGrath et al., 1984; Sweet
et al., 1984; Manne et al., 1985), using purified Ha-ras produced in
E. coli, demonstrated that the valine 12 mutant exhibited 5 to 10-
fold lower GTPase activity than the normal wild type allele. It was
initially thought that the relative level of GTPase activity might
account for the differences in transforming potential between the
different mutant alleles. However, the studies by Der et al. (1986)
and Colby et al. (1986) did not find any correlation between the
transforming potency and GTPase activity of the different alleles.
Subsequent to these early studies, the biochemical activity of RAS
and its interactions with its downstream receptors has continued to
be the focus of intensive investigations. Several laboratories have
demonstrated that mutations in specific amino acids have very
significant effects on both guanine nucleotide exchange factors
and RAS GTPase activity (Nielsen et al., 2001; Zhang et al., 2005;
Filchtinski et al., 2010; Lukman et al., 2010). However, many of
these mutational analyses have been limited to examining amino
acids that cause conformational changes in regions of the RAS
genes associated with GTPase activity, such as the A59G variant
(Lukman et al., 2010), rather than the common mutagenic variant
alleles associated with tumorigenesis. More recently, redox agents
such as reactive oxygen species and reactive nitrogen species have
been shown to enhance the rate of guanine nucleotide exchange as
a result of the formation of a thiyl radical on CYS118 Ha-ras (Del
Villar et al., 1996; Kjeldgaard et al., 1996; Reuther and Der, 2000;
Ford et al., 2002; Jourd’heuil et al., 2003; Schrammel et al., 2003;
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Williams et al., 2003; Heo et al., 2005, 2006; Davis et al., 2011).
This raises the possibility that codon 12, 13, and 61 mutations
could affect RAS GTPase activity by either (1) increasing oxidative
stress and thereby increasing thiylation of CYS118 or (2) altering
the accessibility of the CYS118 residue to modification by reactive
oxygen species. As will be discussed below, the CYS12 allele has
been shown in a variety of experimental systems to exhibit less
potent tumorigenic activity than other mutations in codon 12. It
is thus possible that the CYS12 variant could provide a new redox
active cysteine motif in the RAS protein that differentially responds
to the increased oxidative stress of the cancer cell environment in
a different manner than other mutant RAS alleles. Clearly, none
of these potential mechanisms are mutually exclusive and sug-
gest new areas of inquiry into the mechanisms of the observed
differential effects of RAS mutants on tumorigenicity.

IN VIVO EVIDENCE FOR DIFFERENTIAL EFFECTS OF
DIFFERENT MUTANT RAS ALLELES
The initial studies utilizing the NIH3T3 focus assay were con-
firmed using in vivo models. Studies from this and other laborato-
ries have demonstrated an association between the histological
stage of both murine and human lung tumors and the pres-
ence of specific mutant RAS alleles in tumor tissue. Early studies
by Nuzum et al. (1990) demonstrated that, following treatment
of adult A/J mice with urethane, mouse lung adenocarcinomas
(ACs) had a high incidence of GLU61 → ARG61 (CAA → CGA)
mutations relative to the smaller adenomas (ADs), which prefer-
entially exhibited GLU61 → LEU61 (CAA → CTA) mutations. Li
et al. (1994b) also demonstrated that lung ACs showed a higher
incidence of mutations at the second base of codon 61 following
treatment of newborn mice with nitrochrysene and its metabo-
lites. Utilizing a transplacental treatment protocol, whereby mice
are exposed in utero to a single dose of the chemical carcinogen 3-
methylcholanthrene, we have demonstrated in three independent
studies using different strains of mice that different RAS mutations
are associated with tumor stage (Leone-Kabler et al., 1997; Gres-
sani et al., 1999; Jennings-Gee et al., 2006). Treatment of pregnant
mice with 3-methylcholanthrene resulted in a high incidence of
lung tumors in the offspring 6–12 months after birth. Mice har-
boring a VAL12, ARG12, ASP12, or ARG13 mutant Ki-ras gene were
more likely to contain later stage tumors than mice with the CYS12

or wild type allele, which exhibited mostly benign ADs and hyper-
plasias. Further work with this model also suggested that the type
of mutation induced in Ki-ras following in utero exposure to the
chemical carcinogen was associated with specific types of dam-
age (hypermethylation vs. base pair mutations) at the Ink4a gene
locus (Mizesko et al., 2001). Interestingly, the mutant Ki-ras alleles
associated with progression to later stage tumors in our transpla-
cental mouse studies were the same ones associated with a trend
for poorer patient outcomes in a clinical study of human lung
cancer (Keohavong et al., 1996). A clinical study examining the
prognostic significance of Ki-ras mutations in lung cancer patients
found that patients containing CYS, ARG, and ASP mutations at
codon 12 appeared to have a poorer prognosis than those con-
taining hydrophobic amino acid substitutions such as VAL or ALA
(Siegfried et al., 1997). However, the sample sizes for this analysis
were small and the authors did not find an overall association of

Ki-ras mutations and poorer patient survival, as has been noted
in several other studies (reviewed in Rodenhuis and Slebos, 1992).
Similar observations have been made in colon cancer, as Finkel-
stein et al. (1993a,b) reported that the Ki-ras ASP12 mutant allele
was associated with the metastatic properties of colon tumors.

In addition to the ability of different RAS mutant alleles to
initiate tumor formation, the above mentioned results obtained
in vivo also suggest differences in tumor progression imparted by
the different RAS variant alleles. In the in vivo studies cited above, a
consistent finding was that more aggressive tumors (i.e., ACs) were
more prevalent with one type of RAS mutation, often the VAL12

allele, whereas benign lesions such as ADs or hyperplasias were
more prevalent with other types of RAS variants, most notably the
CYS12 mutation. These results suggest that specific RAS mutant
alleles can impart a greater growth advantage than other alleles,
and the often disparate results may be due to context and organ
dependent effects of the different alleles (Guerra et al., 2003). Stud-
ies by Cespedes et al. (2006) have extended these findings and also
confirmed the relatively weak transforming activity of the Ki-ras
CYS12 allele observed in our studies. These authors transfected
NIH3T3 cells with the ASP12, VAL12, and CYS12 alleles of Ki-ras.
When the transforming properties of the alleles were assessed, the
Ki-ras VAL12 allele exhibited a more aggressive tumorigenic phe-
notype than the Ki-ras ASP12 allele, which was attributed to the
inability of the ASP12 allele to signal through the RAF/MEK/ERK
pathway. When the transfected cells were injected into nude mice,
the Ki-ras CYS12 containing cells failed to establish tumors.

Along the same lines, studies by this group utilizing NIH3T3
cells found that the Ki-ras VAL12 allele, in contrast to the wild type
and Ki-ras VAL13 allele, exhibited increased glycolysis (Vizan et al.,
2005). In addition, cells transfected with the VAL12 mutant allele
were resistant to the induction of apoptosis induced by conflu-
ence and exhibited a much greater ability to grow in soft agar. The
VAL12 mutant clones exhibited elevated levels of p-AKT, increased
expression of Bcl-2, E-cadherin, β-catenin, and focal adhesion
kinase, and decreased expression of RhoA (Guerrero et al., 2000).
Similarly, Recktenwald et al. (2008) found that the VAL12 and
ASP13 variants of Ki-ras enhanced cell survival and resistance to
oxidative stress. Although they did not specifically address this in
their paper, the VAL12 allele exhibited greater protection against
formaldehyde- and H2O2-mediated toxicity and reduced caspase
3/7 activity relative to the ASP13 allele. Thus, a generally consistent
finding across the animal studies, cell culture experiments, and
human patient samples suggests that the CYS12 allele is associated
with a relatively weak or no transforming activity, while VAL12

and ASP12 alleles were associated with more aggressive oncogenic
properties. These transforming properties were not only associ-
ated with increased tumor formation, but seemed to also play a
role in tumor progression.

The somewhat conflicting studies with human samples most
likely result from the multitude of alterations that occur in human
tumors by the time they are diagnosed. It is very likely that tumors
with weakly transforming RAS alleles may require additional alter-
ations at other oncogenic loci in order to drive tumorigenesis.
Thus, in some cases, a RAS mutation such as the VAL12 allele
could act as a driver mutation whereas in other cases, such as the
CYS12 allele, mutations in other genes may be the key drivers of
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tumorigenesis. A major limitation of studies utilizing human tis-
sue is the fact that human tumors contain several mutations in
a variety of oncogenic loci. If a weakly oncogenic Ki-ras muta-
tion occurs in a particular patient’s tumor, it is likely that by the
time the tumor is isolated, mutations in other critical driver genes
would have occurred. To our knowledge, no studies have been pub-
lished which attempt to correlate specific mutations in Ki-ras with
the presence or absence of other known driver mutations. Thus,
attempts to associate specific RAS mutations with patient outcome
or survival may not be able to distinguish the relative contribution
of a specific Ki-ras mutation to the tumorigenic process.

In order to characterize the role of Ki-ras mutations in the ini-
tiation of lung tumorigenesis, several investigators have utilized
inducible expression systems in transgenic mice. These included:
(1) regulation of a murine Ki-ras ASP12 cDNA transgene via a
doxycyline (DOX) regulated promoter (Fisher et al., 2001); (2)
sporadic activation of a human Ki-ras VAL12 cDNA transgene via
a Cre-lox mediated recombination construct (Meuwissen et al.,
2001; Guerra et al., 2003); (3) spontaneous activation of the
murine Ki-ras ASP12 gene via a somatic recombination system
(Johnson et al., 2001); and (4) sporadic activation of the same
murine Ki-ras ASP12 gene mutation via a Cre based lox-stop-lox
construct (Jackson et al., 2001). Expression of these mutant Ki-
ras alleles were shown to be a strong oncogenic stimulus for lung
epithelial cells, resulting in significant increases in lung tumori-
genicity. In each of these models, 100% of the mice developed
aggressive ACs and died within 2–10 months from their lung
tumor burden.

In contrast to these results our laboratory, utilizing a trans-
genic mouse in which the mutant human Ki-ras CYS12 allele is
regulated in a DOX-inducible and lung-specific manner (Floyd
et al., 2005), found that these mice developed hyperplasias and
small, benign adenomas (ADs) after 12 months of DOX treatment
that rarely progressed to the carcinoma stage. The CYS12 transgene
appeared to signal to a subset of its downstream effectors, exhibit-
ing increases in proliferative and both anti- and pro-apoptotic
signals, as well as up-regulation of cell cycle inhibitory molecules.
Mice harboring this mutant Ki-ras allele exhibited increased sig-
naling through the RAS/RAF/ERK/cyclin D1, p38, and RAL/GDS
pathways, but no alterations in signaling through the JNK and
PI3K/AKT pathways (Floyd et al., 2006; Dance-Barnes et al., 2008).
Interestingly, the relatively benign tumor phenotype observed
in Ki-ras CYS12 mice was also observed in mice with activated
and wild type RAF genes (Kerkhoff et al., 2000). These authors
developed a strain of mice expressing an activated human c-
raf-1 transgene specifically in the lung (SPC-c-raf-1-BXB mice)
that also exhibited a relatively benign tumor phenotype, despite
increased phosphorylation of downstream effector molecules in
the ERK pathway. Because mutant RAF is downstream of RAS and
thus signals to a specific subset of RAS effector molecules, these
experiments provide further in vivo confirmation of the need for
the activation of multiple RAS downstream effector molecules to
mediate the full transformation of lung epithelial cells and provide
the most definitive evidence to date of the potential for different
Ki-ras mutations to exhibit differential effects on the carcinogenic
process. With the limitations that these studies often involved dif-
ferent inducible gene systems, different strains of mice, and the

unknowns of the potential effects of integration of the transgene
in the mouse genome, future studies will need to take advantage
of targeted knock-in technologies to create a series of transgenic
mouse strains that replace the endogenous mouse Ki-ras gene with
various mutated alleles and allow the mutants to be expressed from
the natural murine Ki-ras promoter. These types of studies will be
critical in dissecting out the effect of different RAS mutations on
downstream signaling pathways and tumorigenicity.

DIFFERENTIAL EXPRESSION OF Ki-ras MUTANTS IN HUMAN
LUNG TUMORS
Several studies using human tissue samples and cell lines (Bhat-
tacharjee et al., 2001; Beer et al., 2002; Miura et al., 2002; Virtanen
et al., 2002; Wikman et al., 2002; Creighton et al., 2005) have
utilized RNA and cDNA microarray analyses to document the
complex array of alterations in signaling pathways that accom-
pany lung tumorigenesis. Yao et al. (2002) isolated lung tumors
6 and 14 months following treatment of A/J mice with a single
injection of N -methylnitrosourea at 6 weeks of age. Using the
Affymetrix Atlas Mouse™cDNA Expression Array, consisting of
588 known mouse genes, they were able to identify 19 genes that
showed differential expression between ADs and ACs, as well as
10 genes that exhibited similar alterations in expression levels
between the two tumor types. Subsequent studies from the same
group, using the more extensive Affymetrix Mu74Av2 chip, which
can interrogate 36,000 full-length mouse genes and EST clusters
from the Unigene Database, identified 50 genes that were either
up-or down-regulated in ADs vs. ACs, including genes involved
in cell cycle control, differentiation, and apoptosis (Bonner et al.,
2004). In addition, when the murine tumors were compared with
lung ACs isolated from human patients, the murine ADs and ACs
clustered with two groups of human ACs that differed in their
differentiation status, with murine ADs clustering with the well
differentiated human ACs and murine ACs clustering with the less
differentiated tumors. These investigators also identified 39 genes
that were similarly regulated in murine and human lung ACs, fur-
ther emphasizing the appropriateness of the mouse as a model
for human lung cancer. Similarly, Jacks’ group (Sweet-Cordero
et al., 2005) used the data obtained from this study in combination
with their own analysis of mouse tumors from transgenic Ki-rasLA

mice, which express the Ki-ras ASP12 transgene sporadically as a
result of spontaneous recombination (Johnson et al., 2001), and
compared the results obtained with the murine lung tumors with
human arrays from a variety of sources, including their own analy-
ses as well as those from Beer et al. (2002) and Bhattacharjee
et al. (2001). These investigators were able to demonstrate pat-
terns of gene expression that were common to both human and
murine lung ACs (Sweet-Cordero et al., 2005). Most interesting,
these researchers demonstrated that a Ki-ras expression signature
in human ACs that was not identifiable by statistical analysis unless
the mouse data was included in the integrated analyses, due to the
high degree of variability inherent in human lung tumor tissues,
results which have been confirmed by Creighton et al. (2005).

Interestingly, in all of these studies mutated RAS genes were
treated as a single entity, as the comparison that was made was
samples containing mutated RAS genes vs. those that did not.
Thus, to date, it is unclear to what extent these signatures reflect
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the differential effects of different RAS mutant alleles on down-
stream signaling pathways. Accounting for this added complexity
may allow a further refinement of the signatures down to the subset
of RAS stimulated genes that are the most critical for tumor initi-
ation and maintenance. Clearly, different RAS mutant alleles may
engage different subsets of RAS downstream effector pathways,
which may influence the gene expression profiles. This could be
the reason that statistical significance for RAS mutated vs. wild
type tumors could not be reached until the mouse data, which had
a more homogenous Ki-ras mutational spectrum, were added.

Recent studies have utilized synthetic lethal and genome wide
inhibitory RNA approaches to identify RAS effector molecules
that are critical for tumorigenesis (Kassie et al., 2008; Barbie et al.,
2009; Luo et al., 2009; Scholl et al., 2009; Singh et al., 2009; Vicent
et al., 2010). These studies have clearly shown the dependency
of tumor cells on a subset of RAS downstream effector pathways
when mutated RAS genes are present. All of these studies have
been conducted with the alleles that animal and in vitro studies
have identified as the most oncogenic RAS mutations. Future stud-
ies will thus need to compare the use of synthetic lethal approaches
with different RAS mutants. This will allow an understanding of
which mutant RAS alleles signal to these critical pathways and will
be an important approach in developing novel therapeutic agents.

EMERGING RESEARCH
A number of studies have shown that mutations in Ki-ras are
prognostic factors for poor patient outcome in lung cancer (Mit-
sudomi et al., 1991; Rodenhuis and Slebos, 1992; Rosell et al., 1993,
1996; Keohavong et al., 1996; Siegfried et al., 1997; Huncharek
et al., 1999). Patients whose tumors contained Ki-ras mutations
often exhibited poorer overall survival and reduced time to dis-
ease progression. As noted above, one study found that lung cancer
patients whose tumors contained the CYS, ARG, or ASP mutations
at codon 12 appeared to have a poorer prognosis than those con-
taining hydrophobic amino acid substitutions such as VAL or ALA
(Siegfried et al., 1997). However, a recent study in Stage III colon
cancer patients failed to find an association with disease-free or
overall survival (Ogino et al., 2009). A limitation of both of these
studies was the fact that mutations in Ki-ras were treated as a sin-
gle entity, so that all patients with mutations were compared to
patients with wild type Ki-ras.

More recent studies have examined the effects of RAS muta-
tions on drug sensitivity. Garassino et al. (2011) found that lung
tumors of patients harboring the CYS12 mutations were less sensi-
tive to cisplatin therapy but exhibited increased sensitivity to taxol
and pemetrexed relative to the VAL12 and ASP12 mutant alleles.
The ASP12 mutation demonstrated increased resistance to taxol
and enhanced sensitivity to sorafenib. While none of the RAS
mutants exhibited differential sensitivity to the tyrosine kinase
inhibitors erlotinib, a study examining colorectal cancer patients
with chemotherapy-refractory metastatic disease who harbored
the Ki-ras ASP13 mutation found a small but statistically signif-
icant increase in overall survival and progression-free survival
relative to patients harboring other Ki-ras mutations (De et al.,
2010). These results clearly suggest that different RAS mutations
may have a significant impact on patient response to therapeutic
interventions, and that the RAS mutational profile may need to

be considered in future clinical trials assessing the effects of novel
agents in tumors harboring RAS mutations.

Recent studies have identified novel mutations in RAS genes,
whose influence on tumorigenicity are first being assessed. Muta-
tions in exon 4 of Ki-ras coding for LYS117 and ALA146 were
associated with an increased probability of disease-free survival
despite increases in RAS-GTP (Janakiraman et al., 2010). In addi-
tion, recent studies by To et al. (2008) demonstrated that the minor
Ki-ras4A isoform may be the critical form of Ki-ras that is respon-
sible for lung carcinogenesis. Smith et al. (2010) recently identified
four additional Ki-ras mutations. The ASN117 and THR146 muta-
tions, when transfected into NIH3T3 cells, produced a similar
number of transformed foci as the ASP13 mutation but fewer
colonies than the VAL12 and ASP12 mutant alleles. The PHE19

and GLN164 mutant alleles, similar to the wild type allele, had lit-
tle transforming activity. When expression arrays were performed
for cell lines harboring the different alleles, differential expression
of a number of genes associated with tumor proliferation and cell
survival were observed, consistent with the different alleles stim-
ulating different gene expression programs. This work is among
the first to document mutant-specific alterations in gene tran-
scriptional programming, and may yield further insights into the
effector pathways of allele-specific signaling.

Finally, a Ki-ras single nucleotide polymorphism in the 3′
untranslated region of the gene that disrupts binding of the let7
microRNA has been shown to be a potential prognostic marker
of ovarian cancer risk, as 25% of unselected ovarian cancer cases
and 61% of hereditary ovarian cancer patients lacking mutations
in the BRCA genes harbored this RAS variant allele (Ratner et al.,
2010). Interestingly, Hwang and Cohen (1997) found that dele-
tion or inversion of a splicing enhancer region located in the 3′
untranslated region of the Ha-ras gene reduced the transcription
of RAS mRNA and thus decreased the transforming activity of
this variant allele. Thus, the list of mutant RAS alleles with the
differential ability to influence tumorigenicity continues to grow.
How each of these mutant alleles influences carcinogenicity and
the mechanisms by which they do so are an area of research that
should be a major emphasis for future studies.

CONCLUSION AND FUTURE PERSPECTIVES
Since the identification of mutant RAS genes as transforming
oncogenes, investigators have attempted to identify a mechanistic
basis for the allele-specific differences that could account for the
observed differences in transforming ability observed in vitro and
in vivo. These studies have so far failed to identify a specific gene
pathway or pathways that account for the differential effects of dif-
ferent RAS mutants. The majority of evidence obtained to date and
described above suggests that, in particular, the CYS12 mutation
may exhibit less potent transforming properties than the VAL12

and ASP12 mutants, but a rigorous comparison of all possible RAS
mutations of biological significance in the same experimental sys-
tem has not been conducted. Most studies have examined only
a limited number of mutations. In addition, the list of clinically
relevant and biologically active RAS mutations continues to grow.

Some of the reason for the lack of a clear mechanistic basis for
the observed phenotypic differences imparted by different mutant
RAS alleles may be due to very subtle effects of the mutant RAS
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alleles on multiple gene pathways (either at the transcriptome or
proteome level) and context as well as cell and tissue specific effects
of mutant RAS genes. Recent advances in technology should enable
us to determine the basis of these differences going forward. Bio-
chemical and kinetic studies demonstrating the redox sensitivity
of the CYS118 residue (Heo et al., 2005; Heo and Campbell, 2006;
Raines et al., 2007) suggest that specific mutant forms of RAS
could exhibit differential sensitivity to the redox state of the cell,
which could influence tumor progression by either direct effects
on RAS GTPase activity or indirect effects via alterations of protein
interactions between RAS and its downstream effectors. As illus-
trated by the expression profiling studies described above (Smith
et al., 2010), applications of transcriptomic and proteomic expres-
sion profiling hold much promise for delineating the allele-specific
effects of different RAS mutant alleles. These studies need to be
done in both human tumor samples as well as novel transgenic
models.

The development of knock-in mouse models for each of the
RAS mutant alleles would be a critically important advance in the
field. Because of the tissue specific and dose related effects of RAS
gene expression, it will be important to test these alleles in the same
genetic background, driven from the endogenous RAS promoters,
to eliminate some of the uncertainties associated with traditional
transgenic constructs. While these studies should initially be done
with Ki-ras, which is mutated more frequently than other RAS

family members in human cancer, extending this research to other
RAS family members will allow the development of a comprehen-
sive understanding of RAS signaling networks. This will provide
important information in terms of developing targeted thera-
pies to the alleles most responsible for driving tumorigenesis as
opposed to those that have much less significant contributions to
maintenance of the tumorigenic phenotype.

It is likely that the answer will not be simple and that more than
one mechanism will influence the behavior of different mutant
RAS alleles. Since RAS is the most commonly mutated gene in
human cancers and signals to a wide variety of molecules involved
in proliferation, cell death, cell survival, oxidative stress, angiogen-
esis, inflammation, and drug resistance (Campbell et al., 1998;
Hancock, 2003; Malumbres and Barbacid, 2003; Young et al.,
2009), it is likely that patients whose tumors harbor specific RAS
mutations will exhibit differences in survival, tumor aggressive-
ness, and response to chemotherapy agents. An understanding of
the properties of each of the RAS mutants in specific tissues will
aid in future attempts to personalize cancer treatment regimens
and assure the best possible outcomes for patients.
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