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Methods that collapse information across genetic markers when searching for association
signals are gaining momentum in the literature. Although originally developed to achieve
a better balance between retaining information and controlling degrees of freedom when
performing multimarker association analysis, these methods have recently been proven
to be a powerful tool for identifying rare variants that contribute to complex phenotypes.
The information among markers can be collapsed at the genotype level, which focuses on
the mean of genetic information, or the similarity level, which focuses on the variance of
genetic information.The aim of this work is to understand the strengths and weaknesses of
these two collapsing strategies. Our results show that neither collapsing strategy outper-
forms the other across all simulated scenarios.Two factors that dominate the performance
of these strategies are the signal-to-noise ratio and the underlying genetic architecture of
the causal variants. Genotype collapsing is more sensitive to the marker set being conta-
minated by noise loci than similarity collapsing. In addition, genotype collapsing performs
best when the genetic architecture of the causal variants is not complex (e.g., causal
loci with similar effects and similar frequencies). Similarity collapsing is more robust as
the complexity of the genetic architecture increases and outperforms genotype collaps-
ing when the genetic architecture of the marker set becomes more sophisticated (e.g.,
causal loci with various effect sizes or frequencies and potential non-linear or interactive
effects). Because the underlying genetic architecture is not known a priori, we also consid-
ered a two-stage analysis that combines the two top-performing methods from different
collapsing strategies. We find that it is reasonably robust across all simulated scenarios.
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INTRODUCTION
Methods that collapse information across genetic makers when
searching for association are gaining momentum in the literature
(e.g., Li and Leal, 2008; Madsen and Browning, 2009; Tzeng et al.,
2009, 2011; Bansal et al., 2010; Han and Pan, 2010; Hoffmann
et al., 2010; Morris and Zeggini, 2010; Price et al., 2010; Wu et al.,
2010, 2011; Zhang et al., 2010; Ionita-Laza et al., 2011; Neale et al.,
2011). Rather than assessing the association between a phenotype
and each marker individually, these methods aggregate informa-
tion across several markers and assess their collective effect on
the phenotype. These methods were originally developed for mul-
timarker analysis with an aim to find a better balance between
retaining information from multiple markers and controlling the
degrees of freedom. Recently, they have been extended to become
a powerful tool for the detecting rare variants. Due to the mod-
erate or low frequency and the large number of variants in these
analyses, pooling information across all markers is advantageous
and can enhance association signals that could be missed by using
traditional single marker approaches (Morris and Zeggini, 2010;
Ionita-Laza et al., 2011).

The information among markers can be collapsed at the geno-
type level or similarity level. Genotype collapsing methods focus
on the mean level of the genetic information, while similarity-
collapsing methods focus on the variance level of the genetic
information. At the genotype level, information can be collapsed
by calculating a weighted sum of the genotypes across all markers.
Several methods have been developed for determining the weights
used to create the combined genotype. Weights can be chosen
to maximize the information retained by the combined genotype
[e.g., weights based on Fourier transformation (Wang and Elston,
2007), linkage disequilibrium (LD; Li et al., 2009), and PCA (Gau-
derman et al., 2007; Wang and Abbott, 2008)] or to better target
variants of interest [e.g., weights based on the allelic frequency
(Li and Leal, 2008; Madsen and Browning, 2009; Han and Pan,
2010), functionality (Price et al., 2010), and estimated effective
size (Lin and Tang, 2011)]. At the similarity level, information can
be collapsed by quantifying the genetic similarity across all mark-
ers for each pair of unrelated individuals. Current developments
include the kernel machine approaches where identity-by-state
(IBS) is used as a kernel to summarize information (Kwee et al.,
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2008; Schaid, 2010a,b; Wu et al., 2010, 2011), building regression
models that relate trait similarity with genetic similarity (Wessel
and Schork, 2006; Tzeng et al., 2009, 2011; Mukhopadhyay et al.,
2010), or random effect methods (Goeman et al., 2004; Tzeng
and Zhang, 2007) where genetic similarity is used to specify the
variance–covariance structure of the multimarker effects.

Many comparative studies are available that investigate the
performance of different collapsing methods for detecting rare
variants (Bansal et al., 2010; Morris and Zeggini, 2010; Bacanu
et al., 2011; Basu and Pan, 2011) and common variants (Chap-
man and Whittaker, 2008; Lin and Schaid, 2009; Ballard et al.,
2010). They provide substantial insight for understanding the
strengths and weaknesses of each method and help researchers
select the most suitable approach for their analysis. For exam-
ple, genotype-level collapsing would be the optimal approach if
the effects of different loci are additive and of a similar size. On
the other hand, similarity-level collapsing are more powerful if
interactive or non-linear effects exist among the markers or if the
effect sizes vary radically across markers. While collapsing meth-
ods can improve the power to identify genetic variants over classic
single marker or multimarker approaches, the power gain comes
with limitations: Most collapsing methods target either rare or
common variants, but not both, and their performance typically
suffers when non-causal variants are included in the marker set.

Previous comparative papers also recognized the need for more
in depth studies to compare these methods across an exhaustive
set of scenarios that can occur when investigating complex phe-
notypes (Bansal et al., 2010; Basu and Pan, 2011). With this goal
in mind, we further investigate the strengths and weaknesses of
genotype collapsing and similarity collapsing over a wide range
of plausible scenarios. Unlike the previous comparative studies
that focused on the relative performance of individual methods,
in this work we seek to understand the advantages and drawbacks
of the two collapsing paradigms. That is, rather than examining
the ability of a set of particular methods for detecting rare variants
or common variants solely, we concentrate on the implications of
applying the two collapsing strategies. The factors that we examine
in this work include (a) the underlying genetic architecture of the
causal variants (i.e., effect size, frequency, and number causal alle-
les within a causal locus), (b) composition of the variant set (i.e.,
proportion of causal variants in the set and LD between causal
and non-causal loci in the set), and (c) the weighting scheme used
in the collapsing method. Our results show that neither collaps-
ing strategy outperforms the other across all simulated scenarios.
Genotype collapsing is more sensitive to the marker set being con-
taminated by noise loci than similarity collapsing. In addition,
genotype collapsing performs best when the genetic architecture
of the causal variants is not complex (e.g., causal loci with simi-
lar effects and similar frequencies). Similarity collapsing is more
robust as the complexity of the genetic architecture increases and
outperforms genotype collapsing when the genetic architecture
of the marker set becomes more sophisticated (e.g., causal loci
with various effect sizes or frequencies and potential non-linear
or interactive effects). Because the underlying genetic architecture
is not known a priori, we also considered a two-stage analysis that
combines two top-performing methods from the two collapsing
paradigms. The approach is shown to be reasonably robust across

all simulation scenarios and provides an attractive comprehensive
approach.

In the remaining sections of this paper, we briefly review
the representative genotype-level and similarity-level collapsing
methods we compared in the simulation study, describe the sim-
ulation study used to investigate the performance of the two
collapsing paradigms, present and interpret results of the simu-
lation study, and conclude with a discussion of the work’s major
findings and connections to the current literature.

MATERIALS AND METHODS
To investigate the strengths and weaknesses of the two collaps-
ing paradigms, we compared the performance of representative
methods from each school. We considered two genotype-level col-
lapsing methods, combined multivariate and collapsing (CMC; Li
and Leal, 2008) and variable threshold (VT; Price et al., 2010),
and one similarity-level collapsing method, gene-trait similarity
regression (SimReg; Tzeng et al., 2009, 2011). As explained in
Section “Gene-trait Similarity Regression,” we note that other cur-
rent similarity-collapsing methods can be viewed as special cases
of SimReg, such as the C-alpha test (Neale et al., 2011) and the
sequence kernel association test (SKAT; Wu et al., 2011). For each
paradigm, we considered methods that target rare variants (VT for
genotype level and SKAT for similarity level) and those that use all
available variants (CMC for genotype level and SimReg for simi-
larity level). In addition, we considered one standard approach for
marker-set analysis that does not employ a collapsing technique,
the minimum p-value method (MinP). Each method investigated
in this work has been developed and reported previously. Thus,
we only briefly review the main components of each method here.

METHODS
Single SNP-based marker-set test: MinP
One standard approach for examining association between a
marker set and a phenotype is to use the best-scoring SNP from
the set as a summary measure for the evidence of association for
the entire marker set (referred to as MinP). The procedure begins
by testing each SNP in the marker set for association individu-
ally, and the best-scoring SNP is taken to be the variant with the
minimum p-value. Permutation is then used to adjust for multiple
comparisons and to account for the LD structure among the SNPs
in the marker set. This is achieved by permuting the phenotype R
times and recording the p-value of the best-scoring SNP from each
permuted data set. The empirical p-value is then calculated as pro-
portion of minimum p-values from the permuted data sets that
are less than the minimum p-value observed in the original data
set. In this work, R was taken to be 1000 and Pearson’s Chi-Square
test was used to obtain the association p-value for each marker.

Combined multivariate and collapsing method
The CMC method (Li and Leal, 2008) is a procedure that combines
collapsing information across genetic markers and multivariate
tests into a single approach. The procedure aims to unify the
advantages of both collapsing, which enriches association sig-
nals and decreases degrees of freedom by aggregating information
across multiple markers, and multimarker tests, which model the
association of all variants in a marker set simultaneously. Unlike
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most rare-variant genotype collapsing methods, the CMC test sta-
tistic is computed on all loci in the marker set rather than focusing
only on loci with low minor allele frequency (MAF). The pro-
cedure begins by dividing the markers into subgroups based on
some pre-specified criteria. Then within each group, the infor-
mation across all markers is collapsed such that an individual is
coded as a 1 if they have a rare allele present at any marker within
the sub-group and as a 0 otherwise. A multivariate test is then
applied to the groups of collapsed markers to examine the associ-
ation between the marker set and the phenotype. In this work, we
used MAF to define subgroups. If the MAF of a marker was greater
than f∗, the marker created a singleton, otherwise the marker was
placed into a group with all other markers with MAF less than
f∗ and collapsed in the manner described above. The multivariate
test used to determine association was Hotelling’s T 2 test (Xiong
et al., 2002).

Variable threshold method
Based on the assumption that variants with MAF less than T are
more likely to be functional than variants with MAF greater than
T, the VT method (Price et al., 2010) focuses only on loci with MAF
lower than a certain threshold T. Instead of a fixed MAF threshold
that has to be determined a priori (e.g., Madsen and Browning,
2009 and CMC), VT allows the threshold T to vary when assess-
ing the association between a marker set and a phenotype. The
procedure begins by calculating a score value z(T ) for each allele
frequency threshold T and finding the maximum score value zmax

over all thresholds. For a given value of T, the score value compares
the number of rare variants (i.e., those with MAF less than T ) in a
marker set among distinct phenotype states. Permutation is then
used to assess the statistical significance of zmax. This is achieved
by permuting the phenotype R times and recording the maximum
score value from each permuted data set. The empirical p-value
is then calculated as proportion of maximum score values from
the permuted data sets that are greater than the maximum score
value observed in the original data set. In this work, R was taken
to be 1000 and the score value z(T ) was calculated following the
procedure outlined by Price et al. (2010).

Gene-trait similarity regression
Gene-trait similarity regression (SimReg) quantifies genetic sim-
ilarity between pairs of individuals at each locus and aggregates
multimarker information by summing the similarity scores across
all loci. The method regresses trait similarity between individual
pairs on their overall genetic similarity, and then evaluates the
gene-trait association by testing the significance of the resulting
regression coefficient. Typically, the test statistic is computed from
all loci in the marker set with locus-specific weights that depend
on allele frequencies. These weights are designed to better dis-
tinguish between the sharing due to a rare event from that due
to a common event. In this work, the weights were taken to be
f−X /4 where f is the allele frequency and X was taken to be 0, 3,
or 4. Thus, as X increases away from 0 the contribution of rare
variants is weighted more strongly in the test statistic. It has been
shown that the SimReg regression coefficient can be expressed
as a variance component of a random effects model (Tzeng et al.,
2009,2011). This result unifies gene-trait similarity regression with

other variance-component methods, including the kernel machine
regression, as well as their special cases that target rare variants only
(e.g., the C-alpha and SKAT methods). Specifically, the C-alpha
method is SimReg with a thresholding weight based on the MAF,
and SKAT is SimReg with weights taken to be (1 − f)24. Unlike the
weights typically used with SimReg, the C-alpha and SKAT weights
are designed to only consider rare variants in the marker set. In
this work, trait similarity and genetic similarity were calculated by
matching allele proportions as outlined in Tzeng et al. (2009,2011),
and the significance of the regression coefficient from SimReg was
assessed using the score test developed by the same authors.

SIMULATION STUDIES
We performed simulation studies to explore the strengths and
weaknesses of the two different collapsing paradigms when ana-
lyzing case–control data over a wide range of scenarios that
could occur when investigating the genetic architecture of a
complex phenotype. We compared the powers of representative
genotype-based and similarity-based collapsing methods against
each other, and the performance was benchmarked against a
standard approach for marker-set analysis that does not involve
collapsing information across markers. For ease of discussion, let
geno-sum refer to genotype-level collapsing and let sim-sum refer
to similarity-level collapsing.

Simulation settings
Our simulation studies were based on two haplotype distributions
derived from aligned sequence data on chromosome 21 of 109
individuals from the CHB sample of the 1000 Genomes Project
(The 1000 Genomes Project Consortium, 2010). We performed
variant calling using GATK (McKenna et al., 2010; DePristo et al.,
2011) and divided the resulting variants into groups by exon.
Marker genotypes were phased using BEAGLE (Browning and
Browning, 2007). The first haplotype distribution was based on
a 12-locus exon that consisted of 11 biallelic SNPs and 1 indel
with three alleles. The second haplotype distribution was formed
by combining three different exons, each with 10 biallelic SNPs, to
create a 30-locus region. The MAFs for each marker based on the
genotypes of the 109 sampled individuals are given in Table 1 for
Haplotype Distributions 1 and 2, respectively.

For Haplotype Distribution 1, case–control samples were gen-
erated assuming that 4 out of the 12 markers were causal. All
combinations of four causal markers were considered in the sim-
ulation studies, resulting in 495 possible scenarios. Data was gen-
erated under four simulation settings in order to investigate the
performance of genotype-level vs. similarity-level collapsing. (1)
Under the first setting (Figure 1), all four causal loci increase the
disease risk with the same odds ratio of 1.3. (2) Under the second
setting (Figure 2), we allowed the four causal loci to have vari-
ous effect sizes on the phenotype. Those with MAF less than 0.01
were set to have an odds ratio of 2 while all others were set to
have an odds ratio of 1.3. (3) Under the third setting (Figure 3),
we took advantage of the triallelic indel in the marker set and
allowed two of three alleles from the indel to be causal (i.e., the
rarest and second rarest, with frequencies 0.009 and 0.096 respec-
tively). In this setting, we only considered scenarios where this
indel was included as one of the four causal loci (which resulted
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Table 1 | Minor allele frequency (MAF) of markers resulting from

sequencing data from the CHB sample of 1000 Genomes Project.

Haplotype distribution 1 Haplotype distribution 2

Marker ID* MAF Marker ID* MAF

A 0.3440 1 0.1881

B 0.1697 2 0.1330

C 0.0275 3 0.1101

D 0.0229 4 0.0734

E** 0.0092 5 0.0596

F–L 0.0046 6 0.0459

7 0.0367

8 0.0321

9–10 0.0275

11 0.0229

12 0.0138

13–18 0.0092

19–30 0.0046

∗Marker IDs were assigned according to sorted MAFs rather than genomic posi-

tion.
∗∗Marker E is a one indel with three alleles while the other markers are biallelic

SNPs.

in 165 possible scenarios instead of 495). Each causal variant was
set to have the same effect on the phenotype with an odds ratio
of 1.3. (4) Under the fourth setting (Figures 4–5), we considered
different proportions of causal loci in the marker set – 2 out of 12
and 4 out of 4. In both scenarios, the causal loci were set to have
the same effect on the phenotype with an odds ratio of 1.3. When
2 out of 12 loci were assumed to be causal, all combinations of
two markers were considered, resulting in 66 possible scenarios.
When four out of four loci were assumed to be causal, the same
495 possible scenarios were considered, but the remaining eight
loci were not included in the marker set during the analysis.

For Haplotype Distribution 2, case–control samples were gen-
erated assuming that 2 out of the 30 markers were causal. All com-
binations of two causal markers were considered in the simulation
studies, resulting in 435 possible scenarios. Data was generated
under two simulation settings in order to investigate the two col-
lapsing paradigms’ performance in a larger genomic region with a
low proportion of causal variants. (1) The first setting (Figure 6)
is analogous to Setting 1 for Haplotype Distribution 1. That is,
both causal loci were set to have the same effect size on the phe-
notype – an odds ratio of 1.3. (2) The second setting (Figure 7) is
analogous to Setting 2 for Haplotype Distribution 1. That is, both
causal loci were allowed to have different effect sizes with the same
direction on the phenotype. When the MAF of the causal loci was
less than 0.01, the odds ratio was taken to be 2; otherwise it was
taken to be 1.3.

Data generation
To create a case–control sample of size n under an additive genetic
model, we generated the haplotype pair of an individual condi-
tional on their disease status and then dissolved the haplotype
pair into its unphased genotypes. Let P(H = h|Y = y) denote the

probability of having a particular haplotype pair conditional on
disease status. This probability can be expressed as

P(H = h|Y = y) = P(Y = y|H = h) · P(H = h)
∑

hP(Y = y|H = h) · P(H = h)
.

For a case individual, P(Y = 1|H = h) was found using the logistic
regression model

P(Y = 1|H = h) = exp
{
β0 + Z (D)T β

}

1 + exp
{
β0 + Z (D)T β

} .

For a control individual, P(Y = 0|H = h) = 1 − P(Y = 1|H = h).
The function Z (·) depends on the genetic mode of the loci associ-
ated with the disease. Under an additive genetic model, Z (D) = D
where D is the vector of minor allele counts for each locus in a
given haplotype pair. The vector β was taken to be the log of 1.3 or
2 for all causal loci and the log of 1.0 for all non-causal loci in the
marker set. The value of β0 was set to maintain a disease prevalence
of 1%. Once P(Y = y |H = h) was calculated for each haplotype
pair formed from the derived haplotype distribution, the vectors
P(H |Y =y) = (P(H = h1|Y = y). . .P(H = hq|Y = y)) were calculated
for Y = 0 and Y = 1, where q is total number of haplotype pairs.
The sample was generated by taking 1000 draws from the multi-
nomial distribution parameterized by P(H |Y =0) to determine the
haplotype pairs of the control individuals and by taking 1000 draws
from the multinomial distribution parameterized by P(H |Y =1) to
determine the haplotype pairs of the case individuals. The haplo-
type pair of each individual was then dissolved into its unphased
genotype.

Computational details
For each simulation setting, 500 replicate data sets were generated
for each possible combination of 4 (or 2) causal loci. Each data
set was analyzed using the following methods: (1) MinP; (2) CMC
with the MAF collapsing threshold set at 0.01 or 0.05, which will
be referred to as CMC01 and CMC05, respectively; (3) VT; (4)
SimRegX, i.e., SimReg based on all loci with weights taken to be
f−0/4 (SimReg0), f−3/4 (SimReg3), and f−4/4 (SimReg4); and (5)
SKATsr, i.e., SimReg based on rare variants only by using the SKAT
weight (1 − f)24. In addition, we also considered a two-stage proce-
dure that combines genotype-level collapsing and similarity-level
collapsing. The two-stage procedure, referred to as 2stage, per-
forms both SimReg0 and VT, but assesses the significance of each
analysis at α/2 instead of α like the other methods, where α is
a desired significance level. If either underlying method rejects
the null hypothesis, the two-stage procedure rejects the null. The
performance of each method was compared by calculating their
power to detect the association between the marker set and the
phenotype at α = 0.05 as well as their Type I error rate.

RESULTS
To investigate the performance of each collapsing paradigm, we
calculated each representative method’s Type I error rate and
power to detect an informative marker set (i.e., one containing
causal loci). We present the Type I error rates in Table 2. All meth-
ods have desirable and similar performances under a null model.
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FIGURE 1 | Power results when casual loci have same effects under 4

causal loci out of 12 markers setting for binary trait. Power is calculated
over 500 replicate data sets with α = 0.05; there are 495 possible
combinations of 4 causal loci out of 12 markers; boxplots summarize the

power results for marker-combinations belonging to each average functional
allele frequency [(A) is 0–0.02, (B) is 0.04–0.06, (C) is 0.08–0.11, (D) is
0.13–0.15] and percent-signal category; 1 = CMC01, 2 = CMC05, 3 = SimReg0,
4 = SimReg3, 5 = SimReg4, 6 = SKATsr, 7 =VT, 8 = 2Stage, 9 = MinP.

Each had Type I error rates that were around the nominal level
being considered (i.e., α = 0.01, 0.05, or 0.10). We present power
results in Figures 1–8. Each figure groups the results into categories
defined by combinations of two factors – range of average causal
allele frequency (across columns) and range of percent-signal
(down rows). Percent-signal is calculated as

mc

m
+ R2

i − min R2

max R2 − min R2
· mnc

m
,

where m is the total number of loci in the marker set, mc is the
number of causal loci in the marker set, mnc = m − mc is the num-
ber of non-causal loci, and R2

i is the average pair-wise R2 between
causal and non-casual loci for simulation scenario i. The quantities

maxR2 and minR2 are the maximum and minimum, respectively,

of R2
i across all i. The fraction (R2

i −min R2)/(max R2 −min R2)

is used to rescale the small range of the observed R2
i to range

from 0 and 1. Within each figure, boxplots of the power results
(listed on the y-axis) are given for the methods under consid-
eration (listed on the x-axis) for each category. Boxplots were
created using the power results from the simulated marker-set
scenarios that belonged to each average-causal allele frequency by
percent-signal category.

UNDERLYING GENETIC ARCHITECTURE
Causal allele frequency (Figures 1 and 6)
The average causal allele frequency reflects the ratio of rare causal
variants to common causal variants in the analysis set. A low aver-
age causal allele frequency results from a high rare to common
variant ratio, whereas a moderate or high average causal allele
frequency results from a mix of rare and common variants or a
low rare to common variant ratio. In Figures 1 and 6, geno-sum
and sim-sum methods have comparable performances when com-
paring rare-variant approaches to rare-variant approaches and
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FIGURE 2 | Power results when casual loci have different risk effect sizes

under 4 causal loci out of 12 markers setting for binary trait. Power is
calculated over 500 replicate data sets with α = 0.05; there are 495 possible
combinations of 4 causal loci out of 12 markers; boxplots summarize the

power results for marker-combinations belonging to each average functional
allele frequency [(A) is 0–0.02, (B) is 0.04–0.06, (C) is 0.08–0.11, (D) is
0.13–0.15] and percent-signal category; 1 = CMC01, 2 = CMC05, 3 = SimReg0,
4 = SimReg3, 5 = SimReg4, 6 = SKATsr, 7 =VT, 8 = 2Stage, 9 = MinP.

all-variant approaches to all-variant approaches. That is, VT and
SKATsr have similar power when the causal allele frequencies are
low. However, when the causal allele frequencies increase, VT per-
forms slightly better than SKATsr. Similarly, CMC and SimRegX
have similar power with the exception SimReg4 at moderate and
high frequencies. In these settings, SimReg4 under performs com-
pared to the other versions of SimRegX and tends to perform more
like the rare-variant approaches as it most strongly upweights
the contribution from rare variants. As expected, the relative
performance between rare-variant and all-variant approaches
depends on the underlying causal allele frequencies. When causal
allele frequencies are low (i.e., Column 1), methods that target rare
variants (i.e., VT and SKATsr) have the best performance. As the
frequencies increase to moderate or high (i.e., Columns 2–4 in the
Figure 1 and Columns 3–4 in Figure 6), methods that use all vari-
ants (i.e., CMC and SimRegX) start to outperform the rare-variant
approaches. At these elevated causal allele frequencies, the power

difference between rare-variant and all-variant approaches is more
substantial for sim-sum methods (i.e., SKATsr vs. SimRegX) than
for geno-sum methods (i.e., VT vs. CMC) as the power of SKATsr
remains relatively constant as the frequencies increase. SKATsr
does not take advantage of any information from common vari-
ants because it extremely downweights their contributions in the
combined genotype. As a result, VT typically outperforms SKATsr
when causal allele frequencies are high because it uses variable
thresholding that can include common variants in the analysis.
The two-stage procedure, which combines VT and SimReg0, does
not suffer the same dramatic power switch when the causal allele
frequencies change and is able to maintain similar or higher power
than the best collapsing approach. MinP never uniformly outper-
forms or is outperformed by any geno-sum or sim-sum method.
However, it often had satisfactory performance when the percent-
signal is low (e.g., the bottom row in Figures 1, 3, 4, and 6). The
above observations hold regardless of the percent-signal. When
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FIGURE 3 | Power results for multiple causal alleles in a locus with same

effects under 4 loci out of 12 markers setting for binary trait. Power is
calculated over 500 replicate data sets with α = 0.05; there are 165 possible
combinations of 4 causal loci out of 12 markers; boxplots summarize the

power results for marker-combinations belonging to each average functional
allele frequency [(A) is 0.02–0.06, (B) is 0.06–0.10, (C) is 0.10–0.14, (D) is
0.14–0.16] and percent-signal category; 1 = CMC01, 2 = CMC05, 3 = SimReg0,
4 = SimReg3, 5 = SimReg4, 6 = SKATsr, 7 =VT, 8 = 2Stage, 9 = MinP.

FIGURE 4 | Power results when casual loci have same effects under 4

causal loci out of 4 markers setting for binary trait. Power is calculated over
500 replicate data sets with α = 0.05; there are 495 possible combinations of 4
causal loci out of 12 markers; boxplots summarize the power results for

marker-combinations belonging to each average functional allele frequency
[(A) is 0–0.02, (B) is 0.04–0.06, (C) is 0.08–0.11, (D) is 0.13–0.15] and
percent-signal category; 1 = CMC01, 2 = CMC05, 3 = SimReg0, 4 = SimReg3,
5 = SimReg4, 6 = SKATsr, 7 =VT, 8 = 2Stage, 9 = MinP.
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FIGURE 5 | Power results when casual loci have same effects under 2 loci

out of 12 markers setting for binary trait. Power is calculated over 500
replicate data sets with α = 0.05; there are 66 possible combinations of 2
causal loci out of 12 markers; boxplots summarize the power results for

marker-combinations belonging to each average functional allele frequency
[(A) is 0–0.01, (B) is 0.01–0.03, (C) is 0.08–0.10, (D) is 0.16–0.26] and
percent-signal category; 1 = CMC01, 2 = CMC05, 3 = SimReg0, 4 = SimReg3,
5 = SimReg4, 6 = SKATsr, 7 =VT, 8 = 2Stage, 9 = MinP.

investigating the impact of other simulation factors, we will refer
back to this scenario as a baseline for comparison.

Magnitude of causal allele effect (Figures 2 vs. 1 and 7 vs. 6)
When we allow the underlying causal variants to have different
effects sizes in the same direction, we see an overall increase in
power for all methods. The largest gain in power is seen for rare-
variant sim-sum approaches, as seen in SKATsr which shortens
its gap with VT or even has better power when, e.g., compar-
ing Figure 2 to Figure 1. Substantial power gain is also observed
for all-variant sim-sum methods at low causal allele frequencies,
where SimReg3 and SimReg4 have comparable or better power
than VT and SKATsr. Nevertheless, the general pattern of results
observed in the baseline scenario still holds. That is, geno-sum and
sim-sum methods have comparable performances when compar-
ing similar approaches (i.e., rare-variant to rare-variant, similarly
for all-variant approaches) across all simulation settings.

Multiple causal alleles in a locus (Figures 3 vs. 1)
When we allow multiple alleles within a locus to be causal with
the same effect, sim-sum methods generally perform better than
geno-sum methods. That is, SimReg3 is the best or near-best across
all simulation settings. When comparing rare-variant approaches,
SKATsr performs better than VT at low frequencies and becomes
comparable to VT when the frequencies increase (i.e., no longer
have power loss). This result is different from the baseline scenario
where SKATsr is comparable to VT when frequencies are low and
tends to have less power as frequencies increase. Similarly, when
comparing all-variant approaches, SimRegX outperforms CMC,

with the exception of SimReg4, regardless of the underlying causal
allele frequencies. These patterns hold regardless of percent-signal.

COMPOSITION OF MARKER SET
Proportion of causal Loci (Figures 1, 4, 5, and 6)
Results of different proportions of causal loci are shown in Figure 4
(for 4 out of 4), Figure 1 (for 4 out of 12), Figure 5 (for 2 out of 12),
and Figure 6 (for 2 out of 30). When the proportion of causal loci
is high (4/4 scenario; Figure 4), geno-sum performs better than
or similar to sim-sum across different settings. Specifically, for
all-variant methods (i.e., CMC vs. SimRegX), geno-sum and sim-
sum methods generally perform comparably, and at low causal
allele frequencies, geno-sum has a slight advantage over sim-sum.
For rare-variant methods (i.e., VT vs. SKATsr), geno-sum clearly
outperforms sim-sum. Furthermore, VT performs comparable to
SimRegX even at moderate and high causal allele frequencies.

When the proportion of causal loci drops, all methods suffer
a power loss, but the loss suffered by sim-sum is less than that
suffered by geno-sum. As a result, sim-sum begins to have simi-
lar or more power than its geno-sum counterpart. For example,
if we focus on low causal alleles frequencies (i.e., first column),
we see that the power gain of VT over SKATsr becomes smaller
and smaller when we move from Figure 4 (4/4), to Figure 1
(4/12), to Figure 5 (2/12) and to Figure 6 (2/30). Additionally,
when percent-signal is low, SKATsr can outperform VT. The
relative performance of the two-stage procedure remains con-
sistent regardless of the proportion of causal loci. That is, the
power of 2stage always falls between that of VT and SimReg0, and
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FIGURE 6 | Power results when casual loci have same effects under 2 loci

out of 30 markers setting for binary trait. Power is calculated over 500
replicate data sets with α = 0.05; there are 435 possible combinations of 2
causal loci out of 30 markers; boxplots summarize the power results for

marker-combinations belonging to each average functional allele frequency
[(A) is 0–0.01, (B) is 0.01–0.05, (C) is 0.05–0.10, (D) is 0.10–0.20] and
percent-signal category; 1 = CMC01, 2 = CMC05, 3 = SimReg0, 4 = SimReg3,
5 = SimReg4, 6 = SKATsr, 7 =VT, 8 = 2Stage, 9 = MinP.

thus outperforms the SimReg0 at low causal allele frequency when
VT is superior and vice versa when the causal allele frequency is
moderate or high.

LD between causal and non-causal loci (Figure 1)
Recall that the calculation of percent-signal involves two compo-
nents: (1) R2 that reflects the LD between causal and non-causal

loci in the marker set, and (2) the proportional of causal loci.
As such, percent-signal can be used as a proxy to investigate the
effects of the underlying LD on the paradigms’ performances.
All methods suffer a power loss as LD decreases (i.e., Figure 1,
from top row to bottom row), but sim-sum is less sensitive to
the decrease of LD compared to geno-sum. Therefore, although
general trends among the methods’ performances hold regardless
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FIGURE 7 | Power results when casual loci have different risk effect sizes

under 2 loci out of 30 markers setting for binary trait. Power is calculated
over 500 replicate data sets with α = 0.05; there are 435 possible
combinations of 2 causal loci out of 30 markers; boxplots summarize the

power results for marker-combinations belonging to each average functional
allele frequency [(A) is 0–0.01, (B) is 0.01–0.05, (C) is 0.05–0.10, (D) is
0.10–0.20] and percent-signal category; 1 = CMC01, 2 = CMC05, 3 = SimReg0,
4 = SimReg3, 5 = SimReg4, 6 = SKATsr, 7 =VT, 8 = 2Stage, 9 = MinP.

Table 2 |Type I error rates averaged over the 495 possible scenarios for 4 causal markers out of 12 and 500 replicate data sets.

Sig Level (α) CMC01 CMC05 SimReg0 SimReg3 SimReg4 SKATsr VT 2-Stage MinP

0.01 0.0098 0.0101 0.0132 0.0111 0.0120 0.0105 0.0097 0.0126 0.0101

0.05 0.0498 0.0499 0.0496 0.0499 0.0487 0.0492 0.0502 0.0515 0.0504

0.10 0.0999 0.0997 0.0926 0.0969 0.0924 0.0966 0.1007 0.0965 0.1002
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FIGURE 8 | Power results when casual loci have same effects under

2 loci out of 12 markers setting for quantitative trait. Power is
calculated over 500 replicate data sets with α = 0.05; there are 66
possible combinations of 2 causal loci out of 12 markers; boxplots
summarize the power results for marker-combinations belonging to each

average functional allele frequency [(A) is 0–0.01, (B) is 0.01–0.03, (C) is
0.08–0.10, (D) is 0.16–0.26] and percent-signal category; 3 = SimReg0,
4 = SimReg3, 5 = SimReg4, 6 = SKATsr, 7 =VT, 8 = 2Stage, 9 = MinP
(Note: 1 = CMC01 and 2 = CMC05 are not applicable to quantitative
traits).

of the underlying LD, the magnitude of the power gain or loss
between the geno-sum and sim-sum methods is influenced by
changes in LD. For rare-variant approaches, SKATsr is quite robust
to the decrease of LD, while VT is sensitive to the drop of LD and
decreases with LD. As a result, when the causal allele frequen-
cies are low, the relative performance of SKATsr vs. VT flip-flops
depending on LD (i.e., Column 1 in Figure 1). For moderate or
high allele frequencies, the relative power loss of SKATsr compared
to VT increases as LD increases. Because SKATsr does not incor-
porate information from common variants, it cannot fully benefit
from an increase in LD like VT whose power increases with LD
as it is able to incorporate information from common variants
(i.e., Figures 1, 5, and 6). For all-variant approaches, SimRegX
and CMC are fairly robust to LD changes and their performances
remain comparable as LD changes, with the exception of SimReg4.
CMC is a hybrid of a geno-sum approach and a classic genotype-
based multimarker approach; therefore it is not as sensitive to the
underlying LD pattern like typical geno-sum approaches such as
VT. The power of the two-stage procedure is also fairly robust to
changes in LD.

WEIGHTING SCHEMES USED IN COLLAPSING METHODS
SimReg method
SimReg0, SimReg3 vs. SimReg4. For sim-sum methods based
on all loci, when the causal allele frequencies are low, SimReg0,
which does not upweight contributions from rare alleles, has the

lowest power, and SimReg4, which uses the strongest weights to
promote sharing from rare alleles, has the highest power. And as
expected, when the causal allele frequencies increase, the relation-
ship flips. This pattern of results holds regardless of percent-signal.
However, the pattern does not hold when multiple alleles within
a particular locus are causal (Figure 3). Under this scenario, Sim-
Reg4 no longer outperforms the other versions of SimRegX at
low causal allele frequencies; instead SimReg3 performs the best.
Overall, the results show that using strong weights can boost
the power to detect rare variants, but it may risk losing power
when some causal variants are common. Among the weights
studied, SimReg3 appears to achieve a better compromise and
exhibited more robustness against the influence of causal allele
frequencies.

Rare variants vs. all variants. When the causal loci are rare, the
results suggest that SimReg4 is not strong enough to surpass VT
and more extreme weights such as SKAT weights are needed. At
low causal allele frequencies, SKATsr outperforms SimReg4, and
SimReg4 performs comparably to SimReg3 which outperforms
SimReg0. As the causal allele frequencies increase, SKATsr and
SimReg4 suffer a power loss, which is quite severe for SKATsr.
This again suggests that it might be advantageous to use a sim-
sum method that considers all variants with a moderate weighting
scheme (e.g., SimReg3), since it achieves better power at moderate
and high causal allele frequencies, and yet the power loss at low
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causal allele frequencies is not as severe as the power loss observed
for SKATsr at moderate and high causal allele frequencies.

CMC method
Like SimReg, which version of CMC performs the best appears
to depend on the frequency of the causal alleles in the marker
set (see Figures 1–3). When the causal allele frequencies are low,
CMC01 performs better than CMC05. However, when the causal
allele frequencies are moderate or high, CMC05 performs better
than CMC01. This pattern holds regardless of percent-signal, the
magnitude of the causal effect, or the number of causal alleles at
a particular locus. These results suggest using a fixed threshold
in geno-sum methods may be unsatisfactory. When the thresh-
old is set too low, the power of CMC may suffer due to increased
degrees of freedom. However, if the threshold is set too high, the
power of CMC may also suffer as noise loci are introduced into
the combined genotype.

VT method
The weighting scheme of VT is to triage loci with high MAF. It
weights each locus by an indicator function, i.e., weight equal to 1
if MAF is less than a data-driven threshold T, and weight equal to 0
otherwise. As a result, it performed the best if all causal alleles have
small frequencies. It suffered non-trivial power loss if some hetero-
geneity existed among allele frequencies. Nevertheless, compared
to other approaches that target rare variants (e.g., SKATsr), the
advantage of a data-driven threshold becomes apparent when non-
rare variants are present in the marker set: The power loss between
VT and its all-variant counterpart is significantly less severe than
that of SKATsr. VT’s adaptive threshold permits the inclusion of
some information from common variants, while SKATsr’s strong
weight against common variants does not allow them to contribute
any information to the combined genotype.

DISCUSSION
Collapsing methods are drawing big attention due to their useful-
ness in marker-set analysis and rare variant detection. Collapsing
information can be done at genotype level or at similarity level.

In this work, we investigated the implications of employing
these different collapsing strategies when performing multimarker
association analysis in order to uncover the strengths and weak-
nesses of the two paradigms. Using realistic data based on 1000
Genomes Project, we considered scenarios where the causal alleles
can be rare, non-rare, or a mixture of two, where the causal loci
can be biallelic SNPs or multiallelic markers, and where the asso-
ciation signal of a marker set, quantified based on the proportion
of causal loci and LD structure, varied from weak to strong. We
also considered approaches proposed to better target rare vari-
ants and those that use all variant information in the marker set.
For genotype-level collapsing, we considered VT, which aggregates
and uses information only from loci with MAF below the adaptive
threshold, and CMC, which collapses rare-variant information but
retains and analyzes information from all loci. For similarity-level
collapsing, we considered SimReg which can incorporate many
current variance-component based approaches (e.g., C-alpha and
SKAT) as special cases. As a result, SimReg can be used as a rare-
variant as well as an all-variant approach. We considered weights

that upweighted the contribution from rare variants with varying
strengths, ranging from the extreme case that placed almost no
weight on common variants (SKATsr), to strong-but-not-extreme
weights against common variants (SimReg4 and SimReg3), to not
promoting rare variants at all (SimReg0).

Our results show that neither collapsing strategy outperforms
the other across all simulated scenarios. Nevertheless, employing
a collapsing strategy is advantageous across all simulated scenar-
ios. At least one of the two strategies resulted in higher power
than the standard approach which does not aggregate informa-
tion across markers. Two factors that dominate the performance
of the collapsing strategies are the signal-to-noise ratio and the
underlying genetic architecture of the causal variants. We found
that similarity-level collapsing tends to be more robust to changes
in the signal-to-noise ratio. That is, the power loss due to the inclu-
sion of non-causal variants in the marker was much less substantial
for similarity-level collapsing than for genotype-level collapsing.
This can be seen by comparing the power loss from Figure 4 (i.e.,
4 out of 4) to Figure 1 (4 out of 12), Figure 5 (2 out of 12), and
Figure 6 (2 out of 30), as well as the similar or higher power of sim-
ilarity collapsing than genotype collapsing when the proportion of
the functional loci is moderate or low (e.g., Figures 5–7).

The performance of these collapsing strategies was also heav-
ily influenced by the underlying genetic architecture of the causal
variants, which we refer to as their effect patterns (e.g., same or
varying effect sizes/directions, linear vs. non-linear, additive vs.
interactive) and the variant frequencies. Genotype-level collaps-
ing generally performs best when the genetic architecture of the
causal variants is not complex. That is, the causal variants have
similar, additive, linear effects with similar frequencies. When col-
lapsing at the genotype level, the underlying philosophy is that all
loci share the same effect size (and hence can be well detected
by a common regression coefficient). Therefore the approach
lends itself to scenarios where the proportion of functional loci
in a marker set is high and each locus exhibits similar influ-
ence on traits. In contrast, collapsing at the similarity level can
be viewed as test of the variation among regression coefficients
and allows each locus to have a different effect size. As a result,
this approach can accommodate more complex genetic architec-
tures such as a mixture of rare and non-rare variants, different
effect sizes and directions, and multiple causal alleles within a
locus. This notion is supported by our results which show that
similarity-level collapsing is more robust as the complexity of the
genetic architecture increases and outperforms genotype collaps-
ing when the genetic architecture of the marker set becomes more
sophisticated.

The underlying causal allele frequencies impact the choice of
the weighting scheme (i.e., approaches based on all variants vs.
rare variants only) more than the choice of collapsing paradigm.
As expected, when the causal variants are rare, approaches that
target rare variants will be the best, but when there is a mixture of
rare and common, approaches that use all variant information will
be the best. The power lost by using a rare-variant approach when
common causal variants are present in the marker set is much
more severe than the power lost by using an all-variant approach
when the causal variants are all rare. Based on this observation and
because the frequency of causal variants is not known a priori, a
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reasonable strategy would be to use an all-variant approach with
a moderate weight against common variants, such as SimReg3
or CMC with a suitable threshold. Indeed, our results also show
that using an adaptive threshold can gain robustness against the
unknown frequency distributions of the causal variants (i.e., the
relatively small power loss of VT compared to SKATsr for high
allele frequencies). This suggests that CMC with variable threshold
holds good potential.

Because the optimal statistical methods depend on the
unknown architecture of the causal variants and the marker set,
we also considered a two-stage analysis. The two-stage procedure
performs both VT, which generally performs the best for rare vari-
ants, and SimReg0, which generally performs the best or near-best
for common variants. Like CMC, this hybrid strategy uses two dif-
ferent strategies to detect rare and non-rare variants. However the
two-stage approach can gain efficiency by using fewer degrees of
freedom when modeling multiple common variants and is applic-
able to quantitative traits. By combining the top method from
each scenario, the two-stage approach is reasonably robust and
yields comparable though not necessarily the highest power across
all simulation scenarios. It provides an attractive alternative to
SimReg3 and CMC with variable threshold.

We focused on binary phenotypes in our simulation studies.
However, most of the methods considered here are applicable to
quantitative phenotypes (except CMC). We simulated data under
one setting (2 causal loci out of 12 markers with same effects;
see Figure 8) to compare the performance of these methods for
binary and quantitative traits. The general pattern of our findings
typically holds between the two trait types. In short, genotype col-
lapsing is more sensitive to the marker set being contaminated by
noise loci than similarity collapsing. In addition, genotype col-
lapsing performs best when the genetic architecture of the marker
set is not complex (e.g., causal loci with similar effects and similar
frequencies). Similarity collapsing is more robust as the complex-
ity of the genetic architecture increases and outperforms genotype
collapsing when the genetic architecture of the marker set becomes
more sophisticated (e.g., causal loci with various effect sizes or fre-
quencies and potential non-linear or interactive effects). We expect
the same trends of results to occur under the other simulation
settings.
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