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Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by
Marek’s disease virus (MDV), a naturally occurring oncogenic alphaherpesvirus. Selecting
for increased genetic resistance to MD is a control strategy that can augment vaccinal con-
trol measures.To identify high-confidence candidate MD resistance genes, we conducted
a genome-wide screen for allele-specific expression (ASE) amongst F1 progeny of two
inbred chicken lines that differ substantially in MD resistance. High throughput sequencing
was initially used to profile transcriptomes from pools of uninfected and infected indi-
viduals at 4 days post-infection to identify any genes showing ASE in response to MDV
infection. RNA sequencing identified 22,655 single nucleotide polymorphisms (SNPs) of
which 5,360 in 3,773 genes exhibited significant allelic imbalance. Illumina GoldenGate
assays were subsequently used to quantify regulatory variation controlled at the gene (cis)
and elsewhere in the genome (trans) by examining differences in expression between F1
individuals and artificial F1 RNA pools over six time periods in 1,536 of the most signif-
icant SNPs identified by RNA sequencing. Allelic imbalance as a result of cis-regulatory
changes was confirmed in 861 of the 1,233 GoldenGate assays successfully examined.
Furthermore we have identified seven genes that display trans-regulation only in infected
animals and ∼500 SNP that show a complex interaction between cis- and trans-regulatory
changes. Our results indicate ASE analyses are a powerful approach to identify regulatory
variation responsible for differences in transcript abundance in genes underlying complex
traits. And the genes with SNPs exhibiting ASE provide a strong foundation to further inves-
tigate the causative polymorphisms and genetic mechanisms for MD resistance. Finally,
the methods used here for identifying specific genes and SNPs have practical implications
for applying marker-assisted selection to complex traits that are difficult to measure in
agricultural species, when expression differences are expected to control a portion of the
phenotypic variance.
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INTRODUCTION
Marek’s disease virus (MDV, Gallid herpesvirus 2) is a naturally
occurring oncogenic alphaherpesvirus of chickens that targets
lymphoid tissues like the bursa of Fabricius, thymus, and par-
ticularly the spleen, which is an important lymphatic organ and
repository of T and B cells. MDV infects both T and B cells, which
may result in lymphoid tumors, nerve lesions, and immunosup-
pression. Clinical symptoms of infected birds include blindness,
paralysis, and death in susceptible animals. MDV is highly conta-
gious as virions shed from feathers and skin in the form of dander
or dust persist in the environment and are readily spread horizon-
tally by inhalation. Consequently, virtually every bird is exposed
to MDV at a very young age. Immune transfer of maternal anti-
bodies from hen to chick provides some protection from the virus
in the first few days of life but the only effective control method,

which prevents tumor formation, is vaccination. However, MD
vaccines do not eliminate MDV infection, replication, or spread,
thus, the virus is believed to have evolved for increased virulence
in response to vaccination (Witter, 1997). The lack of new vaccines
and the expectation that the virus will evolve to overcome exist-
ing vaccines means the identification of genes involved in natural
immunity is of major interest to the poultry industry.

Genetic resistance to MD is complex and presumably controlled
by a large number of genes. A number of loci have been identi-
fied that contribute to resistant phenotypes. One of the most well
known is the major histocompatibility complex (MHC) or, as it
is known in the chicken, the B complex. Alleles at this locus are
well known for their involvement in genetic resistance to MD as a
number of B haplotypes are known to be associated with resistance
or susceptibility and also influence vaccine-mediated immunity
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(Bacon and Witter, 1994). However, the majority of disease resis-
tance is expected to comprise non-MHC loci (Groot and Albers,
1992). A number of quantitative trait loci (QTL) associated with
MD resistance have been reported outside of the MHC in vari-
ous lines and breeds of chicken (Vallejo et al., 1998; Yonash et al.,
1999; McElroy et al., 2005; Cheng et al., 2008; Heifetz et al., 2009).
Nonetheless, like many other quantitative traits, only a very small
number of genes have been identified that confer MD resistance
(Liu et al., 2001b, 2003; Niikura et al., 2007; Praslickova et al.,
2008), and from these, only a fraction of the phenotypic variance
has been accounted for potentially due to small effect size, large
type 1 error rates, and low LD or different phase between mark-
ers and quantitative trait nucleotides (QTN) (Goddard and Hayes,
2009; Manolio et al., 2009). Therefore, utilization of these regions
in marker-assisted selection programs has been limited.

The importance of transcriptional regulation in controlling
phenotypic variation within and between species is an old concept
(King and Wilson, 1975). It is believed that polymorphisms within
cis- or trans-elements that influence gene expression provide more
opportunity for evolution and directional selection compared to
mutations that alter protein coding regions in the genome (Wray,
2007). The fact that within an individual, all cells have the same
DNA sequence and protein coding content yet vastly different
forms and functions attests to this belief. Thus, regulation of gene
expression within and amongst individuals may be important in
the underlying fitness differences and the phenotypic variation
associated with disease and other quantitative traits. Some of the
first attempts to identify polymorphic cis- and trans-acting ele-
ments were accomplished by mapping expression quantitative trait
loci (eQTL; Brem et al., 2002; Schadt et al., 2003). However, eQTL
studies are subject to many of the limitations that traditional QTL
studies face in that they suffer due to low mapping resolution and
have difficulty detecting QTL of small effect. Measuring allele-
specific expression (ASE) in a heterozygous individual offers an
alternative and simpler approach to uncover cis-regulatory vari-
ation (Pastinen, 2010). Because levels of each allele are measured
within the same RNA sample, changes in allele expression levels
must be the result of differences within cis-acting regulatory ele-
ments that most probably influence transcription factor binding
sites or mRNA stability as both alleles experience the same cellular
environment. When expression differences are detected between
samples that do not share a similar cellular environment, then
both cis and trans-acting regulation can be measured. Therefore,
comparing the ratio of expression levels in an F1 system to the
expression levels in the parental strains or the difference in inter-
vs. intra-variation in expression ratios should enable one to dis-
sect the contribution of cis- from trans-regulation (Wittkopp et al.,
2004).

Initially ASE was examined in subsets of candidate genes (Guo
et al., 2004; Wittkopp et al., 2004). ASE has also been investi-
gated using single nucleotide polymorphism (SNP) specific array-
based platforms that increasingly have a genome-wide perspective
(Bjornsson et al., 2008). However, with this approach, the sequence
variations to differentiate the two alleles of each gene must be
known a priori. The introduction of high throughput sequencing
technologies and the ability to resequence entire transcriptomes
has lead to a new approach to study ASE that can catalog sequence

and transcriptional variation in tandem (Bradley et al., 2009; Heap
et al., 2010). In addition platforms originally designed for SNP
genotyping, have recently been adapted to quantify allele expres-
sion (Serre et al., 2008), which are thought to be less prone to
genotyping errors and typically more cost–effective for screening
a large number of individuals for a small subset of genes.

To this end, we have examined ASE in two highly inbred lines
of chicken that are resistant (line 63) or susceptible (line 72) to
MD. Both lines have been fixed for the same B haplotype over 50
generations ago, but differ greatly in their MD incidence following
infection with MDV (Bacon et al., 2000), which also emphasizes
the role that non-MHC genes play in genetic resistance to MD. The
lack of gene flow between these lines, and direct inbreeding within
lines, will result in a large number of fixed polymorphisms between
the lines, which should have resulted in most polymorphisms
being strictly heterozygous in the F1 progeny, a requirement of the
ASE assay. Thus, we have undertaken an initial examination of ASE
by re-sequencing the transcriptomes of infected and uninfected F1

animals to uncover genes with cis-acting regulatory elements that
respond to MDV infection, and then examined in more detail
1,536 targeted SNP that show evidence of ASE using cost–effective
and high throughput Illumina GoldenGate assays in an effort
to assess the ability of ASE to uncover the genetic mechanisms
responsible for MD resistance.

MATERIALS AND METHODS
ANIMALS AND mRNA ISOLATION
Highly inbred ADOL lines line 63 (MD resistant) or line 72

(MD susceptible) were reciprocally crossed to form F1 progeny
where semen from the paternal male was pooled from either the
MD resistant or susceptible line and used to inseminate females
from the opposing line. The progeny from each reciprocal cross
were split into uninfected and infected treatment groups each
containing 12 animals.

Artificial F1 samples were used for comparison to the true F1s
and their estimated cis-acting effects for infected and uninfected
treatment groups. Fourteen replicate artificial F1s per infection
status were created using a spectrophotometer to quantify con-
centrations of mRNA and to mix a single line 63 mRNA with a
single line 72 mRNA. All mRNA was extracted from individuals
and all individuals formed a treatment group. All infected animals
were infected with a subcutaneous injection of MDV (2,000 pfu,
JM strain) at 2 weeks of age. Birds from each treatment group
were euthanized at 1, 4, 7, 11, 13, and 15 days post-infection (dpi).
Animal management followed the ADOL Animal Care and Usage
Committee policy.

All mRNA was extracted from splenic tissue and followed
MIQE guidelines. Splenic tissue was recovered into RNAlater
(Ambion; Austin, TX, USA), and frozen up to 2 weeks. Total RNA
was extracted from splenic tissue, and mRNA was purified using
the Stratagene Absolutely RNA Miniprep kit (Santa Clara, CA,
USA). Transcriptome sequencing was undertaken on cDNA using
the Promega Improm-II Reverse Transcription System (Sunnyvale,
CA, USA). All RNA samples were analyzed using the Spectronic
Instruments GENESYS 5 (Fisher Scientific; Pittsburgh, PA, USA)
for absorbance and 260/280 ratios. Genomic DNA was also iso-
lated from each F1 individual to control for dye and primer bias in
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the Illumina GoldenGate assay. Genomic DNA was isolated using
QIA-amp DNA Blood mini-kits (Qiagen; Valencia, CA, USA) and
concentrations examined using the Hoefer TKO 100 Fluorometer
(Holliston, MA, USA) with Hoechst dye.

NEXT GENERATION SEQUENCING
A requirement of ASE is to identify at least one polymorphism
within a transcript to allow tracking of both expressed alleles.
Due to cost restrictions and the ability to simultaneously scan
the genome for SNPs and get an initial indication of ASE, high
throughput sequencing was used to profile the transcriptomes
from two replicate pools for each reciprocal cross (6 × 7 and 7 × 6)
at a single time point (4 dpi) from splenic mRNA isolated in six
infected and six uninfected F1 individuals using ∼35 base single-
end reads from the Illumina Genome Analyzer II (San Diego,
CA, USA).

Reads were aligned to the chicken genome v3 (http://hgdown
load.cse.ucsc.edu/downloads.html#chicken) with MAQ v0.50 (Li
et al., 2008). FastQ files were initially parsed and all adaptor
sequence was removed prior to mapping. Poor quality base calls
with an Illumina quality score <40 were removed from the analysis
to increase the chance of mapping reads to the reference genome.
Alignments were parsed and mRNA transcripts were examined
for the presence of SNP that differentiated transcripts in the two
inbred lines. In an attempt to reduce sequencing and alignment
errors, individual reads were only mapped back to the reference
genome if they contained less than three mismatches per read. In
addition, all SNP were filtered using standard options in MAQ and
a Python wrapper that removed SNP represented by fewer than
nine reads, had an allele frequency <0.2, were not bi-allelic or
represented by ambiguous bases, or where there were more than 1
SNP in a flanking 40 base window. All mapped reads were BLASTed
against a database combining RefSeq and all known chicken ESTs.
All of the top unique hits were then parsed to give us an indica-
tion of how many genes were represented in the chicken spleen
transcriptome.

Differential expression – RNAseq
As a first pass analysis, transcripts were considered suitable for
further interrogation on the GoldenGate assay if they contained a
SNP, an allele frequency >0.2, and showed a response to infection
in at least one of the reciprocal crosses. Selection of each SNP was
determined, by using a 2 × 2 factorial test examining each allele
and infection status as classes in two biological replicates, SNPs
with a significant effect for infection status or those with a sig-
nificant interaction between allele and infection were selected for
further investigation.

GOLDENGATE ASSAY
Alleles showing evidence of an allelic response to infection from
the RNAseq pilot study were selected for a more comprehensive
analysis using the Illumina GoldenGate assay (San Diego, CA,
USA). ASE in each SNP was examined in 12 biological replicates
from each reciprocal cross, over six time points in infected and
uninfected individuals. Primer design was completed by retrieving
70 bases immediately up- and down-stream of the differentially
expressed SNP using an automated computer program written in

Python. In total, 1,536 SNPs were selected for further analysis on
the GoldenGate platform based on evidence of ASE in response to
MDV infection and a high primer design score as determined from
the Illumina Assay Design Tool. The 1,536 SNPs originated from
1,297 transcripts. Of these, 239 SNPs were selected from 192 tran-
scripts with >1 SNP on different exons. These SNPs were selected
to act as a control and to examine evidence of alternative splicing.

Genomic DNA was extracted from 14 individuals from each
reciprocal cross to help identify dye bias and, in the limited sit-
uations where the alternative genotype alleles were not fixed in
the two parental lines, examine segregation of alleles within the
F1. Scatter plots of the relative fluorescence within individuals for
each A and B allele were completed using the genomic DNA sam-
ples. For all SNP the ratio of A to B alleles was expected to be
1:1 after accounting for any dye bias or technical variation. Any
transcripts that were homozygous either for the A or B allele in
any of the F1 samples were considered to be sequencing errors that
managed to evade detection during RNAseq filtering and were
removed. Thus, any SNP showing Mendelian errors in multiple
individuals, i.e., two copies of either the A or B allele, were con-
sidered polymorphisms within a line that were still segregating,
or sequencing errors and not fixed differences between lines and
removed from the dataset.

Normalization and differential expression – GoldenGate
When the GoldenGate assay was run on the Illumina Sentrix Array,
an unexpected large dye bias (Cy3 vs. Cy5) was observed for all
genes in samples ran in rows A and H of two 96 well plates, which
coincided with treatments 1 dpi uninfected and 11 dpi infected
individuals for both crosses. Therefore, raw intensities for alleles
corresponding to each dye were normalized within samples. Nor-
malized values for alleles of each dye was calculated within samples
A′

i = (Ai − Abar)/Asd, similarly B′
i = (Bi − Bbar)/Bsd. Where Ai

and Bi are the raw intensities for each allele of SNP i, Abar, and
Bbar are the mean intensities across all loci within a sample and
Asd and Bsd are the SD across all loci within a sample for each
dye. ASE was measured as yi = A′

i − B′
i or the difference between

adjusted A and B alleles, SNP found to significantly differ from 0
were categorized as showing ASE.

Linear models y i = u + inf + dpi + cross + sex + cross:inf +
cross:dpi + sex:inf + dpi:inf + cross:dpi:inf + e were used to
sequentially test for significant differences between treatment
groups and interactions between treatments, where y i = is as
defined above, inf is the infection status, dpi is the days post-
infection, cross = direction of the reciprocal cross, sex is the
sex of the individual, and e is the error. The interactions
cross:inf, sex:inf, dpi:inf, tested if allelic imbalance was induced
by infection and was constant across cross, sex, or dpi. Specif-
ically, if infection induced allelic imbalance, the dpi:inf inter-
action would be significant. The cross:dpi:inf interaction tested
if an allelic imbalance was induced by infection and constant
across direction of cross. To identify which SNP were react-
ing to infection, we analyzed all SNP individually using the
model y i = u + inf + cross + dpi + dpi:inf + cross:dpi:inf + e. All
p-values were outputted for infection and all interaction terms
to determine those SNP that displayed a response to infec-
tion. Furthermore the regression coefficients for infection and all
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interactions were examined to determine the distribution and size
of effect each marker had on infection. All p-values were corrected
for multiple testing using the false discovery rate (FDR) method
of Benjamini and Hochberg (1995).

To statistically test the relative contribution of cis- and trans-
effects to ASE, we compared the expression differences between
lines (AF1 or artificial F1) to the allelic differences within the
F1 hybrid (TF1 or true F1) at the same loci. If cis-acting effects
are completely responsible for the differences seen in ASE, the
expression rates in the TF1 and the AF1 will be equal (t -test,
h0: TF1 = AF1, p < 0.05) and when plotting means from each
group, all SNP will fall along the 45˚ diagonal through the ori-
gin (i.e., X =Y ). Alternatively, if trans-acting elements completely
explain the difference between animals, both alleles will be equally
expressed in the TF1 and all SNP will fall along the horizontal
line with Y = 0. As defined by Wittkopp et al. (2004), a com-
bination of cis- and trans-regulation will cause alleles to fall
between the horizontal and diagonal lines, which can be dissected
as either a cis-trans interaction where cis-effects explain a pro-
portion of the variance between alleles and trans-effects explain
the rest, and an antagonistic relationship, where opposing effects
are identified between genetic backgrounds. Finally genes with no
significant difference and do not cross the intercept show no cis-
or trans-effects.

GENE SET ENRICHMENT
Gene lists were populated from a Python program that designed
primers for the GoldenGate assay from the RNAseq data that
showed signs of allelic imbalance. Gene names were identified
using a reciprocal best-hit algorithm (MacEachern et al., 2009).
The Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID) v6.7 was used to examine whether genes with
evidence of ASE where enriched in specific functions (Dennis et al.,
2003; Huang et al., 2009). The DAVID set of web accessible pro-
grams was used to upload 1,042 genes with RefSeq mRNA or RNA
IDs. Genes that returned an up-to-date annotation were then ana-
lyzed to identify enriched Gene Ontology annotations using the
Fisher’s exact test and the standard options to ensure high anno-
tation coverage. Likewise Enriched Pathways and DAVID annota-
tions for chromosomal positions were examined for enrichment
to identify pathways or genomic regions with a high proportion
of genes showing signs of ASE in response to MDV challenge.

RESULTS
TRANSCRIPTOME SEQUENCING
Allele-specific expression assays require a SNP to monitor the
abundance of each expressed allele. Next generation sequencing

was selected to provide a cost–effective, unbiased, initial genome-
wide survey of the expressed SNPs, and also give an indication of
ASE between resistant and susceptible lines when challenged with
MDV. To this end, the spleens from six infected and uninfected
F1 individuals in each reciprocal cross (6 × 7 and 7 × 6) were har-
vested at a single time point (4 dpi) and the transcriptomes of two
replicate pools were sequenced using a next generation sequencer
(Illumina GA II). Both replicates from the four treatments yielded
over 14 million reads per treatment group of which ∼75% were
mapped to the reference genome resulting in more than 1.7 Gb of
sequence (Table 1) at an average depth of 49× per gene. BLASTing
all mapped reads against the most current version of the Ref-
Seq database identified 12,696 genes, which is >65% of the genes
represented in the RefSeq database. From the mapped reads over
670,000 polymorphisms were initially identified between the tran-
scriptomes of lines 6 and 7. However, strict filtering of the raw SNP
data reduced this number to 22,655 high quality SNPs. A χ2 test
revealed that 5,360 SNPs in 3,773 genes exhibited some degree
of allelic imbalance (p < 0.05 not corrected for multiple testing,
Table S1 in Supplementary Material), which coincides with ∼30%
of all the genes represented in our sample. With this procedure up
to 5% of the genes identified will be false positives, but the next
step with the GoldenGate Assay was designed as a more stringent
test of ASE to eliminate potential false positives. Genes with at
least one SNP displaying signs of allelic imbalance were further
queried for an allele-specific response to infection as determined
by a 2 × 2 factorial test, which examined the effect of disease sta-
tus on ASE rates. In total, 1,089 SNPs showed ASE in response
to MDV infection in at least one of the reciprocal crosses, with
803 SNP showing ASE in the 7 × 6 cross and 781 in the 6 × 7
cross.

Each of the 5,360 SNP were queried against the most current
version of the dbSNP database (build 134) and 1,309 SNP had
been described previously, but none had been previously asso-
ciated with MD resistance or susceptibility. All SNP have been
submitted to dbSNP and information on all SNP including the
1,536 SNP investigated with the GoldenGate assay are in Table S1
in Supplementary Material.

GOLDENGATE ASSAY
At the time of our experiment, the GoldenGate assay was a very
cost–effective platform to examine ASE in a large number of indi-
viduals for up to 1,536 SNPs, therefore, 447 extra SNPs were
included that were on transcripts with >1 SNP and those with
strong evidence of ASE, but not necessarily a statistically significant
response to infection (χ2 p > 0.05). Hence, 1,536 SNPs showing
signs of ASE from our initial sequencing pilot study were selected

Table 1 |Total reads from RNA sequence, the proportion of mapped sequences, and the number of raw and filtered SNPs from mapped reads.

Total reads Mapped reads Bases mapped Proportion of mapped reads Raw SNP Filtered SNP

6 × 7 Infected 14,344,616 11,220,849 403,950,564 0.78 375,732 11,574

7 × 6 Infected 15,148,232 11,892,509 428,130,324 0.79 315,361 12,472

6 × 7 Uninfected 15,818,433 11,607,216 417,859,776 0.73 378,586 11,939

7 × 6 Uninfected 17,173,782 13,028,455 469,024,380 0.76 361,386 10,849

Total coverage 62,485,063 47,749,029 1,718,965,044 0.76 670,031 22,655
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for further investigation using the Illumina GoldenGate assay in
12 individuals from each treatment.

From the 1,536 SNPs examined with the GoldenGate platform,
we identified 69 (4%) to be segregating within one of the two lines,
all of which were at a very low allele frequency (<0.05). In total
1,233 SNPs reliably passed QC filtering in that they were polymor-
phic but not segregating within a line, and their signals were above
background levels. A moderate correlation was identified between
SNP within the same transcript (r2 = 0.25). However, all SNP were
selected from alternate exons and this may be evidence of alterna-
tive splicing in some genes. An analysis of variance for ASE in each
of the remaining 1,233 SNP that passed QC filtering was completed
for sex, reciprocal cross, and infection status across all dpi and we
tested the interaction of each factor with infection. The results
show that infection, dpi, and cross were all factors that signifi-
cantly impact rates of expression. No significant interactions were
detected for sex:infection and cross:infection, therefore, there is lit-
tle evidence of parental imprinting in response to MDV infection.
However, a significant interaction was detected for dpi:infection
and dpi:cross:infection that indicates infection by MDV signifi-
cantly impacts the expression levels in these genes (Table 2).

Linear models detected a number of SNP with significant ASE
that were the result of cis-regulatory changes that responded
to infection. We identified a number of SNP with a response
to infection and those that respond to the two- and three-way
interactions, dpi:infection, and cross:dpi:infection, respectively. In
total, we identified 861 SNP with a cis-response to infection in
at least one cross or 1 dpi. We found 581 SNP with evidence of
an allele-specific response to infection, 65 of which were also sig-
nificant for the interaction cross:dpi:infection and 345 were also
significant for the dpi:infection interaction. These SNP responded
to infection in both crosses and all dpi tested although a cer-
tain proportion changed the magnitude of response over time
and to a smaller extent cross. We also identified 311 SNP with
a significant interaction between dpi:infection with 50 SNP also
significant for the cross:dpi:infection interaction indicating a cis-
response to infection that varied over time or cross. We also
distinguished 51 SNP with a significant three-way interaction
between cross:dpi:infection, which highlights a relatively small but
differential response to infection in each cross over time.

Table 2 | Summary of p-values from ANOVA examining the covariates

sex, cross, infection, and dpi and their interactions with infection

status.

F -value p-Value

Sex 0.9 0.32

dpi 58.7 <2.2e−16

Cross 38.1 6.9e−10

inf 17.5 2.9e−05

Sex:inf 2.6 0.11

Cross:dpi 21.6 <2.2e−16

Cross:inf 3.7 0.05

dpi:inf 16.9 <2.2e−16

dpi:cross:inf 8.7 3.3e−08

In Figure 1, we show the effects of infection on cis-regulation.
If there were no cis-specific response to infection, we would expect
a large number of genes with an effect of zero. However, we have
found that the SNPs investigated here have a large distribution
of effects, with a predominantly positive skew that appears to be
driven by cis-regulatory changes, which may have some effect on
resistance. Interaction terms had a much smaller distribution of
effects and most SNP were centered on zero (results not shown).

To further dissect the mechanisms controlling ASE, we com-
pared expression between the TF1 and AF1 (t -test, h0: TF1 = AF1,
p < 0.05) in infected and uninfected individuals. We plotted the
relative expression of the true F1 against that of the artificial F1 for
infected and uninfected individuals (Figure 2). Genes with a pure
cis-effect would be expected to have a regression of 1, i.e., expres-
sion imbalance between genotypes of the parent lines (AF1) would
correspond directly to allelic variation within the TF1, and lie on
45˚ diagonal through the origin, while those with a pure trans-
effect would only show variation among the parent genotypes and
no association with within locus variation and fall on the horizon-
tal line. Alternatively SNP with a combination of cis- and trans-
regulatory changes would lie somewhere in between. From the
genes showing significant ASE, a large proportion showed a com-
bination of cis- and trans-regulatory differences (337 SNPs or 27%,
and 296 SNPs or 24% for uninfected and infected, respectively).
SNPs displayed differences in cis-regulation that were smaller in
the TF1 than in the AF1 (Figure 3). Changes to trans-regulatory
regions were responsible for the remaining genes with significant
ASE. A total of 253 (21%) and 239 (19%) SNPs in the uninfected
and infected birds, respectively, had greater allelic expression dif-
ferences in the AF1 when compared to the TF1 or the differences
were in the opposite direction to the parental lines (Figure 4). Less
than 1% of the genes examined (zero and seven for uninfected
and infected, respectively) had a change in trans-regulation that
explained all of the variance in ASE (Figure 5).

In an attempt to investigate the contribution of cis- and trans-
regulation to ASE over time, data sets were examined within dpi
and analyzed. There does not appear to be a linear trend for either
the number of genes under cis- or trans-acting regulation (results

FIGURE 1 | Histogram showing the distribution of SNP effects for the

regression coefficient infection with evidence of cis-regulatory

changes.
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FIGURE 2 | Plots of relative expression for each allele in the Artificial F1

(AF1) vs.True F1 (TF1) crosses. All crosses were generated from Marek’s
disease resistant and susceptible lines of chicken. Expectations are pure

cis-acting regulation will have a regression of one and lie along the 45˚ angle,
while trans-acting regulation will fall off the 45˚ line for the (A) infected and
(B) uninfected animals.

not shown). However, we did witness a large number of SNPs with
cis- and trans-effects early on following infection, which eventually
decreases as time increases to 15 dpi for both cis- and trans-acting
factors, which highlights the importance of examining a number
of time periods when trying to make conclusions about the relative
contribution of cis- vs. trans-regulation.

GENE SET ENRICHMENT
The DAVID (Dennis et al., 2003; Huang et al., 2009) was used to
examine all genes that show evidence of ASE to determine whether
or not there was evidence of enrichment for particular biologi-
cal processes, pathways, and chromosomal positions. We exam-
ined the main biological processes that were enriched and found
genes with evidence of ASE that were enriched in the following
processes: protein localization, protein transport, anti-apoptosis,
adaptive immune response, leukocyte-mediated immunity, adap-
tive immune response, cytokine production, leukocyte-mediated
immunity, and adaptive immune response. The pathways enriched
were natural killer cell mediated cytotoxicity, apoptosis, and DNA
replication (Table 3). Next we asked whether there were any

chromosomes or genomic regions that may be enriched for genes
that responds to MDV infection and found that chromosomes 1
and 17 were enriched for genes showing evidence of ASE and a
near significant result for chromosome 3 (Table 3).

DISCUSSION
The majority of heritable traits that are of interest to scientists
investigating model organisms, human diseases, and animal breed-
ing are complex in nature and controlled by multiple loci. Most
studies focusing on uncovering the genetic variation underlying
these traits have only uncovered a small fraction of this variation
(Goddard and Hayes, 2009; Manolio et al., 2009). The main hin-
drance in identifying more loci has been the use of stringent type-I
error rates to limit false positives, the lack of statistical power
to detect loci of small effect, and the lack of LD amongst com-
mon SNP markers that are typically used for association analysis,
and potentially rare causative mutations (Goddard and Hayes,
2009). Here we present a method to identify potentially a large
number of the genes underlying a complex trait that are con-
trolled by transcriptional regulation. Increasing evidence points
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FIGURE 3 | Plots of the relative expression with 95% confidence intervals ofTF1 against AF1 cis-by-trans interactions for (A) infected and (B)

uninfected animals. Red points indicate predicted response for cis-regulatory effect where TF1 =AF1. All cis-by-trans points show lower expression in AF1
than in TF1.

to transcriptional regulation as a major factor underlying the phe-
noytypes of complex traits and, therefore, a number of efforts have
recently tried to uncover cis-regulatory polymorphisms and their
contributions to complex phenotypes (Fay and Wittkopp, 2008;
Montgomery et al., 2010).

TRANSCRIPTOME RE-SEQUENCING
A transcriptome-wide scan of replicate pools for each reciprocal
mating comprised of six infected and uninfected F1 individuals
each created by mating resistant and susceptible inbred lines of
chicken uncovered 22,655 high-confidence SNPs from a potential
pool of over 670,000 polymorphisms. We developed an auto-
mated approach to remove false positive SNP calls in an effort to
accurately track parental alleles and assess cis-regulatory variation
within an individual. The 30-fold reduction in SNPs we uncovered
highlights biases, such as sequencing errors and misalignments
that can be introduced into RNA sequencing and potentially
inflate expression differences with next generation sequencing
technologies. Thus, the importance of screening transcriptome
re-sequencing data is paramount to reduce false positives when
examining ASE. Our automated approach based on sequence

depth, sequence quality scores, and allele frequency revealed that
5,360 SNPs in 3,773 genes exhibited statistically significant allelic
imbalance. Despite the high level of inbreeding, we have identified
a number of polymorphisms that are still segregating within one
or both lines. This finding was not surprising as inbred animals
are rarely 100% inbred at all loci. Approximately 4% of the SNP
we examined were segregating. The exact cause of SNPs that were
found to be segregating within lines may be the result of new muta-
tions, polymorphisms that remained segregating from the founder
population, accidental breeding contamination, or potentially a
faulty assay. Whatever their origin, the inclusion of sequence from
the parent of origin would have helped identify segregating SNP
and reduced the number of false positive GoldenGate assays devel-
oped for this study. While this number of positive SNPs found by
RNAseq was high, it was less than the number we expected based
on the RNAseq analysis. Of the 1,233 SNPs that passed quality
control, based on the Type 1 error rate set, we expected 5%, or
approximately 62 to be false positives, and 1,170 true positives.
These results show that our RNAseq analysis was not as stringent a
test of ASE as expected, perhaps due to the relatively low coverage.
Nevertheless, the method was effective in finding a high proportion
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FIGURE 4 | Plots of the relative expression with 95% confidence intervals ofTF1 against AF1 with all antagonistic cis-by-trans interaction for infected

(A) and uninfected (B) animals. Trans-regulatory changes cause AF1 to have expression higher or in the opposite direction of parental alleles in TF1.

FIGURE 5 | Plots of the relative expression with 95% confidence intervals ofTF1 against AF1 with all trans-regulatory changes that explain variation

in ASE in infected animals. All trans-effects lie on horizontal line and do not cross 45 line.

(>50%) of true ASE SNPs. As the price of sequencing continues
to decrease, the level of heterozygosity in each of the resistant and

susceptible lines would be interesting to examine in both the cod-
ing and non-coding regions of the genome. Also, lower sequencing
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Table 3 | Biological processes (BP), pathways, and chromosomes that are enriched with genes showing signs of an allele-specific

response to infection.

Category Term p-Value Fold-enrichment

GOTERM_BP GO:0015031 ∼ protein transport 8.31e−04 2.07

GOTERM_BP GO:0045184 ∼ establishment of protein localization 8.31e−04 2.07

GOTERM_BP GO:0008104 ∼ protein localization 0.0014 1.94

GOTERM_BP GO:0016050 ∼ vesicle organization 0.0029 7.74

GOTERM_BP GO:0046907 ∼ intracellular transport 0.0055 1.98

GOTERM_BP GO:0006916 ∼ anti-apoptosis 0.0073 3.46

GOTERM_BP GO:0002250 ∼ adaptive immune response 0.0088 5.81

GOTERM_BP GO:0001816 ∼ cytokine production 0.0088 5.81

GOTERM_BP GO:0002443 ∼ leukocyte-mediated immunity 0.0088 5.81

GOTERM_BP GO:0019724 ∼ B cell mediated immunity 0.0234 6.19

GOTERM_BP GO:0043066 ∼ negative regulation of apoptosis 0.0244 2.12

GOTERM_BP GO:0043069 ∼ negative regulation of programmed cell death 0.0276 2.08

GOTERM_BP GO:0060548 ∼ negative regulation of cell death 0.0276 2.08

GOTERM_BP GO:0033554 ∼ cellular response to stress 0.0292 1.81

GOTERM_BP GO:0002449 ∼ lymphocyte mediated immunity 0.0293 5.72

KEGG_pathway gga04650:natural killer cell mediated cytotoxicity 0.0017 2.98

KEGG_pathway gga04210:apoptosis 0.0033 2.76

KEGG_pathway gga03030:DNA replication 0.0039 4.38

KEGG_pathway gga04370:VEGF signaling pathway 0.0261 2.47

KEGG_pathway gga04512:ECM-receptor interaction 0.0266 2.30

KEGG_pathway gga04510:focal adhesion 0.0277 1.73

KEGG_pathway gga04012:ErbB signaling pathway 0.0399 2.14

KEGG_pathway gga04630:Jak-STAT signaling pathway 0.0793 1.74

Chromosome 1 0.0045 1.28

Chromosome 17 0.0058 1.92

Chromosome 3 0.0427 1.28

Chromosome 4 0.0802 1.24

costs help facilitate biological replicates as recommended by Auer
and Doerge (2010), which would have provided higher confidence
in identifying SNPs exhibiting ASE.

GOLDENGATE ASSAY
The Illumina GoldenGate assay is not free from error, but is gener-
ally thought to give data that is of high quality and reproducibility,
and is currently a more economical option to examine large num-
bers of replicates for a targeted set of SNPs than next generation
sequencing. Originally designed for SNP genotyping, it has been
recently adapted to quantify allele expression (Serre et al., 2008).
Thus, the GoldenGate platform was chosen as a cost–effective
method to validate and extend the results from our RNAseq analy-
sis. Our results demonstrate there is extensive ASE and that tran-
scription is significantly impacted by cis- and a combination of cis-
and trans-acting elements when animals are infected with MDV.
We found a significant impact of each SNP on the degree of allelic
imbalance, which would be expected if a large number of these
genes and the extent to which they are regulated explain some of
the genetic resistance to MD. We identified no significant effect for
sex or any interaction with sex and infection suggesting there are
no maternal effects impacting ASE. A significant cross effect was
detected, thus, parental imprinting may play a role in ASE levels.
However, no significant interaction between cross and infection

suggests imprinting play little role in the differences observed for
MDV resistance. The large number of cis-regulatory changes with
an apparent response to infection was examined. A positive skew
was identified for cis-regulatory changes that responded to infec-
tion suggesting that cis-variation has lead to over expression of the
alleles in response to MDV infection.

Comparisons between the average expression in both recipro-
cal crosses and an artificial RNA pool as outlined in Wittkopp
et al. (2004) show that trans-acting elements play a minor role
in regulating expression changes in infected and uninfected indi-
viduals. The small number of loci with purely trans-regulatory
changes we identified confirmed previous studies that suggest cis-
acting elements are dominant (Brem et al., 2002; Schadt et al.,
2003; Osada et al., 2006; Genissel et al., 2008; Pastinen, 2010).
However, we did confirm that a large proportion of cis-regulatory
changes show an overlapping change in trans-regulation (Wit-
tkopp et al., 2004). In particular, we were able to dissect cis-by-trans
interactions into those where the expression of the F1 hybrid was
lower than the expression in the parental lines, and those where
the expression in the F1 was greater or even in a different direc-
tion to the parent or origin, which may highlight some difference
in genetic backgrounds for cis-by-trans-regulation. The observed
antagonist interactions are consistent with our previous results
that demonstrated two-way epistatic interactions between genetic

www.frontiersin.org January 2012 | Volume 2 | Article 113 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Livestock_Genomics/archive


MacEachern et al. Allele specific response to MDV

markers that account for MDV viremia levels (Cheng et al., 2007).
Overall the strong bias of a response of cis-regulation to infec-
tion may highlight the ability of cis-variation to evolve by drift
and directional selection to a greater extent than trans, which
could be under more selective constraint. However, this should
be confirmed in additional outbred populations.

In order to extract further biological insight, genes exhibit-
ing ASE were analyzed for biological enrichment. We identified a
number of pathways and processes that are involved in apoptosis
and immunity, which may play a role in susceptibility or resis-
tance to MDV infection. We have reported a number of generic
pathways that are involved with protein localization that may
have some role in MDV resistance or susceptibility. However, the
most interesting pathways that show moderate to highly significant
p-values (p < 0.01) were involved in leukocyte-mediated immu-
nity, anti-apoptosis, cytokine production, and adaptive immune
response. These pathways appear to confirm previous findings that
show different responses to infection for cytokine production and
peripheral leukocyte expression and cytotoxicity between resistant
and susceptible chicken lines (Liu et al., 2001a; Garcia-Camacho
et al., 2003; Sarson et al., 2008). We also report evidence of local-
ization of some of these genes on certain chromosomes in the
genome, implying joint regulation of some biological functions,
which has also been found previously in other studies examining
cis- and trans-acting regulation (Zhang and Borevitz, 2009; Emer-
son et al., 2010); chromosome 16, which contains the MHC, did
not come up as being enriched as the two lines examined are fixed
for the same B haplotype. The pathways and genomic regions that
we identified to be enriched for genes with evidence of an allele-
specific response to MDV infection may be useful to investigate
further when a genome-wide study is not necessary or affordable.
With further completion and annotation of the chicken genome, a
more complete understanding of the pathways and regions of the
chicken genome that is important for resistance and susceptibility
may become clear.

CONCLUSION
The results presented here show ASE is an effective approach to
identify genes with cis-regulatory elements that respond to MDV
infection, therefore, this study should provide a strong start to

identifying a large proportion of the genes with an allele-specific
response to infection, which may underlie at least some of the
genetic resistance to MD resistance, a complex trait. It is hoped
that many of the genes sampled in this study contribute to genetic
resistance to MD,which can be directly monitored in resource pop-
ulations using the same SNPs. Future work is planned to integrate
results from genomic DNA sequences of the two parental lines
to identify possible causative mutations. The described method,
although demonstrated in inbred chicken lines, is applicable to all
traits in any diploid species, and should prove to be a facile method
to identify those genes whose alleles can be traced, and where dif-
ferences in expression are responsible for controlling at least some
proportion of the variance in a complex trait. Finally, our results
suggest that ASE screens are simple and powerful approaches to
identify genetic elements and specific alleles for genetic resistance
to MD and other complex traits, especially those that involve two-
state situations in disease challenge experiments where parental
alleles can be tracked by SNPs or other polymorphisms. The use
of a segregating marker can also be applied to determine whether
the expression differences are linked to measurable phenotypic
changes (e.g., disease incidence) and, if so, it might be used in
genomic selection programs.
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