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Available statistical preprocessing or quality control analysis tools for gene expression
microarray datasets are known to greatly affect downstream data analysis, especially when
degraded samples, unique tissue samples, or novel expression assays are used. It is there-
fore important to assess the validity and impact of the assumptions built in to preprocessing
schemes for a dataset. We developed and assessed a data preprocessing strategy for use
with the Illumina DASL-based gene expression assay with partially degraded postmortem
prefrontal cortex samples. The samples were obtained from individuals with autism as
part of an investigation of the pathogenic factors contributing to autism. Using statisti-
cal analysis methods and metrics such as those associated with multivariate distance
matrix regression and mean inter-array correlation, we developed a DASL-based assay gene
expression preprocessing pipeline to accommodate and detect problems with microarray-
based gene expression values obtained with degraded brain samples. Key steps in the
pipeline included outlier exclusion, data transformation and normalization, and batch effect
and covariate corrections. Our goal was to produce a clean dataset for subsequent down-
stream differential expression analysis. We ultimately settled on available transformation
and normalization algorithms in the R/Bioconductor package lumi based on an assessment
of their use in various combinations. A log2-transformed, quantile-normalized, and batch
and seizure-corrected procedure was likely the most appropriate for our data. We empiri-
cally tested different components of our proposed preprocessing strategy and believe that
our results suggest that a preprocessing strategy that effectively identifies outliers, nor-
malizes the data, and corrects for batch effects can be applied to all studies, even those
pursued with degraded samples.
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INTRODUCTION
Great strides have been made in the development of gene
expression profiling technologies that can accommodate partially
degraded mRNA samples (Fan et al., 2004; April et al., 2009).
These technologies are especially useful in assaying gene expres-
sion levels from unique tissue sources, such as the brain, where the
conditions for the preservation of mRNA quality are not typically
ideal (Mirnics and Pevsner, 2004). Gene expression assays that can
accommodate the often degraded or partially degraded mRNA
obtained from the brain could help identify molecular mecha-
nisms underlying neuropsychiatric disorders, especially those that
cannot be studied with animal models (Horváth et al., 2010).
However, as relevant and sophisticated as gene expression assays

that can accommodate partially degraded mRNA may, the applica-
tion of these assays also requires appropriate methods for handling
and preprocessing the information resulting from the assay in
order to make sure the samples have been assayed properly with
minimal residual effects of the degraded RNA.

While many gene expression assay preprocessing transforma-
tion and normalization procedures exist, such as those imple-
mented in the available and widely used software package Bio-
conductor (Gentleman et al., 2004), most procedures differ in
the way they remove systemic variance and prepare datasets for
downstream processing (Lim et al., 2007; Schmid et al., 2010).
For example, batch effects and issues of antemortem conditions
documented by medical records that are often associated with
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the analysis of brain samples are not routinely accommodated by
available methods (Johnson et al., 2007), but can be dealt with in a
variety of ways. It is therefore important to compare and evaluate
the utility of the various methods (Gold et al., 2005). Such compar-
isons can be achieved by considering resulting tests of associations
between the processed expression data and other variables of inter-
est, such as batch or level of sample degradation, using analysis of
variance (ANOVA)-based techniques such as multivariate distance
matrix regression (MDMR; Zapala and Schork, 2006).

We assessed the potential effects of different preprocessing
strategies on single-channel postmortem brain gene expression
data obtained with the Illumina DASL-based assay. The study that
motivated our development of a preprocessing strategy involved
exploring gene expression differences between autistic and nor-
mal individuals as part of an ongoing study of autism pathology.
To achieve this, we considered the use of MDMR in combination
with a number of standard gene expression level transformation
and normalization measures to quantify the effect of defined pre-
processing steps on a data set resulting from a DASL-based assay
and partially degraded brain samples. The transformation and
normalization measures we considered were those implemented
in the R/Bioconductor package lumi (Du et al., 2008). We also
considered the utility of Bayesian approaches to correct for batch
effects (Johnson et al., 2007). Our results suggest that a preprocess-
ing strategy that effectively identifies outliers, normalizes the data,
and corrects for batch effects can be fashioned for gene expression
assays designed to accommodate degraded samples.

OVERVIEW OF PREPROCESSING STRATEGY
The strategy that we developed for objectively assessing outliers,
normalization, and batch effects can be described in a series of
steps. Before providing the results of each individual step, we offer
a brief overview of the main elements of these steps (Figure 1).
Essentially, raw intensity data without normalization or back-
ground subtraction was output from GenomeStudio software for
the 57 total samples that we collected (see Materials and Methods),
and quality control and outlier removal analyses were performed.
Following these steps, transformation and normalization were per-
formed by R/Bioconductor package lumi (Du et al., 2008). Then,
to remove batch effects, we used the ComBat algorithm (John-
son et al., 2007). We leveraged MDMR analysis to probabilistically
assess the effect of each step on the removal of systematic variation
from the samples.

Normalization and Transformation
We examined the effect of different transformation and normal-
ization method combinations in the Bioconductor package lumi
(Du et al., 2008) on our dataset. These combinations are depicted
in Figure 1B (e.g., log2–Loess, cubic root–rank invariant, etc.).
Mean inter-array correlation (IAC) and lumi visualization plots
were used as preliminary outcome measures to compare them.
These correlations are a measure of the efficacy of normalization
steps in removing systemic error from the dataset.

Batch correction
In addition to standard transformation and normalization proce-
dures, it was necessary to consider batch and covariate correction
procedures. First, since the frozen tissue samples were processed

FIGURE 1 | Data preprocessing steps and quality assessment scheme.

(A) Flowchart depicting preprocessing steps taken for microarray data
generated by DASL-based profiling of 33 frozen tissue samples passing
quality control from male autistic and control cases in Chow et al. (in
review). (B) Transformation and normalization algorithms in the
R/Bioconductor package Lumi (Du et al., 2007) tested in combination in the
sequence depicted in A. (C) Lumi plots, mean inter-array correlations (IAC),
and multivariate distance matrix regression (MDMR; Zapala and Schork,
2006) were used as metrics to assess and quantify the effect of outlier
removal and preprocessing steps. Downstream analyses include differential
expression, coexpression, and gene set enrichment analyses.

in two separate batches, samples within the same batch tended to
group together, creating a possible confounding effect for down-
stream analyses. Furthermore, since epileptiform abnormalities
are present in as many as 5–44% of children with autism (Tuch-
man and Rapin, 2002), it was important to account for the variance
attributable to seizures noted by medical records in cases assayed
(Table S1 in Supplementary Material) since we wanted to focus on
differences due to autism pathology, not seizure-related activity.

Batch correction and adjustment for seizures as a covariate
was performed using ComBat, which applied an empirical Bayes
method (Johnson et al., 2007) to the dataset. Although batch
correction techniques other than ComBat (Johnson et al., 2007)
are available, Combat has been shown to outperform some other
algorithms, particularly for small sample sets (Chen et al., 2011).
MDMR and mean IAC were again used to gage the effectiveness
of this stage of processing (Table 3).

MATERIALS AND METHODS
FROZEN AND FORMALIN-FIXED POSTMORTEM HUMAN BRAIN
SAMPLES FOR GENE EXPRESSION PROFILING
Fifty-seven frozen blocks of fresh frozen brain tissue from the
prefrontal cortex of control and autistic male and female cases
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were obtained from the Harvard Brain and Tissue Resource Cen-
ter (United States Public Health Service) and from the University
of Miami/University of Maryland Brain and Tissue Bank (National
Institute of Child Health and Human Development; Table S1 in
Supplementary Material).

Diagnostic criteria of autistic disorder was verified for all autis-
tic cases by review of psychological and medical records, including
the Autism Diagnostic Interview-Revised (ADI-R; Lord et al.,
1994), and the Autism Diagnostic Observation Schedule (ADOS;
Lord et al., 2000) by a psychologist with extensive diagnostic expe-
rience with autism (CCB; Table S1 in Supplementary Material).
Seizure incidence of autistic cases was also assessed through case
records.

BRAIN SAMPLE COLLECTION
Due to documented variability of gene expression in neighboring
brain areas (Rehen et al., 2005; Lein et al., 2007), it is of extreme
importance that the blocks of tissue chosen for gene expression
profiling are from comparable regions between cases. Anatomical
landmarks were identified as consistently as possible for dissection
across cases with the goal of obtaining a set of highly controlled,
comparable tissue for brain gene expression profiling. When avail-
able, tissue from the superior frontal gyrus of the dorsal lateral
prefrontal cortex (DLPFC) was dissected in each case. When this
area was not available, we sampled from the middle frontal gyrus.

RNA EXTRACTION FROM TISSUES
Extraction of total RNA from 5–10 mg of frozen tissue from both
gray and white matter, with as many layers of cortex as possible,
was performed using MELT® kit from Ambion according to man-
ufacturer’s instructions1. Select RNA samples were analyzed with
BioAnalyzer® (Agilent) according to the manufacturer’s protocol
for quality control and quantification, and available RNA integrity
numbers (RIN) from three RNA quality assessments are reported
in Table S1 in Supplementary Material. Because RNA quality was
not expected to be a good predictor of array quality (Abramovitz
et al., 2008), all samples regardless of RIN were assayed. Whole
RNA from remaining samples was quantified using a NanoDrop®
spectrophotometer.

DASL LABELING, HYBRIDIZATION, AND SCANNING
Total RNA from frozen samples underwent cDNA synthesis, and
cDNA-mediated annealing, selection, and ligation (DASL)-based
labeling, hybridization to Illumina HumanRef8 v3 and scanning
on two separate occasions as described previously (April et al.,
2009). Both biological and technical replicates were included for
quality control. Using biotinylated random primers and oligo-
dT, 200 ng RNA was converted to cDNA. The biotinylated cDNA
was then immobilized to a streptavidin-coated solid support,
and annealed with a pool of gene-specific oligonucleotides. Fol-
lowing extension and ligation, the ligated oligonucleotides were
PCR amplified with a biotinylated and a fluorophore-labeled
universal primer, and captured using streptavidin paramagnetic
beads. Finally, the single-stranded PCR products were eluted and

1www.ambion.com

hybridized to the BeadChips at 58˚C for 16 h. A BeadArray Reader
was used to scan array images and extract fluorescence intensities,
and all data were uploaded into GenomeStudio software without
normalization or background subtraction for quality control and
processing. All raw data is available on the NCBI Gene Expression
Omnibus under accession number GSE284752. Array chip and
position of each sample are detailed in Table S2 in Supplementary
Material.

EXCLUSION CRITERIA FOR DASL-PROCESSED FROZEN SAMPLES
Exclusion criteria are outlined in detail in the results section. The
lumi package in Bioconductor (Du et al., 2008), MDMR, and mean
IAC were used as unbiased statistical metrics and visualization
techniques for quality control of the outlier exclusion process. The
final dataset consists of high quality arrays of 33 male ASD and
control cases. All outliers were removed before transformation,
normalization, and batch correction procedures.

DATA PREPROCESSING
For data preprocessing and normalization, we aimed to identify a
workflow that would: (1) maximize mean IAC across the dataset
(Oldham et al., 2008); (2) remove known confounds from the
dataset; and (3) prepare the data for downstream processing (e.g.,
differential expression and enrichment analysis).

Average clustering with Euclidean distances, scatterplots, dis-
tribution histograms, correlation measures, and boxplots were
used to visualize the data before and after processing steps. For
details on the implementation of the transformation and normal-
ization techniques we used, see (Du et al., 2007, 2008; Lin et al.,
2008). Mean IACs (Oldham et al., 2008) were used as a basis to
identify reasonable processing candidates at each step for further
investigation.

Transformation Procedures
Transformation methods involving the log2, variance stabilizing
transformation (VST; Lin et al., 2008), and cubic root were imple-
mented using the lumi package (Du et al., 2008) before data
normalization.

Normalization Procedures
Robust spline normalization (RSN), simple scaling normalization
(SSN), quantile normalization, variance stabilizing normalization
(VSN), Loess, and Rank Invariant normalization methods were
tested in conjunction with the above transformation procedures
(Du et al., 2008; Lin et al., 2008).

Batch Correction Procedures
The software suite Combat (Johnson et al., 2007) was used to
remove the variance attributed to batch effect, since sets of our
frozen samples were processed at different times on the DASL
platform. In addition, we also attempted to remove the confound-
ing effects of seizures in our dataset, since many individuals with
autism have comorbid seizure incidence. MDMR was used to
assess the efficacy of the correction methods as described below.

2www.ncbi.nlm.nih.gov/geo/

www.frontiersin.org February 2012 | Volume 3 | Article 11 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Chow et al. Preprocessing strategies for brain gene expression

Multivariate Distance Matrix Regression
To assess the variance within the dataset attributable to a set of
additional or ancillary variables before and after manipulating and
preprocessing the expression assay results (e.g., batch correction),
MDMR (Zapala and Schork, 2006) with 1000 permutations was
applied to the Euclidean distance matrices constructed from the
expression values between each sample3. Variables of interest that
were tested for association with the expression profiles (reflected in
distance matrices) included batch, diagnosis, age, and seizure inci-
dence of cases from which we sampled. We leveraged both single
independent variable and multiple independent MDMR results.

Multivariate distance matrix regression (Zapala and Schork,
2006) is a statistical method that considers variation in the degree
of pairwise similarity among individuals based on multivariate
profiles or data collected on those individuals. MDMR tests the
hypothesis that a measure variable (e.g., diagnosis)“explains”vari-
ation in the similarities/dissimilarities exhibited by the individuals.
It requires two main inputs: (1) a distance matrix quantifying
distances (i.e., differences or lack of similarity) between gene
expression profiles of the samples in the study; and (2) additional
variables, such as diagnosis, age, sex, etc., which are considered
independent variables. The method uses these additional vari-
ables to determine how much variation in the similarities among
the individuals can be explained by these variables. It essentially
works in a manner analogous to regression analysis, but accounts
for dependencies in the data,and can produce estimates of variance
explained as is both single independent and multiple indepen-
dent variable regression models. The single independent variable
regression results consider the predictive value each of the inde-
pendent variables separately, while the multiple regression model
considers all the independent variables entered cumulatively. In
the current manuscript, we use MDMR as a method to assess the
variance attributable ‘to, e.g., batch, age, gender, etc.’

The final transformed, normalized, and batch and covariate-
corrected dataset is available on the NCBI Gene Expression
Omnibus accession # GSE28475 (see text footnote 2). qPCR val-
idation of selected genes was performed (Figure S27 in Supple-
mentary Material).

RESULTS
OUTLIER DETECTION AND EXCLUSION
An initial step in microarray-based gene expression assay data
processing involves identifying and removing outlying individ-
uals whose assay results exhibit marked, and likely artifactual,
deviation from the other assay results. Since normalization proce-
dures depend on biological variability within the dataset examined
and assume that most genes are not differentially expressed, nor-
malizing experimental samples with outliers that create artificial
variation in a dataset could potentially confound analyses after
the preprocessing is complete. In addition, most normalization
procedures assume that most of the genes in a dataset are not
differentially expressed across experimental conditions, so artifi-
cial variance induced by outliers can have an amplified effect on
downstream analyses.

3http://polymorphism.scripps.edu/∼cabney/cgi-bin/mmr.cgi

As noted, our data set was based on brain tissue samples from
57 autistic and control cases, and were labeled by a sample number
(numbers 1–74), biological replicate letter (a, b, or c), and tech-
nical replicate number (rep 1 or rep 2). We refer to this labeling
in order to describe the results of the outlier analyses. These brain
samples were subjected to DASL-based expression array analy-
sis. Assay results were then analyzed using criteria and analysis
steps outlined above and detailed below for outlier detection and
exclusion in the presence of potential batch effects:

(1) As a first pass, a sample had to yield 14000 detectable genes
out of over 18000 (77%) genes detectable at a threshold of
p < 0.05 as a first pass. Samples 15B, 20A, 46A, 49A, 50A, 61B,
64B, 69A, 70B, and 74C did not meet this criterion (Figure S1
in Supplementary Material).

(2) Samples were required to pass the outlier detection meth-
ods (based on distance to the “center” of a reference sample;
Du et al., 2008) as implemented in the lumi package in R,
both before and after basic transformation and normalization
procedures (log2 transform, quantile normalization). This
criterion is based on the assumption of the gross homogeneity
of the samples. 70B, 69A, 64B, 20A, 32C, 15B, 46A, 31A, 50A,
61B, 74C, and 49A did not meet this criterion (Figures S2 and
S3 in Supplementary Material).

(3) Visual inspection of the samples was also used, whereby each
sample was required to show boxplot distributions compa-
rable to the remainder of the samples (Figure S4 in Supple-
mentary Material). We found that often samples that did not
meet the criterion concerning detected probes described in (1)
showed an interquartile range different from the other cases.
Samples 20A, 31A, 32C, 45B, 49A, 50A, 61B, 64B, 69A, 70B did
not meet this criterion.

(4) Pairwise comparisons using scatterplots, histograms, and cor-
relation coefficients were then used to examine the samples
that were not removed both before and after transforma-
tion and normalization. Individual samples emerging from
the scatter plots and histograms pre and post transformation
and normalization that skewed the data were removed from
the analysis. Samples 21C, 46A, 51B, 52A did not meet these
criteria (see Figures S5 and S6 in Supplementary Material).

(5) Only eight female autistic and control cases passed the qual-
ity control measures in steps 1–4. Since this was an extremely
small sample, not well age-matched with control samples, and
it is hypothesized that pathogenic mechanisms differ between
male and female autistic cases (Bloss and Courchesne, 2007),
we decided to remove these cases from the differential expres-
sion analysis between autistic male and control male cases.
These cases included 7A, 7B, 14A, 17A, 24A, 47A, 54B, 56A,
and 60A.

(6) After removal of outliers and unduly influential samples in
step 1–5, we tested for and detected severe batch effects (Figure
S7 in Supplementary Material). Samples 1–8 were processed
as one batch, while the remainder was processed in a sec-
ond batch. From the cluster dendrogram, it was obvious
that samples in each batch tended to cluster together (Figure
S7 in Supplementary Material). In fact, the “distance from
center” method implemented in the lumi analysis package
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detected the samples from the first batch as outliers rel-
ative to the second batch. We thus considered the use of
the batch correction algorithms implemented in the ComBat
(Johnson et al., 2007) after transformation and normalization
(Figures S8–S10 in Supplementary Material). Details of our
batch correction analyses are described in processing steps 7–9
below.

(7) After batch correction and outlier removal, we applied the out-
lier detection methods employed by Oldham et al. (2008) to
ensure that excluding the arrays in steps 1–5 indeed increased
mean IAC. This statistic is defined as the Pearson correlation
coefficient of the expression levels of all available probes for
a pair of microarrays, averaged across all arrays. Figure S11
and S12 in Supplementary Material, and Table 1 show that
the mean IAC from before and after outlier removal increased
from 0.775 to 0.911 after outlier removal, and to 0.952 after all
data preprocessing steps, suggesting that preprocessing steps
did result in a data set that did not harbor obvious, statistically
meaningful outliers.

(8) To ensure that borderline samples (e.g., 48, 57, 33B)
were in fact not outliers, differential expression analy-
sis including and excluding these cases was run itera-
tively to check that they did not strongly affect differen-
tial expression and enrichment analysis results. Differential

expression analysis comparing autistic and control cases
was run by an ANOVA-based method in BRB-ArrayTools
(http://linus.nci.nih.gov/BRB-ArrayTools.html). Genes pass-
ing a threshold of p < 0.05 were further subjected to
enrichment analysis in the MetaCore software suite (Meta-
Core from GeneGO Inc.). The results of these analyses are
reported elsewhere and suggest that no samples were unduly
influential, and hence likely to be artifactual, in the analyses
(Chow et al., in review).

(9) Finally, to ensure that no variation attributable to artifact or
noise was introduced to the dataset following outlier removal,
transformation, normalization, and batch correction, MDMR
analysis was performed (Table 2). No significant effects of
measures and parameters associated with the samples were
observed that would indicate the presence of outliers and
batch effects. Thus, the final set of samples included 33 high
quality male autistic and control samples of 57 originally
assayed samples.

Normalization and Transformation
Fifteen combinations of normalization and transformation meth-
ods were tested (Figure 1B). Plots of the genome-wide data
before transformation and normalization procedures are shown
in Figures S13–S15 in Supplementary Material, and plots after

Table 1 | MDMR and mean IAC results preceding (A) and following (B) quality control.

F statistic PVE p-Value Mean IAC

A. Before quality control (n = 57)

SINGLE REGRESSION

Batch 48.302 0.402 0 0.775

Diagnosis 1.923 0.026 0.1262

Age 0.700 0.010 0.4824

Gender 0.529 0.007 0.6066

MULTIPLE REGRESSION

Batch 48.302 0.402 0

Age 2.460 0.422 0.0459

Diagnosis 2.115 0.439 0.0544

Gender 0.877 0.446 0.5174

B. Following quality control (n = 33)

SINGLE REGRESSION

Batch 105.525395 0.71048722 0 0.911

Diagnosis 0.231184631 0.005347636 0.7795

Age 1.402412728 0.031584156 0.251

Seizures 2.942186899 0.064041072 0.069

MULTIPLE REGRESSION

Batch 105.525395 0.71048722 0

Age 3.396990456 0.732151038 0.03

Diagnosis 1.831000281 0.743601425 0.13

Seizures 2.134466832 0.75659018 0.062

Single and multiple regression results of MDMR analysis are shown for the raw unprocessed data before and after outliers were removed. Batch, diagnosis, age,

seizures, and gender were assessed as predictors of variance in the dataset. Seizures were not assessed as a predictor for the 57 cases due to missing medical

information. Mean IAC results show substantial improvement of array similarity after outlier exclusion.
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transformation and normalization are shown in Figures S16–S24
in Supplementary Material.

Of the 15 combinations tested (Table 2), four were chosen for
further analysis. Log2 transformation of the resulting assay data
was chosen for further investigation based on convention and high

mean IAC, and VST transformation was chosen based on high
mean IAC (Table 2). RSN and quantile normalization for each
of these transformation methods yielded the highest mean IACs
and so were further investigated. Slight differences in data dis-
tribution were evident between these four techniques (Figure 2;

Table 2 | Mean IAC of dataset following transformation and normalization in lumi.

Normalization

Loess SSN RSN Quantile Rank invariant

Transformation Cubic root 0.92 0.922 0.932 0.934 0.911

Log2 0.93 0.926 0.933 0.932 0.904

VST 0.744 0.929 0.944 0.94 0.903

Average inter-array correlations between samples were assessed following transformation (labeled in the first column) and normalization (labeled in the first row)

procedures. This assessment was used to identify candidates for detailed investigation (purple cells). VST, variance stabilizing transformation; SSN, simple scaling

normalization; RSN, robust spline normalization.

FIGURE 2 | Use of lumi plots to visualize correlations between

samples in two batches. Histograms, scatter plots, and correlations
statistics are plotted for samples 1 and 48 (A/B = biological replicate;
rep = technical replicate), which were processed in two separate
batches. These two batches showed substantial batch effects (Figure S7
in Supplementary Material). Figure shows the effect of transformation

(log2 and VST shown here) and normalization (quantile and RSN shown
here), and batch correction on the similarity between these samples.
Green boxes show differences in the frequency distribution following
transformation and normalization steps. Pink boxes show increasing
correlation following transformation and normalization steps as well as
the batch correction step.
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Figures S18 and 21 in Supplementary Material). These differences
are important due to assumptions of normality that must be met
for downstream preprocessing and analyses (Giles, 2003; Zapala
and Schork, 2006; Johnson et al., 2007).

Qualitatively, log2-transformed expression values showed a
more normal distribution, while VST-transformed values showed
a distribution skewed to lower intensity values (Figure 2 and
Figures S18 in Supplementary Material). Correlations between
arrays were slightly higher in the log2/quantile combination, but
more genes were detected as differentially up/down regulated
between technical replicates in this combination.

We again used MDMR to check the predictors of variance
in these preprocessed datasets. Comparing multiple regression
MDMR results after quality control (Table 1B) and after transfor-
mation and normalization but before batch correction (Table 3),
we see that cumulative percentage of variance explained (PVE)
using batch, age, diagnosis, and seizures as predictors could pre-
dict 75.6% of variance before preprocessing, but only ∼35% after
preprocessing. Batch effects were still the primary predictor of
variance in the dataset. Furthermore, the importance of seizures
as a predictor of variance increased following all four preprocess-
ing strategies, which necessitated implementing other statistical
strategies to ensure that seizure incidence was not a confounding
variable for differential expression analysis by diagnosis. Nonethe-
less, the variance predicted by the main variable of interest, diag-
nosis, did not appear to be affected by any of the four preprocessing
techniques. In fact, following transformation and normalization,
each of the four strategies appeared to yield similar PVEs for each
of the four variables queried.

Batch correction
Substantial batch effects could be observed through hierarchical
clustering by average linkage (Figure S7 in Supplementary Mater-
ial). Batch correction and adjustment for seizures as a covariate
was performed using ComBat on the four pipeline protocols
highlighted in Table 2 (Johnson et al., 2007).

Batch correction by ComBat decreased the percentage of
variation that could be attributable to batch from ∼25% after
transformation and normalization to less than 1% in each of
the four pipeline pathways. Scatterplots and IAC calculations
indeed showed higher correlation between samples in two sep-
arate batches after correction (Figure 2; Figures S25 and 26
in Supplementary Material; Table 3). After the correction step,
seizures became the most important predictor of variance in the
dataset, but the PVE remained similar before and after correction.
These results suggested that the use of Combat and appropriate
preprocessing can effectively eliminate the potential for artifac-
tual associations between gene expression levels and important
covariates.

Based on these results with ComBat and the combination of
factors listed above, including the intensity distribution, MDMR
analysis, and IACs, we chose the log2–quantile method for our
DASL-based brain gene expression dataset. Following these steps,
the dataset was ready for probe-based filtering and differential
expression analysis in BRB Array Tools, followed by enrichment
analysis in the MetaCore software suite (Chow et al., in review).

DISCUSSION
We have described a DASL assay-based gene expression prepro-
cessing analysis and quality control strategy meant to accommo-
date problems associated with the use of degraded brain samples.
The motivation for developing this strategy was to investigate aber-
rant molecular pathways in the brains of individuals with autism
(Chow et al., in review). Preprocessing strategies have important
downstream consequences, and should therefore be vetted appro-
priately. We exploited statistical methods such as MDMR (Zapala
and Schork, 2006), the algorithms and procedures described in
the lumi analysis package (Du et al., 2008), and mean IAC analy-
sis (Oldham et al., 2008) to quantify and visualize the effects of
each of our proposed preprocessing steps. Ultimately, it is cru-
cially important to remove systemic error in microarray-based
gene expression studies, so as not to unduly influence inferences
made in such studies. The main goal of our preprocessing tech-
nique was to produce a clean dataset suitable for downstream
differential expression analyses using statistical measures to quan-
tify and visualize the effects of each preprocessing step. An alternate
statistical modeling strategy may also be applied to adjust for batch
effects and other confounding variables.

Our analysis suggests that not all bioinformatics and biosta-
tistical pre- and post-processing techniques will generate reliable
results from brain gene expression datasets, when degraded sam-
ples are considered and the DASL assay is used. This is consistent
with previous reports that consider general microarray-based gene
expression studies (Lim et al., 2007; Schmid et al., 2010). For
example, the transformation methods resulting in the highest
inter-array gene expression profile correlations and that are his-
torically used for expression microarray preprocessing all yielded
varying results as assessed by the use of MDMR and mean IAC
analyses. Our decision to ultimately transform and normalize our
dataset by the log2–quantile method, followed by batch and covari-
ate correction analyses, was based on careful consideration of
whether a removal of potentially artifactual variation across the
expression profiles of the samples could be achieved and quan-
tified. The results of the analyses comparing autistic and control
brains involving the samples processed in this report are described
elsewhere (Chow et al., in review).

In order to assess the effects of autism diagnosis on brain gene
expression, while controlling for important covariates such as gen-
der and age, it was necessary to remove the systematic variance
introduced by experimental data handling factors. Furthermore,
if autism-specific mechanisms are to be uncovered, the effect of
medications, lifestyle, comorbid conditions, and other confound-
ing variables on brain gene expression must be accommodated
and controlled for (Horváth et al., 2010). As noted, we attempted
to remove seizure-specific variance through the use of the algo-
rithm implement in ComBat (Johnson et al., 2007) since it was a
primary confounding variable to diagnostic differences between
cases. Despite the sophistication of these statistical techniques and
their potential to control for effects such as seizure when consider-
ing the effects of autism on brain gene expression, care should be
taken to select postmortem cases and samples for gene expression
studies without such confounding conditions. It is possible that
overuse of batch effect correction and normalization techniques
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Table 3 | Multivariate distance matrix regression and mean IAC of preprocessing techniques before and after batch and seizure correction.

Before correction After correction

F statistic PVE p-Value F statistic PVE p-Value Mean IAC

VST RSN

Single regression

Diagnosis 1.6729134 0.037448 0.109 Diagnosis 1.8940367 0.042189 0.033 0.958

Age 2.4245125 0.0533745 0.026 Age 1.58669 0.0355866 0.063

Seizures 2.7582096 0.0602779 0.013 Seizures 2.4793926 0.0545168 0.017

Batch 13.058957 0.2329504 0 Batch 0.2846881 0.0065771 1

Multiple regression

Batch 13.058957 0.2329504 0 Seizures 2.4793926 0.0545168 0.015

Seizures 2.1226654 0.2698518 0.012 Age 1.6660211 0.0905905 0.048

Age 1.8294695 0.3010403 0.024 Diagnosis 1.6574314 0.1259251 0.018

Diagnosis 1.6026397 0.327966 0.023 Batch 0.2901352 0.1322195 1

VST QUANTILE

Single regression

Diagnosis 1.8890465 0.0420826 0.074 Diagnosis 2.1861262 0.0483805 0.022 0.955

Age 2.2405636 0.0495255 0.034 Age 1.5368514 0.0345074 0.115

Seizures 3.6468514 0.07818 0.005 Seizures 3.383833 0.0729529 0.003

Batch 12.752688 0.2287367 0 Batch 0.3229249 0.0074539 1

Multiple regression

Batch 12.752688 0.2287367 0 Seizures 3.383833 0.0729529 0.004

Seizures 2.8867262 0.2783377 0.002 Age 1.6521697 0.1080402 0.044

Age 1.8295067 0.3091643 0.019 Diagnosis 1.6128694 0.1418003 0.023

Diagnosis 1.5452078 0.3348588 0.044 Batch 0.2860049 0.147893 1

LOG2 RSN

Single regression

Diagnosis 2.1462506 0.04754 0.049 Diagnosis 2.5611912 0.0562143 0.01 0.952

Age 2.1291878 0.0471798 0.065 Age 1.6129807 0.036155 0.092

Seizures 4.3589952 0.0920415 0.001 Seizures 4.1035766 0.0871182 0.003

Batch 15.008355 0.2587275 0 Batch 0.3858177 0.0088927 1

Multiple regression

Batch 15.008355 0.2587275 0 Seizures 4.1035766 0.0871182 0

Seizures 3.4994278 0.3157398 0 Age 1.7746043 0.124126 0.025

Age 1.9815402 0.3472857 0.015 Diagnosis 1.5874065 0.1567734 0.029

Diagnosis 1.521837 0.3712086 0.064 Batch 0.3383702 0.1638466 1

LOG2 QUANTILE

Single regression

Diagnosis 2.0685712 0.0458983 0.046 Diagnosis 2.4877101 0.0546897 0.01 0.95

Age 2.1157896 0.0468969 0.056 Age 1.6154992 0.0362094 0.088

Seizures 4.2879443 0.0906773 0.003 Seizures 4.094734 0.0869467 0.002

Batch 14.483298 0.2519566 0 Batch 0.3862096 0.0089017 1

Multiple regression

Batch 14.483298 0.2519566 0 Seizures 4.094734 0.0869467 0.001

Seizures 3.495735 0.3094337 0 Age 1.7776195 0.1240219 0.027

Age 2.0082104 0.3416788 0.015 Diagnosis 1.5400331 0.155734 0.04

Diagnosis 1.4739227 0.3650745 0.048 Batch 0.3483945 0.163024 1

Single and multiple regression results of MDMR analysis before and after batch and seizure correction, with each of four transformation and normalization analy-

sis protocols (log2–quantile, log2–RSN, VST–quantile, VST–RSN) are shown. The last column lists the mean IAC after batch correction of each transformation and

normalization analysis. PVE, percentage of variance explained; IAC, inter-array correlation.
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can modify variance in the dataset and thus confound biological
results. Thus, although we have developed a procedure for objec-
tively removing outliers, normalizing data, and removing batch
effects from DASL chip-based gene expression on degraded brain
samples, it is no substitute for good study design and appropriate
collection, storage and maintenance of samples.
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