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The era of toxicogenomics has introduced a new way of monitoring the effect of envi-
ronmental stressors and toxicants on biological systems via quantification of changes in
gene expression. Because the liver is one of the major organs for synthesis and secretion
of substances which metabolize endogenous and exogenous materials, there has been a
great deal of interest in elucidating predictive and mechanistic genomic markers of hepato-
toxicity. This mini-review will bring context to a limited number of toxicogenomics studies
which used genomics to evaluate the transcriptional changes in blood and liver in response
to acetaminophen (APAP) or other liver toxicants, but differed according to the classifica-
tion of interest (CQOI), i.e., the partitioning of the samples a priori according to a common
toxicological characteristic. The toxicogenomics studies highlighted are characterized by
a classification of either no/low vs. high APAP dose exposure, none vs. observed necro-
sis, and severity of necrosis. The overlap or lack thereof between the gene classifiers and
the modulated biological processes that are elucidated will be discussed to enhance the
understanding of the effect of the particular COl model and experimental design used for

prediction.
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TOXICOGENOMICS

In toxicogenomics, gene expression data has been used to under-
stand the transcriptional changes in response to exposure to envi-
ronmental stressors and toxicants. The transcriptome may be a
more effective marker or predictor for drug-induced liver injury
(DILI) compared to other biomarkers (for a review see Watkins,
2009). Several toxicogenomics studies have monitored the gene
expression changes in the liver and/or the blood following expo-
sure to hepatotoxicants (Bushel et al., 2007; Huang et al., 2008,
2010). Figure 1A illustrates a few examples of descriptors used in
toxicogenomics studies. For a given classical dose response curve,
regions can be ill-defined as having no effect, an observable effect
on the transcription of genes, or bracketed into a maximum limit
where the highest dose produces an effect without appreciable tox-
icity (Figure 1A left inset). In other cases, measurements of serum
enzymes alanine transaminase (ALT) and aspartate transaminase
(AST) are typically used to monitor liver damage and separate
samples into responders and non-responders of an exposure to a
toxicant. However, increases in these transaminases are not good
prognosticators of liver injury and as such, have limitations in their
use as biomarkers (Blei, 2005). For instance, ALT measurements do
not always correlate well with histopathological data. There can be
cases where the variation of the ALT measure among samples shar-
ing the same necrosis severity score is large (Huang et al., 2010).
In a more practical approach, liver injury severity measures can be
grouped into a composite score or according to the similarity of
the biological processes of the samples to reflective a more intu-
itive phenotypic representation of the toxicant effect (Figure 1A

right inset). Furthermore, and to complicate matters even further,
when time is a function of the exposure along with dose, biological
and transcriptional responses take the form of those exhibited in
an acute/short-term effect that may or may not be reversible vs. a
chronic or repeated effect resulting in a long-term manifestation
of an injury. Cleary these limited, albeit general, representations
of the interplay between toxicology and genomics provide good
examples of how the desired end result of a toxicogenomics study
ultimately depend on how one structures the study design and
categorizes the phenotypic response(s).

CLASSIFICATION OF INTEREST

A region of interest (ROI) is commonly used in scientific research
and analysis to focus on a particular area or subset of data identi-
fied for a particular purpose. In digital imaging for example, a ROI
might be the focal point of a digital representation of an object.
The ability to focus on a specific subset of data is useful to inves-
tigators in order to have a broader understanding of the larger
experimental system or problem. Similarly, in toxicogenomics the
classification of interest (COI) is defined as the a priori partition-
ing of biological samples according to a common toxicological
characteristic.

Here we examine a set of three similar toxicogenomics stud-
ies (Bushel et al., 2007; Huang et al., 2008, 2010), each of which
used the same toxicant for exposure, but varied according to COI.
The first study, Bushel et al. (2007), investigated the utility of rat
blood gene expression data to predict exposure to acetaminophen
(APAP). The samples were segregated based on a binary COI
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FIGURE 1 | (A) A few examples of descriptors used in toxicogenomics
studies. Main inset: ALT over time as a function of sample type. Left inset:
classical dose response curve. MTD: minimum tolerated dose. Right inset:
liver injury severity measures grouped according to similarity to gene ontology
biological processes (GO BPs) (B,C) Intersection of COl-specific predictive
gene signature probes (B) and gene ontologies enriched in those predictive
gene signatures (C). (D) Network analysis of predictive gene signatures

shows a common central gene relational network. Corresponding gene
symbols of predictive gene signatures were submitted to STRING to generate
a Gene Relational Network (solid black lines; line width correlates to STRING
combined score, which is the computed final confidence score for association
between two proteins). Nodes are connected to COls Dose, Severity, and
DILI by dashed lines. Node color further represents COI. Green: dose. Brown:
dose and DILI. Red: DILI. Violet: DILI and severity. Blue: severity.

defined as either no or low dose exposure vs. high dose expo-
sure. In another study, Huang et al. (2008) targeted rat liver gene
expression data to predict the extent of necrosis in the liver. Here
the COI was defined as the severity of liver necrosis determined
by visual histopathology. In the final study, Huang et al. (2010)

explored the use of rat blood gene expression data to predict liver
necrosis. The COI for this latter study was no visual liver necro-
sis vs. some observable sign of necrosis in the treated samples.
Although each study was similarly designed to identify predic-
tive markers based on rat gene expression in response to APAP
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Table 1 | Summary of predictive transcriptomics for APAP/DILI.

Classification Tissue Prediction Study

of interest

Dose Blood  No/low vs. high dose Bushel et al. (2007)

Severity Liver No vs. minimal or mild vs.  Huang et al. (2008)
moderate or marked

DILI Blood  None vs. observed Huang et al. (2010)

exposure, the predictive gene signatures generated share very few
microarray probes in common. Further, the predictive gene sig-
natures from the three studies differ widely in enriched biological
processes and thus biological interpretation. It is unclear how these
subtle differences in the study COI contributed to the identifica-
tion of predictor genes, biological interpretation of these gene
signatures and therefore the ultimate conclusions.

COMPARISON OF STUDIES

The three toxicogenomic studies examined each define similar
predictive transcriptomic signatures based on related yet distinc-
tive COJ, i.e., blood transcriptomic signatures that predict dose
of APAP exposure, liver transcriptomic signatures that predict the
severity of liver necrosis, and blood and liver transcriptomic sig-
natures that predict DILI (Table 1). To give an overview of the
studies, these experiments are summarized and characterized as
follows.

Using a blood gene expression dataset in rat, Bushel et al.
(2007) reported a gene signature that predicted an endpoint of
APAP exposure and classified the endpoint by level (no dose/low
dose vs. high dose). Here into called the Dose-Classification.
Using the Agilent 011868 Rat Oligo Microarray G4130A, pool-
ing of the highly accurate classifiers common to any two out of
the four prediction algorithms (k-NN/DME-ANOVA, PCA/EPIG,
fuzzy-ARTMAP/DME-ANOVA, fuzzy-ARTMAP/DCE-ANOVA)!
resulted in 27 gene-probes. The classifiers were built to take
advantage of dose as a main effect in the study with treatments
levels divided into non\sub-toxic (0, 150 mg/kg) and toxic (1500,
2000 mg/kg) without considering the duration of exposure.

Huang et al. (2008) used rat liver gene expression assayed on
the same array platform as Bushel et al. (2007) but from samples
exposed to eight hepatotoxicants as a training set to predict the
severity of liver injury. Here into called the Severity-Classification.
An independent test set comprised of liver gene expression from
rats treated with APAP, carbon tetrachloride and allyl alcohol. The
union of the classifiers from the Random Forest and support vec-
tor machine prediction algorithms resulted in 22 gene-probes. The
classifiers were trained using the partition of groups created by
merging severity levels of a histopathological endpoint depending
on the similarity of the biological processes of samples (groupl:

'The prediction algorithms are designated as the method used for making the pre-
diction followed by the method used to select the genes to build the classifier (i.e.,
k-NN/DME). k-NN, k-nearest neighbors; DME-ANOVA, an analysis of variance
model with dose as the main effect; PCA, principal component analysis; EPIG,
extracting patterns and identifying genes; fuzzy-ARTMAP, fuzzy adaptive resonance
theory map (neural network); DCE-ANOVA, an analysis of variance model with
dose as a confounded effect.

no necrosis; group2: minimal and mild necrosis; group3: moder-
ate and marked necrosis) irrespective of the dose and/or time of
exposure.

Huang et al. (2010) used liver and blood gene expression data
from the Huang et al. (2008) study but predicted DILI within
and across tissues, i.e., used the same predictive gene signature
trained on liver expression to predict DILI based on both liver
and blood gene expression data (and vice verse). Here into called
the DILI-Classification. DILI was defined as a binary response (no
necrosis vs. some observable sign of necrosis) without consider-
ing the dose and/or time of exposure. From the various, highly
accurate predictors, 10 gene-probes occurred most often.

A meta-analysis of the data from these studies illustrates the
effect of the COI in the identification of predictor genes and
the interpretation of results. Although each study was similarly
designed to identify predictive markers related to samples treated
with APAP, there are very few probes common to all three gene
signatures. While no gene-probes are common to each predic-
tive gene signature, half of the DILI-Classification predictive
gene signature probes (n=10) overlap with either the Dose-
Classification or Severity-Classification predictive gene signatures
(n=27and n =22, respectively), which have no gene-probes com-
mon amongst themselves (Figure 1B). The pattern of overlap of
the gene signatures from the three studies is only partially rein-
forced by similar patterns of intersection of functionally enriched
ontologies in the predictive gene signatures (Figure 1C) as the
Dose-Classification signature is not functionally enriched for gene
ontologies after multiple test correction. Yet, despite the presence
of only a single gene-probe common to both predictive signatures
(Figure 1C), the Severity-Classification and DILI-Classification
studies revealed a large amount of functional overlap (Figure 1C;
Table 2). Although there are no gene-probes or enriched gene
ontologies common to all three gene signatures, surprisingly,
genes from the three signatures together comprise a STRING-
generated Gene Relational Network (Figure 1D) that is enriched
for inflammatory and immune response ontologies (Table 2).

Common to gene signatures that predict liver injury based on
both liver and blood gene expression (Severity-Classification and
DILI-Classification) was chemokine (C—-C motif) ligand 2 (Ccl2),a
key chemokine that regulates migration and infiltration of mono-
cytes and macrophages, and has a putative role in APAP exposure
and DILI. The Ccl2 protein measured by ELISA was shown to be
elevated in blood from patients following acute APAP overdose
(James et al., 2005). The role of Ccl2 in DILI was further impli-
cated in a study of Ccl2-deficient mice which showed protection
from necrosis when administered carbon tetrachloride (Zamara
et al., 2007). In addition, when a mouse model genetically defi-
cient in the C-C chemokine receptor and negatively mediates Ccl2
expression is challenged with APAP, an ELISA revealed elevated
liver necrosis and increased Ccl2 protein (Hogaboam et al., 2000).
The genes from the three COIs together form a relational network
dominated by inflammatory responsive genes. These inflamma-
tory responsive genes appear to be central to the major biological
pathways that are presumably part of the mechanism(s) leading to
APAP liver tissue damage.

One would certainly expect more overlap between the predic-
tors for the different COIs. However, there is no reason why very
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Table 2 | Top eight BINGO gene ontology terms enriched in Severity and DILI predictive gene signatures, and STRING gene relational network

generated from the three predictive signatures.

GO-ID p X n Description Genes
Severity COI
1782 116E-02 2 9 B cell homeostasis BAK1|BCL2A1D
7275  115E—-02 10 2238 Multicellular organismal development BAK1|RND1|CCL2|SEMA4G|CD44|LGALS3|GPNMB|LCP1|VASP|ANXA2
31100 1.16E-02 3 80 Organ regeneration BAK1|CCL2|LCP1
32879 1.16E-02 6 708  Regulation of localization BAK1|CCL2|CXCL16|LCP1|EHD4|ANXA2
6935  1.15E-02 3 83 Chemotaxis LSP1|CCL2|CXCL16
48731 1.15E—02 9 1908 System development BAK1|RND1|CCL2|CD44|LGALS3|GPNMBJ|LCP1|VASP|ANXA2
16043 1.24E-02 9 1982 Cellular component organization BAK1|RND1|CD44|LGALS3|TUBB6|LCP1|VASP|EHD4|ANXA2
5539 142E-02 3 106 Glycosaminoglycan binding CCL2|CD44|GPNMB
DILI COI
5615  3.79E-07 7 585  Extracellular space CCL2|S100A8|MMP8|S100A9|SERPINB1A|HP|CXCL10
32496 8.22E-07 5 166 Response to lipopolysaccharide CCL2|S100A8|S100A9|HP|CXCL10
42330 2.44E-06 4 83 Taxis CCL2|S100A8|S100A9|CXCL10
9408 1.09e-04 3 74 Response to heat CCL2|HP|CXCL10
2544 3.34E-04 2 14 Chronic inflammatory response S100A8|S100A9
45471 4.01E-04 3 126  Response to ethanol CCL2|S100A8|S100A9
2690 436E-04 2 17 Positive regulation of leukocyte chemotaxis  CCL2|CXCL10
30595 1.30E-03 2 34 Leukocyte chemotaxis CCL2|S100A9

STRING gene relational network

6952 6.29E-09 10 421 Defense response

6954 1.81E-08 8 216 Inflammatory response

42330 b5.83E-08 6 83 Taxis

44421  450E-07 10 769 Extracellular region part

40011  3.28E-06 7 318 Locomotion

9605 724E-06 8 561 Response to external stimulus
5615 9.00E-06 8 585 Extracellular space

2376 1.63E-05 8 640 Immune system process

LSP1|CCL2|CDA44|S100A8|CXCL16/S100A9|MS4A1|HP|CFD|CXCL10
CCL2|CD44|S100A8|S100A9|MS4A1|HP|CFD|CXCL10
LSP1|CCL2|S100A8|CXCL16|S100A9|CXCL10
CCL2|LGALS3|S100A8|CXCL16|MMPS|S100A9|HP|CFD|CXCL10JANXA2
LSP1|CCL2|CDA44|S100A8|CXCL16/S100A9|CXCL10
LSP1|CCL2|CDA44|S100A8|CXCL16/S100A9HP|CXCL10
CCL2|S100A8|CXCL16|MMPS|ST00A9|HP|CFD|CXCL10
CCL2|CXCL16|S100A9|SPIB|OAS1A|CFD|LCP1|CXCL10

p, Benjamini and Hochberg False Discovery Rate correction, x, number of genes from list in GO term, n, number of genes from background in GO term.

few genes, even a single one would not have the predictive power
to accurately classify the exposed samples. If more mechanistic
information needs to be gleaned from the predictors, the number
of genes in the classifiers can be enlarged. This will undoubtedly
bring more biological context to the classifiers but definitely at
the expense of losing prediction accuracy due to the addition of
potentially noisy genes or genes as false positives. Where to draw
the line is not abundantly clear. What is certain is that depend-
ing on a typical toxicogenomics study, if the gene expression data
is analyzed using different COls, then several different predic-
tors can be derived as potential biomarkers which may have a
small but biologically relevant common theme, yet still captures
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APPENDIX
ADDENDUM: BIOINFORMATICS METHODS USED FOR ANALYSIS
Gene ontologies enriched in the assembled gene signatures for the
three studies were created using BINGO as described below.
Biomolecular interaction networks of predictive gene signa-
tures were generated using STRING (Szklarczyk et al., 2011). Gene
symbols from the three assembled gene signatures were submitted
to STRING using the default settings, the output was downloaded
as a text file and then imported into Cytoscape (Smoot et al., 2011)
for graphical visualization. Interactions between genes and nodes
representing a COI were manually added prior to import into
Cytoscape.

Over-representation analysis of gene signatures and networks
rendered in Cytoscape was by the BINGO v. 2.44 plug-in (Maere
et al., 2005) using the default settings, GO_Full as the selected
ontology file and Rattus norvegicus as the selected annotation.
For intersection comparison of gene ontologies enriched in gene
signatures, all terms with Benjamini and Hochberg FDR correc-
tion p <0.05 were used. For reporting significant functionally
enriched ontologies in tabular format, terms were filtered to
remove less significant ontologies with redundant gene lists; and,
only the top eight filtered ontologies ranked by increasing p were
reported.
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