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RNA inverse folding is a computational technology for designing RNA sequences which
fold into a user-specified secondary structure. Although pseudoknots are functionally impor-
tant motifs in RNA structures, less reports concerning the inverse folding of pseudoknotted
RNAs have been done compared to those for pseudoknot-free RNA design. In this paper,
we present a new version of our multi-objective genetic algorithm (MOGA), MODENA,
which we have previously proposed for pseudoknot-free RNA inverse folding. In the new
version of MODENA, (i) a new crossover operator is implemented and (ii) pseudoknot pre-
diction methods, IPknot and HotKnots, are used to evaluate the designed RNA sequences,
allowing us to perform the inverse folding of pseudoknotted RNAs. The new version
of MODENA with the new crossover operator was benchmarked with a dataset com-
posed of natural pseudoknotted RNA secondary structures, and we found that MODENA
can successfully design more pseudoknotted RNAs compared to the other pseudoknot
design algorithm. In addition, a sequence constraint function newly implemented in the
new version of MODENA was tested by designing RNA sequences which fold into the
pseudoknotted structure of a hepatitis delta virus ribozyme; as a result, we success-
fully designed eight RNA sequences. The new version of MODENA is downloadable from
http://rna.eit.hirosaki-u.ac.jp/modena/.
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1. INTRODUCTION
Evolutionary related non-coding RNAs have their own charac-
teristic secondary structure corresponding to each function, and
it is well known that the secondary structures play key roles in
the functions of the RNA sequences. This biochemical knowl-
edge accumulated to date indicates that we can generate functional
synthetic RNAs if we can control the secondary structure of the
RNAs. In this context, various synthetic RNAs, such as ribozymes
(Schultes and Bartel, 2000), micro RNAs (Schwab et al., 2006),
riboswitches (Breaker, 2004), and RNA nano structures (Jaeger
et al., 2001) have been successfully designed.

RNA inverse folding is a computational methodology for
designing RNA sequences which fold into a given target struc-
ture (Hofacker et al., 1994). The name “inverse” comes from the
reason that the inverse folding is defined as the inverse problem of
RNA secondary structure prediction, where RNA secondary struc-
ture prediction problem is referred to as “direct problem”. Since
usually there can be multiple solutions for an RNA inverse fold-
ing problem and we have no deterministic algorithm which can
enumerate all solutions of a given RNA inverse folding problem,
previous RNA inverse folding algorithms have adopted heuris-
tic approaches to find desired RNA sequences. We can find the
following six RNA inverse folding algorithms in literature: local
search algorithms [RNAinverse (Hofacker et al., 1994), RNA-
SSD (Andronescu et al., 2004), INFO-RNA (Busch and Backofen,
2006), Inv (Gao et al., 2010), design in NUPACK (Zadeh et al.,
2011)] and a genetic algorithm [GA; MODENA (Taneda, 2011)].

The local search algorithms are well characterized by their ini-
tialization step and refinement step in the exploration procedures
for obtaining desired RNA sequences. First, in these local search
approaches, a single RNA sequence is generated. The pioneering
RNA inverse folding algorithm, RNAinverse, uses a pure random
initialization. RNA-SSD randomly initializes an RNA sequence in
a more sophisticated manner, where a base composition and a tabu
mechanism for avoiding undesired stem formation are taken into
account. INFO-RNA utilizes a dynamic programming algorithm
to obtain a good initial sequence for the RNA inverse folding,
where the lowest energy RNA sequence determined assuming that
the RNA sequence folds into a given structure is used as an initial
sequence. In the refinement step after the initialization, RNAin-
verse performs adaptive walk to improve the initial sequence, and
RNA-SSD and INFO-RNA use stochastic local search (Hoos and
Stützle, 2004) to improve the initial sequence. In the refinement
step, RNAinverse and RNA-SSD employ a structure decomposi-
tion strategy to reduce the number of folding calculations for a
whole sequence. Inv and NUPACK also utilize structure decom-
position strategies in their refinement step. Inv is an RNA inverse
folding algorithm designed for a restricted pseudoknot class and
can perform the inverse folding of pseudoknotted RNAs. NUPACK
is a suite of programs for computational nucleic acid analysis and
includes a program named design. Design generates the sequences
by minimizing an ensemble defect (Zadeh et al., 2011); the value
of ensemble defect becomes lower, the designed RNA sequence
more specifically folds into a given target structure. MODENA
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is a multi-objective genetic algorithm (MOGA; Deb, 2001) for
RNA inverse folding. As objective functions, MODENA uses two
quantities, a structure similarity measure and a stability measure
(e.g., free energy). By virtue of simultaneous optimization in these
objective functions, MODENA can explore the sequence which not
only folds into the desired target structure but has a high stability
(= a low free energy).

Pseudoknots are important functional motifs in RNA structure
(Staple and Butcher, 2005). In contrast to other RNA structure
motifs such as hairpin loop, bulge loop, internal loop, and multi-
branch loop, where any two base pairs (i, j) and (k, l) do not
have a relationship such that i < k < j < l (where i, j, k, and l
are nucleotide positions), pseudoknots are defined as the struc-
tures which have base pairs satisfies the condition i < k < j < l.
Since pseudoknots have various enzymatic functions (Staple and
Butcher, 2005), they are intriguing targets of functional RNA
design. However, in the previous RNA inverse folding algorithms,
only Inv can design pseudoknots. Moreover, there is no algorithm
which can design pseudoknotted RNAs with sequence constraints,
which are an important feature for designing the molecule with
a known functional sequence motif. For these reasons, develop-
ment of a novel pseudoknotted RNA inverse folding algorithm
is important in order to promote the sequence design of RNA
pseudoknots.

In this paper, we present an extension of MODENA algorithm
to the inverse folding of pseudoknotted RNAs. In MODENA
algorithm, designed RNA sequences are evaluated by perform-
ing secondary structure prediction with an RNA folding program
such as RNAfold (Hofacker, 2003), and we can easily substitute
the RNA folding program by a different RNA folding program
(in the context of inverse folding, we refer RNA structure pre-
diction program as “direct problem solver”). This advantage of
MODENA algorithm also remains in the case of pseudoknotted
RNA inverse folding, where we have to use a pseudoknotted RNA
secondary structure prediction program as direct problem solver.
In the rest of the present paper, first, we describe the MODENA
algorithm for pseudoknotted RNA design, where a multi-objective
genetic algorithm is used in combination with the state of the art
pseudoknotted RNA structure prediction programs. After that,
the performance of MODENA algorithm is evaluated by bench-
marks based on natural RNA secondary structures, where not only
pseudoknotted structures but also pseudoknot-free structures are
taken into account. Then, a sequence constraint function available
in MODENA is demonstrated with a biological example taken
from literature.

2. MATERIALS AND METHODS
Since the detail of the MODENA algorithm for pseudoknot-
free RNAs is described in Taneda (2011) and the present ver-
sion for pseudoknot RNA design shares all parts of the previ-
ous pseudoknot-free version of MODENA, the algorithmically
common parts between the two versions are briefly described
below.

MODENA algorithm is an RNA inverse folding algorithm based
on MOGA. GA is a population based algorithm for optimization
and search (Goldberg, 1987), which is inspired from the mech-
anism of evolution. MOGA is a GA for exploring the objective

function space consisting of multiple objective functions, while
standard GA uses a single objective function. In MODENA algo-
rithm, we use the following two objective functions, a structure
stability score ε and a structure similarity score σ :

ε = −E , (1)

σ = (N − d)/N , (2)

where E is the lowest free energy of a designed sequence; N is
the total number of nucleotides, and d is the structure distance
between target and predicted structures (Taneda, 2011). Structure
distance d is defined as the number of the bases which have a
different base-paring status between the target structure and the
structure predicted for the designed sequence.

In MODENA algorithm, we utilize multi-objective optimiza-
tion (MOO; Deb, 2001) to explore solutions (i.e., RNA sequences)
with better values of both of the two objective functions. In MOO,
two solutions are compared based on their dominance. Let us con-
sider two solutions, xa and xb. When “all objective function values
of xa are better than or equal to those of xb” and “at least one
objective function value of xa is not equal to that of xb”, xa domi-
nates xb; a solution which is not dominated by any other solution
is called a Pareto optimal solution. If “all objective function val-
ues of xa are better than those of xb”, xa strongly dominates xb; a
weak Pareto optimal solution is defined as a solution which is not
strongly dominated by any other solution. MODENA algorithm
explores weak Pareto optimal solutions for RNA inverse folding
problem (Taneda, 2011).

Since usually it is difficult to enumerate all (weak) Pareto
optimal solutions for a given MOO problem, MOGA computes
approximate set (partial solutions) of the (weak) Pareto optimal
solutions. MODENA is developed based on one of the standard
MOGA, non-dominated sorting genetic algorithm 2 (NSGA2;
Deb, 2001). NSGA2 proceeds in accordance with the framework
similar to that of standard GA, which is composed of initializa-
tion, evaluation, and reproduction for a population of solutions.
In the initialization step, a user-defined number of solutions (RNA
sequences) are randomly generated. In the present study, we use
50 or 100 solutions in one population.

In the evaluation step, we perform an RNA structure prediction
for each solution in the current generation, and then assign stabil-
ity and similarity scores to the solutions. We use an RNA structure
prediction program as a direct problem solver to obtain the objec-
tive function values. In MODENA, RNAfold (Hofacker, 2003),
CentroidFold (Hamada et al., 2009), or UNAFold (Markham
and Zuker, 2008) can be used as a direct problem solver for
pseudoknot-free RNA design, and IPknot (Sato et al., 2011) or
HotKnots (Ren et al., 2005) can be utilized for pseudoknotted
RNA sequence design (in the present study, we used IPknot 0.0.2
and HotKnots 2.0). Since IPknot does not output a free energy
or some quantity indicating stability of the predicted structure,
instead of using Equation 1, we assign the total number of gua-
nine and cytosine pairs in the predicted base pairs to each solution
as a stability score when we use IPknot as a direct problem solver.

Based on the solutions of the current generation, reproduction
step generates child solutions for the next generation. MODENA
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algorithm generates child solutions by invoking three GA opera-
tors with an equal probability: structural n-point crossover, point
accepted mutation, and error diagnosis mutation (Taneda, 2011);
structural n-point crossover generates a child solution by con-
catenating subsequences taken from two parent solutions; point
accepted mutation randomly changes a nucleotide; error diagnosis
mutation compares the predicted and target structures, and then
changes the nucleotides which have different base pairs between
the predicted and target structures.

Point accepted mutation and error diagnosis mutation can
be applied to pseudoknotted RNA sequence design without any
modification. Structural n-point crossover, however, has to be
changed for pseudoknotted RNAs, since its original algorithm
(Taneda, 2011) assumes no pseudoknot in a target structure (i.e., a
nucleotide k, [i < k < j], never forms a base pair with a nucleotide
l [l < i or j < l]). Structural n-point crossover is composed of four
steps (Taneda, 2011, p. 5), and we modified Step 2 to take pseudo-
knots into account. After a crossover parameter nc (= 2 in the
present study) and a randomly determined x0 (= 0 or 1) are given,
structural n-point crossover allowing pseudoknots is performed
as follows:

Step 1 Set l = 0 and set xi = x0 for all i (1 ≤ i ≤ N ; N is a sequence
length). Randomly select a base pair (i, j) (1 ≤ i < j ≤ N ).
Step 2 For each xk (i ≤ k ≤ j) which does not form a base pair with
xl (l < i or j < l) in the target structure, perform the following:
if xk is zero, change xk to one, otherwise change xk to zero. Then
increment l by one.
Step 3 If l < nc and “the number of the base pairs whose upstream
nucleotide position m satisfies i < m (where m < N )” is larger than
or equal to one, randomly select a base pair (inew, jnew), where
i < inew < jnew ≤ N ; then we set i = inew and j = jnew, and move to
Step 2; otherwise we go to Step 4.
Step 4 Generate a child solution according to xi for all i (1 ≤ i ≤ N );
if xi = 0, copy the value of a nucleotide sA

i in parent A to the corre-

sponding nucleotide schild
i of the child solution; if xi = 1, the value

of a nucleotide sB
i in parent B is copied to schild

i .

It is noted that Step 1, Step 3, and Step 4 are exactly the same
with those in Taneda (2011). By using this modified version, we
can crossover two parent solutions without destructing any base
complementarity in the target structure. An example of structural
n-point crossover is depicted in Figure 1.

2.1. SEQUENCE CONSTRAINTS
Since the previous version of MODENA does not support
sequence constraints, we have added the function to the present
version of MODENA. The sequence constraints of MODENA can
be specified in accordance with the IUPAC notation of nucleotide
codes. By using the sequence constraints, user can design pseudo-
knotted RNA sequences with sequence motifs specified by the user.

2.2. A NOTE ON INPUT TARGET STRUCTURE
In MODENA, user inputs a target structure using a bracket nota-
tion, where (), <>, {}, [], and alphabets (AaBbCcDdEe) are
allowed to specify a base pair (where uppercase and lowercase
alphabets indicate upstream and downstream nucleotide posi-
tions, respectively). User can freely input a target structure using

FIGURE 1 | An example of structural n-point crossover operator for

pseudoknotted target structure. Trgt and x_k indicate a target structure
and a crossover position indicator, xk, respectively. (A) An initial state. All
xks are set to zero. (B) Position i is randomly selected. Position j is the
position complementary to the position i. (C) The values of xks between i
and j are changed to 1. The values in the pseudoknotted region are not
changed. The positions whose xk = 1 are shaded. We can use the xks
obtained after this step as a crossover position indicator for a 4-point
crossover. (D) In addition, we can randomly select one more position i to
increase the crossover points. (E) In this example, as a result, we can
obtain a crossover position indicator for a 6-point crossover, which is
composed of 7 subsequence regions.

these bracket notations, but it is noted that if the direct problem
solver selected by the user cannot predict the class (e.g., Condon
et al., 2004) of the input pseudoknot, the user never obtain the
sequences folding into the target structure.

2.3. DATASET FOR BENCHMARK
We evaluated the design performance of MODENA with a dataset
which contains the natural pseudoknotted structures taken from
Pseudobase (Batenburg et al., 2000). Since the original 342 pseudo-
knotted structures downloaded from Pseudobase are redundant,
i.e., different Pseudobase entries can share strictly the same struc-
ture, we performed a non-redundant processing to guarantee that
all structures are unique in our dataset. Consequently, we obtained
266 pseudoknotted structures for the performance evaluation. We
refer to this dataset as the Pseudobase dataset.

In addition to the benchmark for the pseudoknotted target
structures, we performed a benchmark for pseudoknot-free target
structures, where the Rfam dataset of our previous paper (Taneda,
2011) was used. It is noted that a pseudoknot prediction method
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(IPknot) was used as a direct problem solver in this pseudoknot-
free benchmark. The reason why we performed a benchmark for
pseudoknot-free target structures in the present study is as fol-
lows. If we use a non-pseudoknot prediction method as a direct
problem solver to design an RNA sequence, the designed RNA
sequence may fold into a pseudoknotted structure when we fold
the designed sequence with a pseudoknot prediction method. By
using a pseudoknot prediction method as a direct problem solver
for pseudoknot-free RNA sequence design, we can decrease the
probability with which undesired pseudoknots accidentally form
in the designed RNA sequence. That is, inverse folding of pseudo-
knotted RNAs is useful not only to design pseudoknotted RNA
sequences but also to design pseudoknot-free ones.

3. RESULTS
3.1. BENCHMARK RESULTS
We evaluated the pseudoknot design performance of MOD-
ENA with the Pseudobase dataset, where IPknot and Hotknots
were used as a direct problem solver. We set both a popula-
tion size and maximum iteration number to 50 in our GA. In
this performance evaluation, we obtained successfully designed
RNA sequences for 207 and 198 pseudoknotted target struc-
tures by MODENA + IPknot and MODENA + HotKnot, respec-
tively, in the 266 target structures of the Pseudobase dataset,
where MODENA + IPknot and MODENA + HotKnots denote

the sequence design utilizing IPknot and HotKnots as a direct
problem solver, respectively (“successfully designed RNAs” mean
the RNA sequences which fold into the input target structure).
Inv obtained successfully designed RNAs for 181 pseudoknot-
ted target structures with the same dataset. Figure 2 shows the
sequence length dependence of the pseudoknot design perfor-
mances for MODENA and Inv, where the performance is indicated
by “the rate of successfully designed RNAs”= 100 × (number of
the target structures for which a successfully designed RNA is
obtained)/(total number of the target structures). The total num-
ber of the target structures included in each length bin is given in
Figure 3. As can be seen from Figure 2, MODENA + IPknot out-
performs Inv for all bins of sequence lengths. MODENA + IPknot
showed the best performance for the length range between 21
and 60 nucleotides. For the range between 61 and 80 nucleotides,
MODENA + IPknot and MODENA + HotKnots have compa-
rable performances. For longer target structures with lengths
from 81 to 140 nucleotides, MODENA + HotKnots gives the best
results among MODENA + IPknot, MODENA + HotKnots, and
Inv.

For the target structures longer than 85 nucleotides, Inv com-
pletely failed to design pseudoknots. MODENA also could not
obtain successfully designed pseudoknotted RNAs when the target
structures have a length longer than 137 nucleotides. It is noted
that the number of target structures longer than 81 nucleotides

FIGURE 2 | Sequence length dependence of the pseudoknot design

performances for MODENA and Inv. “MODENA + IPknot” and
“MODENA + HotKnots” denote the sequence designs using IPknot and

HotKnots as a direct problem solver, respectively. In each bin, results for
MODENA + IPknot, MODENA + HotKnots and Inv are shown from left to
right.
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FIGURE 3 | Distribution of the target structures in the Pseudobase dataset.

is much smaller than that of the other shorter target struc-
tures (Figure 3); a benchmark with more target structures with
long lengths may give a different result. Details of the results
for the Pseudobase dataset are tabulated in Table S1 in Supple-
mentary Material, which is downloadable from the MODENA
website.

To examine whether a larger calculation, where both a popula-
tion size and an iteration number have a value of 100, improves the
pseudoknot design performance or not, we performed the inverse
folding of the 59 target structures which were failed to design when
we used a value of 50. By using the larger parameter values, we
successfully designed 15 pseudoknots (Pseudobase PKB-number:
PKB00050, PKB00129, PKB00138, PKB00148, PKB00170,
PKB00171, PKB00178, PKB00179, PKB00211, PKB00217,
PKB00219, PKB00228, PKB00267, PKB00329, PKB00333) of the
59 target structures. These results indicate that a larger calcula-
tion can improve the design performance; it is noted that the
computational time for the larger calculation becomes longer,
i.e., there is a tradeoff between computational time and design
performance.

The logarithm of the computational times needed for
the Pseudobase benchmark of MODENA + IPknot, MOD-
ENA + HotKnots, and Inv is plotted in Figure 4. The compu-
tational times were measured on a Core i7 PC (3.33 GHz; 24 GB
memory; CentOS 5.6[x86_64]). Since we performed fifty indepen-
dent runs with Inv for each target structure, the mean computa-
tional times for the target structures are used as the computational
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FIGURE 4 |The logarithm of the computational times needed for the

Pseudobase benchmark of MODENA + IPknot, MODENA + HotKnots,

and Inv. Each symbol corresponds to one target structure. Each
computational time for Inv is the mean over fifty independent runs. The
results of failed Inv runs are not included in this figure.
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time of Inv in Figure 4 (and in Table S1 in Supplementary Mate-
rial). Figure 4 clearly reveals the difference between two direct
problem solvers we used for MODENA in the present study; i.e.,
IPknot is much faster than HotKnots. For the target structures
shorter than 50 nucleotides, Inv is faster than MODENA. How-
ever, in longer target structures, we found that Inv often becomes
much slower than MODENA + IPknot. In addition, Inv com-
pletely failed to design the pseudoknotted RNAs longer than 85
nucleotides. Inv quickly terminates its calculation when the inverse
folding of the input target structure is impossible (Inv analyzes the
input target structure before performing a stochastic search). The
results of such terminated calculations are not plotted in Figure 4;
the computational times of the terminated Inv runs can be seen in
Table S1 in Supplementary Material.

To compare the convergence properties of different direct prob-
lem solvers, we averaged the converged GA iteration numbers for
all target structures in the Pseudobase dataset (where we used the
results for a population size and a maximum iteration number

of 50). As convergence criterions, similar to Taneda (2011), the
GA iteration stops when (i) the maximum iteration number is
reached or (2) the number of weak Pareto optimal solutions is
not changed during continuous 30 iterations. As a result, we
found that MODENA needs 41.8 and 36.9 GA iterations when
IPknot and HotKnots, respectively, are used as a direct problem
solver.

The inverse folding results for the Rfam dataset, which is com-
posed of pseudoknot-free target structures, are summarized in
Table 1, where the results obtained by MODENA + IPknot alone
are shown. This is because the target structure lengths of the Rfam
dataset are too long for MODENA + HotKnots in terms of com-
putational time, and Inv is limited to the application to the short
target structures. In this benchmark for the pseudoknot-free tar-
get structures, MODENA successfully designed RNA sequences
for 22 target structures. This result is comparable to our previous
result (Taneda, 2011) obtained by using the direct problem solvers
which cannot predict pseudoknots. The present result indicates

Table 1 |The benchmark results for the pseudoknot-free Rfam dataset.

Rfam AC Rfam ID l (nt) succ. GC_high GC_low t (s)

RF00001 5S_rRNA 117 0/50 51 33 20.253

RF00002 5_8S_rRNA 151 24/50 39 34 34.430

RF00003 U1 161 0/50 60 38 34.468

RF00004 U2 193 37/50 76 35 54.946

RF00005 tRNA 74 40/50 39 12 9.523

RF00006 Vault 89 30/50 35 14 11.024

RF00007 U12 154 39/50 74 37 35.436

RF00008 Hammerhead_3 54 39/50 24 9 6.056

RF00009 RNaseP_nuc 348 0/50 84 74 160.996

RF00010 RNaseP_bact_a 357 0/50 149 143 314.373

RF00011 RNaseP_bact_b 382 0/50 158 154 305.932

RF00012 U3 215 38/50 71 33 58.912

RF00013 6S 185 39/50 79 40 48.594

RF00014 DsrA 87 36/50 51 17 13.750

RF00015 U4 140 36/50 46 26 28.434

RF00016 SNORD14 129 38/50 32 4 19.416

RF00017 SRP_euk_arch 301 26/50 164 116 205.422

RF00018 CsrB 360 23/50 77 56 192.333

RF00019 Y_RNA 83 38/50 39 13 11.252

RF00020 U5 119 0/50 53 22 20.646

RF00021 Spot_42 118 44/50 67 22 26.401

RF00022 GcvB 148 31/50 58 30 28.952

RF00024 Telomerase-vert 451 27/50 172 119 367.750

RF00025 Telomerase-cil 210 35/50 59 41 47.194

RF00026 U6 102 33/50 8 3 10.493

RF00027 Let-7 79 34/50 59 18 14.306

RF00028 Intron_gpI 344 0/50 85 61 192.231

RF00029 Intron_gpII 73 32/50 30 14 8.725

RF00030 RNase_MRP 340 35/50 105 76 151.637

“l”, “succ.” and t columns represent the length (= number of nucleotides) of a target structure, a success rate, and a computational time in seconds, respectively; x/y

indicates a “success rate” in such a way that we obtained x successfully designed sequences when we used a GA population size of y. “GC_high” and “GC_low”

are the highest and lowest nGCs, respectively, where nGC is the total number of guanine and cytosine pairs in the predicted base pairs. Computational times were

measured on a Core i7 PC (3.33 GHz; 24 GB memory; CentOS 5.6[x86_64]).
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that pseudoknot prediction methods are useful even for design-
ing pseudoknot-free RNA sequences, by which we can reduce the
possibility of an accidental pseudoknot formation when designing
pseudoknot-free RNAs.

3.2. DESIGN WITH SEQUENCE CONSTRAINTS
To demonstrate the sequence constraint function in MODENA, we
performed an RNA inverse folding with the secondary structure
and sequence of a known hepatitis delta virus (HDV) self-cleaving

FIGURE 5 | Eight HDV ribozyme sequences designed by MODENA. The
top eight rows are designed RNA sequences. Trgt and cnst rows
correspond to the target pseudoknotted secondary structure in bracket
notation and constraint sequences, respectively. A set of pos1 and pos2
indicates a nucleotide position.

ribozyme, which has been used as a prototype for generating arti-
ficial ribozymes (Schultes and Bartel, 2000). The pseudoknotted
secondary structure and the sequence motifs (key nucleotides)
of the HDV ribozyme design were taken from Figure 1 in the
paper by Schultes and Bartel (2000). The key nucleotides,which are
important for the activity of the ribozyme, were used as constraint
sequences. By using MODENA + IPknot with a population size of
100 and an iteration number of 100, we successfully designed 8
RNA sequences folding into the structure of the prototype HDV
ribozyme with the constraint sequence motifs. The designed 8
HDV ribozyme sequences are shown in Figure 5, in which the tar-
get structure, constraint sequences, and nucleotide positions are
also indicated. As can clearly be seen from the figure, the designed
8 sequences share all constraint sequences. Moreover, interestingly,
the designed 8 sequences are highly “conserved”. To illustrate the
sequence conservation among the designed sequences, we drew
the sequence logo of the 8 sequences by using WebLogo (Crooks
et al., 2004; Figure 6). The low sequence conservation in the region
between position 51 and 74 is mainly due to the seq3, since the seq3
has a very different subsequence from the other sequences in the
region. This seq3 has a very similar sequence except for the region
between position 51 and 74, hence we can guess that the seq3 shares
an ancestral sequence with the other seven successfully designed
sequences in our GA. In addition, the region between position
51 and 74 corresponds to a hairpin structure [the P4 stem + L4
loop (Schultes and Bartel, 2000)] of the HDV ribozyme. These
results imply that the sequence difference between seq3 and the
other seven successfully designed sequences in the region between
position 51 and 74 was generated by structural n-point crossover
in our GA.

This constrained design of the HDV ribozyme is a relatively
hard calculation; we could not design the HDV ribozyme with the
constraints when we set a population size and an iteration number
to a smaller value, 50; MODENA + HotKnots failed to design the
pseudoknotted ribozyme even when we set both a population size
and an iteration number to 100.

FIGURE 6 |The sequence logo for the eight designed HDV ribozyme sequences. The sequence logo was generated by WebLogo (Crooks et al., 2004).
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DISCUSSION
We have proposed a multi-objective genetic algorithm for pseudo-
knotted RNA sequence design, which is a modified version of
our previous pseudoknot-free RNA design algorithm. Important
differences between the current version which can design pseudo-
knots and the previous pseudoknot-free version are as follows.
(i) We utilize a new structural n-point crossover operator in
the current version, by which we can generate child solutions
without breaking complementary relationships in parent solu-
tions even when pseudoknots are included in the target struc-
ture. (ii) We allow MODENA to use pseudoknotted RNA struc-
ture prediction methods as direct problem solver. As a result,
the current version of MODENA can directly evaluate whether
designed sequences have a desired pseudoknot structure or
not. This feature is indispensable for the inverse engineering
of pseudoknotted RNAs. (iii) The third important point intro-
duced in the current version of MODENA is sequence con-
straint. Since the current version of MODENA can work as both
pseudoknotted and pseudoknot-free RNA sequence designer, the
sequence constraint function of MODENA can be utilized to
design not only pseudoknotted RNAs but also pseudoknot-free
ones.

The new version of MODENA, in which the new features
for pseudoknot design are implemented, was tested with two
benchmark datasets: the Pseudobase dataset, which is a non-
redundant dataset and is composed of 266 target structures
taken from the Pseudobase, and the Rfam dataset which does
not contain pseudoknots. In both datasets, MODENA showed
high sequence design performances. For the Pseudobase dataset,
another pseudoknot design algorithm, Inv, was also bench-
marked and it was found that MODENA can successfully
design pseudoknotted RNAs for more target structures compared
to Inv.

The sequence constraint function of MODENA was tested
through the inverse folding of a HDV ribozyme. In this test,
we successfully obtained 8 RNA sequences, which fold into the
target pseudoknotted structure of the HDV ribozyme. All of the
designed 8 RNA sequences have the key nucleotides important
for the activity of the ribozyme, which were specified as sequence
constraints when running MODENA.

The present results clearly indicate that multi-objective genetic
algorithm is a promising approach for the inverse folding of
pseudoknotted RNA. One important issue concerning the com-
putational inverse folding is “Do the designed sequences truly fold
into the target structure in vivo and/or in vitro?”, in other words,
the reliability of the design. Although theorists have no answer to
this question, it is noteworthy that the inverse folding methods
can be improved accompanying improvement of structure pre-
diction methods. In inverse folding, the prediction accuracy of
direct problem solver (structure prediction method) determines
the design reliability. As an extreme case, if we can use a perfect
structure prediction method as a direct problem solver (where
“perfect” means that the RNA sequence for which a structure is
predicted strictly folds into the predicted structure in vivo and/or
in vitro), the designed RNA sequence will perfectly fold into the
target structure. Recent drastic progress in RNA structure predic-
tion methods has enabled us to perform very accurate and efficient
RNA structure prediction. Improvement of structure prediction
methods will continue not only in a secondary structure level but
also in a tertiary structure level (Das and Baker, 2007; Parisien and
Major, 2008), and the design reliability of RNA inverse folding
methods will also continue to be improved.
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