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Nitrate and nitrite are common aqueous pollutants that are known to disrupt the thyroid
axis. In amphibians, thyroid hormone (TH)-dependent metamorphosis is affected, although
whether the effect is acceleration or deceleration of this developmental process varies from
study to study. One mechanism of action of these nitrogenous compounds is through
alteration of TH synthesis. However, direct target tissue effects on TH signaling are hypoth-
esized. The present study uses the recently developed cultured tail fin biopsy (C-fin) assay
to study possible direct tissue effects of nitrate and nitrite. Tail biopsies obtained from
premetamorphic Rana catesbeiana tadpoles were exposed to 5 and 50 mg/L nitrate (NOz—
N) and 0.5 and 5 mg/L nitrite (NO,—-N) in the absence and presence of 10 nM T3. Thyroid
hormone receptor B (TRB) and Rana larval keratin type | (RLKI), both of which are TH-
responsive gene transcripts, were measured using quantitative real time polymerase chain
reaction.To assess cellular stress which could affect TH signaling and metamorphosis, heat
shock protein 30, and catalase (CAT) transcript levels were also measured. We found that
nitrate and nitrite did not significantly change the level of any of the four transcripts tested.
However, nitrate exposure significantly increased the heteroscedasticity in response of
TRPB and RLKI transcripts to T3. Alteration in population variation in such a way could con-
tribute to the previously observed alterations of metamorphosis in frog tadpoles, but may
not represent a major mechanism of action.
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polymerase chain reaction

INTRODUCTION

Currently over 100,000 manufactured chemicals are produced
in the marketplace (European Union Commission, 2006). Many
of these chemicals have endocrine disrupting abilities and more
specifically, are disruptors of the thyroid axis. Most endocrine dis-
ruptors can be classified as plasticizers, pesticides, industrial chem-
icals, heavy metals, or plant and fungal compounds; however, ions
such as nitrate (NO3') and nitrite (NO; ) have endocrine disrupt-
ing abilities as well (Crain, 2000; Sampat, 2000; Gray et al., 2001).
Environmental nitrate can come from many sources including
agricultural fertilizer, waste from animal production, and burning
fossil fuels, industrial effluent, and wastewater treatment plant dis-
charges (Rouse et al., 1999; Camargo et al., 2004; De Groef et al.,
2006).

In the US, the current public health maximal level for safe
drinking water is 10 mg/L nitrate (measured as NO3-N) and
1 mg/L nitrite (NO,—N; US EPA, 2006, 2009). In Canada, the Cana-
dian Council of Ministers of the Environment (CCME) guideline
for the protection of aquatic life has set the maximum level of
nitrate at 13 mg/L(NOj /L) in freshwater and 16 mg/L (NO3 /L) in
marine water; the level for nitrite in freshwater is 60 pLg/L (NO3 /L)
and there is no level set for marine water (CCME, 2007). Health

Canada has set the maximal allowable concentration in drinking
water at 10 mg/L nitrate (NO3—N) and 3.2 mg/L nitrite (NO,—N;
Health Canada, 2008). Nitrate concentrations have been found as
high as 25 mg/L NO3—N in surface waters and 100 mg/L NO3—N in
ground water, yet there is currently no guideline for the protection
of wildlife (Rouse et al., 1999; Camargo et al., 2004).

In aquatic environments, nitrogen exists in four forms in
descending order of toxicity: ammonium ion, ammonia, nitrite,
and nitrate. Although nitrate is the least toxic form of the four, it
is the most stable and therefore the most abundant. Under aerobic
conditions, ammonia and ammonium can be oxidized to nitrite
by Nitrosomonas bacteria, and then to nitrate by Nitrobacter and
Nitrospira bacteria (Sharma and Ahlert, 1977). When oxygen is
low, denitrifying bacteria can use nitrate as a terminal electron
acceptor and make nitrogen gas (Ny; reviewed in Camargo et al.,
2005).

Aquatic animals are exposed to nitrate and nitrite through
ingestion or epithelial absorption across skin or gills (Onken et al.,
2003). High levels of these contaminants cause methemoglobine-
mia, also called “brown blood” disease in fish and amphibians and
“blue baby” syndrome in humans. Methemoglobin is formed from
nitrate/nitrite-induced oxidation of hemoglobin, which prevents
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normal oxygen binding and leads to hypoxia (Porter et al., 1999).
Toxicity of nitrite and nitrate depends on body size and develop-
mental stage, increases with increasing concentration and expo-
sure time, and decreases with water salinity and environmental
adaptation (Rouse et al., 1999; Camargo et al., 2004).

In addition to the toxic effects of nitrate and nitrite, exposure to
these chemicals adversely affects the thyroid axis in multiple ver-
tebrate species (reviewed in Edwards et al., 2006). For example,
high doses of nitrate caused goiter and depressed serum thy-
roxine (T4) and 3,5,3'-triiodothyronine (T3) in rats and sheep
(Zaki et al., 2004) and nitrite decreased serum T4 while T3 lev-
els were unchanged in the sea bream (Deane et al., 2007). Toad
and frog tadpoles exposed to nitrate exhibit altered metamor-
phic development; a TH-dependent process (Wyngaarden et al.,
1952, 1953; Xu and Oldham, 1997; Edwards et al., 2006; Ortiz-
Santaliestra and Sparling, 2007). Although these observations can
be explained, in part, by competition of nitrate and nitrite with
iodine uptake, transport, and retention in the thyroid gland that
impairs TH synthesis (Crow et al., 2001; Hampel and Zollner,
2004), the contribution of nitrate and nitrite to alteration of TH
signaling pathways at the cellular level in amphibian target tissues
is not known.

The present study uses the recently developed “C-fin” assay to
expose Rana catesbeiana premetamorphic tadpole tail fin biop-
sies to nitrate and nitrite with or without T3 to determine if
nitrate and nitrite affect TH-signaling within a TH-responsive
tissue directly. We assessed TH-signaling by quantifying the lev-
els of TH-responsive gene transcripts, thyroid hormone receptor
B (TRB) and Rana larval type I keratin (RLKI), as well as cel-
lular stress markers, heat shock protein (HSP30), and catalase
(CAT). Alteration of the transcriptome is an essential compo-
nent in TH-mediated tadpole metamorphosis (Shi, 2000) and part
of the change in the tail transcriptome includes an increase in
TRP transcripts and a decrease in RLKI transcripts (Domanski
and Helbing, 2007). There is considerable precedent linking TRp
transcript levels to progression through TH-dependent metamor-
phosis where perturbations from expected levels are indicative of
altered postembryonic development (Crump et al., 2002; Opitz
et al., 2006; Veldhoen et al., 2006a; Zhang et al., 2006; Helbing
et al., 2007a,b; Ji et al., 2007; Skirrow et al., 2008).

MATERIALS AND METHODS

EXPERIMENTAL ANIMALS

Premetamorphic R. catesbeiana tadpoles were caught locally (Vic-
toria, BC, Canada) or purchased from Ward’s Natural Science
Ltd. (St. Catherines, ON, Canada). Taylor and Kollros (TK; Tay-
lor and Kollros, 1946) stage VI-VIII animals were used. Animals
were housed in the University of Victoria aquatics facility and
maintained in 100 gallon fiberglass tanks containing recirculating
water at 12°C with exposure to natural daylight. Tadpoles were fed
daily with spirulina (Aquatic ELO-Systems, Inc., FL, USA). Ani-
mals used in this study were treated and maintained in accordance
with the guidelines of the Canadian Council on Animal Care.

ORGAN CULTURE OF TAIL FIN BIOPSIES
Preparation of the tail fin biopsy cultures was adapted from con-
ditions described previously (Veldhoen et al., 2006b; Ji et al,

2007). Premetamorphic (TK stage VI-VIII; Taylor and Kollros,
1946) R. catesbeiana tadpoles were euthanized in 0.1% tricaine
methanesulfonate (Syndel Laboratories, Vancouver, BC, Canada)
in 25mM sodium bicarbonate, and subsequently washed four
times in 125 mL per tadpole of sterile magnesium-free (MFM)
solution (7.5mM Tris—HCI pH 7.6, 88 mM NaCl, 1 mM KCl,
2.4 mM NaHCOs, 0.88 mM CaCl,). Eight biopsies were obtained
per animal (n = 7-16 animals), from the dorsal and ventral tail fins
using a 6 mm dermal biopsy punch (Miltex, Inc., York, PA, USA),
to allow the assessment of eight treatments per animal. Sixteen
animals were used for each exposure.

Test chemicals were prepared in water as 1,000x concentrates
and stored at —20°C. They were applied in equal volumes at
1 WL chemical stock/mL of media. Treatments included: a vehi-
cle control (NaOH), sodium gluconate control (Na-G, used as a
control for sodium; CAS S-2054, Sigma-Aldrich), sodium nitrate
(NaNOs3; CAS BP360-500g, Fisher; measured as 5 and 50 mg/L
NO3-N), or sodium nitrite (NaNO;; CAS S2252-500g, >99.5%
purity, Sigma-Aldrich; measured as 0.5 and 5mg/L NO,-N), in
the absence and presence of 10nM T3 (prepared as a 107> M
stock in 400 WM NaOH), as well as a 10 nM T3 treatment alone.
Where treatments did not include T3, an equal volume of NaOH
vehicle was applied to a final concentration of 400 nM. This
concentration did not affect the medium pH. Biopsies were cul-
tured individually in 1 mL 70% strength Leibovitz’s L15 medium
(Gibco, Invitrogen) supplemented with 10 mM HEPES pH 7.5,
50 units/mL penicillin G sodium, 50 pg/mL streptomycin sulfate
(Gibco, Invitrogen), and 50 pg/mL neomycin (Sigma-Aldrich),
using 24-well culture plates (Primaria, BD Biosciences) at 25°C
in air for 48 h.

The biopsies were pretreated with 0.5 mL of the appropriate
concentration of the test chemical or NaOH control in culture
media for 2 h prior to the addition of Ts. After the 2 h incubation,
0.5 mL of the appropriate concentration of the test chemical plus
20nM T3 (in 800 uM NaOH) were added into the wells giving
a final concentration of 10nM T3 (in 400 nM NaOH). For the
wells not containing T3, 0.5 mL of the appropriate concentration
of the test chemical plus 800 M NaOH (for a final concentration
of 400 nM NaOH) were added. At the end of the 48 h incuba-
tion period for each treatment, the biopsy was stored in 100 wL
of RNAlater (Ambion Inc., Austin, TX, USA) for 24 h at 4°C and
then transferred to —20°C until it was processed for RNA.

ISOLATION OF RNA AND QUANTIFICATION OF GENE EXPRESSION
RNA was isolated using TRIzol reagent as described previously
(Hinther et al., 2010a,b). ¢cDNA was synthesized from 5pL
(~0.51g) total RNA as per manufacturer’s protocol using the
RevertAid H Minus First Strand cDNA Synthesis Kit (Fermentas)
as described in (Hinther et al., 2010b). The cDNA products were
diluted fivefold prior to PCR amplification and stored at —20°C.
The levels of mRNAs encoding TRf, RLKI, HSP30, CAT, and
ribosomal protein L8 (rpL8) were determined using a MX3005P
real time quantitative PCR system (Stratagene, La Jolla, CA, USA)
using gene-specific primers as described previously (Hinther et al.,
2010b). Expression profiles of the rpL8 transcript normalizer were
invariant (p = 0.998 and 0.950, nitrate and nitrite data sets, respec-
tively). The amplified DNA signals for all QPCR reactions were
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evaluated for specificity based upon their thermodenaturation
profiles. Data that failed to produce a profile indicative of gene
target-specific detection were removed before analysis. If a con-
trol condition did not pass the quality measure above for a given
animal, then the data for all conditions associated with that ani-
mal were removed for that gene transcript due to the repeated
measures nature of the data set.

STATISTICAL ANALYSES

Statistical analyses were performed using PASW 18.0 (Chicago, IL,
USA) software. The C-fin data were not normally distributed based
upon the Shapiro—Wilk test. We used the Friedman and paired
Wilcoxon tests since these data were generated from a repeated
measures type of experimental design. Homogeneity of variance
was determined using the Levene’s test. Correlation coefficients
were generated using Spearman’s rho.

The data were analyzed in two ways: First, the test chemical
results in the absence of T3 were examined relative to the vehi-
cle control. Second, the test chemicals in combination with T3
results were compared relative to T3 alone. In the latter case, the
response to a test chemical in the presence of T3 was expressed as
a fold change relative to the response to T3 alone for each indi-
vidual. This approach reduces the effect of inter-animal variation,
enabling us to better identify chemical-induced perturbations rel-
ative to each individual’s ability to respond to T3. Therefore the
T values in this comparison were given a value of one and the
graphs show the fold change relative to the T3-induced response.
Statistical significance was identified when p < 0.05.

RESULTS AND DISCUSSION

In order to validate the assay, we first examined the biopsy
responses to T3 treatment alone. Figure 1A shows the biolog-
ical variation of the controls and the relative variation in T3
response before taking repeated measures into account. Figure 1B
shows the data after normalizing the data to the individual ani-
mal’s baseline transcript levels into such that every control ani-
mal was assigned a value of 1. T3 treatment alone increased
the TRP transcript levels by a median 7.7-fold (p=0.0001,
Wilcoxon, n=23; Figure 1), decreased RLKI transcript levels
by 2.9-fold (p=0.0001, Wilcoxon, n=26; Figure 1), increased
HSP30 transcript levels by 1.7-fold (p = 0.024, Wilcoxon, n =31;
Figure 1), and reduced CAT transcript levels by a median 1.3-fold
(p=0.024, Wilcoxon, n = 32; Figure 1). All transcript responses
were similar to previous observations (Hinther et al., 2010a,b,
2011).

The C-fin experimental design allows for the determination of
relationship between the individual animal’s baseline transcript
levels and the extent of change in transcript level in response
to chemical treatment. We examined the correlation between the
baseline (control) levels of each transcript to each other and to
the individual’s level of fold induction in response to T3 expo-
sure (Table 1). A strong negative correlation between baseline
transcript levels and the degree of fold response to T3 for all
four transcripts was observed (Table 1). This observation was
consistent with previously reported observations for TRP and
RLKI transcripts (Hinther et al., 2010a). A strong negative cor-
relation was observed between the baseline levels of CAT and the
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FIGURE 1 | The effect of application of repeated measures analysis on
QPCR data generated for thyroid hormone receptor $ (TRB), Rana larval
keratin | (RLKI), heat shock protein 30 (HSP30), and catalase (CAT)
transcripts. Tail fin biopsies were exposed to vehicle control (C) or 10nM
T,. The data (n=23-32) are plotted as independent measures in (A) and
then as repeated measures in (B). Taking the individual's baseline
expression levels greatly reduces overall variation and enables the
identification of perturbation of a response to T, relative to each individual's
normal T; response. Box plots show medians = first and third quartiles. The
whiskers indicate minimum and maximum values excluding outliers and
extreme values. Outlier (cases between 1.5 and 3.0 box lengths from the
upper or lower edge of the box) and extreme values (cases >3.0 box
lengths from the upper or lower edge of the box) are indicated by an open
circle and asterisk, respectively. Statistical significance is indicated with the
letter “a"” for p <0.05.

T3-dependent reduction of RLKI transcripts and RLKI and the
T3-dependent decrease of the CAT transcript (Table 1). A positive
correlation was observed between the baseline levels of HSP30 and
the T3-dependent increase of TR} mRNAs (Table 1).

Exposure to 0.5 and 5mg/L NO,-N (in the form of NaNO,)
for 48 h did not have any effect on the TH-responsive gene tran-
scripts, TRB and RLKI, in the absence (p=0.683 and 0.257,
respectively; Friedman) or presence of T3 (p=0.282 and 0.751,
respectively, Friedman; Figure 2). Exposure to 5mg/L sodium
gluconate (Na-G; as a control for sodium) also did not result
in a significant effect compared to the control (p =0.300-0.875,
Wilcoxon; Figure 2).

Exposure to 5 and 50 mg/L NO3-N (in the form of NaNOs3)
did not result in a change in TRB and RLKI transcript levels
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Table 1| Spearman’s rho correlation analysis comparing baseline
transcript levels with extent of (fold) induction in response to T3

treatment.
Fold induction by T3
TRB RLKI HSP30 CAT
Baseline  TRB Correlation —0.645 —0.065 0.159 0.018
coefficient
p Value 0.000*  0.396 0.240 0.468
N 23 19 22 23
RLKI Correlation  0.058 —-0.570 -0.124 -0.350
coefficient
p Value 0.407 0.001*  0.278 0.040*
N 19 26 25 26
HSP30 Correlation 0.452 —0.015 —-0.552 0.025
coefficient
p Value 0.017* 0.471 0.001*  0.448
N 22 25 31 31
CAT Correlation  0.136 —0.465 —0.006 -0.618
coefficient
p Value 0.267 0.008*  0.487 0.000*
N 23 26 31 32
Significance is indicated with an asterisk.
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FIGURE 2 | QPCR analysis of thyroid hormone receptor § (TRB) and
Rana larval keratin | (RLKI) transcript levels in the C-fin assay after
exposure to nitrite in the absence or presence of 10 nMT;. Tail fin
biopsies were exposed to vehicle control (water; 0) and the indicated test
chemicals for 48 h in the presence of 400 nM NaOH or 10nMT; in 400 nM
NaOH solvent. Test chemical concentrations were 5 mg/L sodium control (in
the form of sodium gluconate, Na-G), 0.5 and 5 mg/L NO,-N (in the form of
NaNO,). The results are expressed as fold change relative to the vehicle
control (NaOH; upper panels) or to the vehicle +T;-induced levels (lower
panels) and represent QPCR data from n=7-12 animals. Increasing
concentrations of test chemicals are represented by bevels. See Figure 1
legend for more details.

in the absence (p=0.565 and 0.913, respectively, Friedman;
Figure 3) or presence of T3 (p=0.066 and 0.529, respectively,
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FIGURE 3 | QPCR analysis of thyroid hormone receptor § (TRB) and
Rana larval keratin | (RLKI) transcript levels in the C-fin assay after
exposure to nitrate in the absence or presence of 10 nM T3, Tail fin
biopsies were exposed to vehicle control (water; 0) and the indicated test
chemicals for 48 h in the presence of 400 nM NaOH or 10nM T; in 400 nM
NaOH solvent. Test chemical concentrations were 50 mg/L sodium control
(in the form of sodium gluconate, Na-G), 5 and 50 mg/L NO3-N (in the form
of NaNO;). The results are expressed as fold change relative to the vehicle
control (NaOH; upper panels) or to the vehicle +T;-induced levels (lower
panels) and represent QPCR data from n=14-16 animals. Increasing
concentrations of test chemicals are represented by bevels. See Figure 1
legend for more details.

Friedman; Figure 3). The 50 mg/L sodium control (in the form of
sodium gluconate, Na-G) in this experiment had no effect as well
(p =10.480-1.000, Wilcoxon; Figure 3).

Exposure to 0.5 and 5 mg/L NO,-N did not affect HSP30 and
CAT transcript levels in the absence (p = 0.444 and 0.185, respec-
tively, Friedman; Figure 4) or presence of T3 (p =0.570 and 0.779,
respectively, Friedman; Figure 4). Exposure to 5 mg/L Na-G also
did not result in a significant effect (p =0.438-0.717, Wilcoxon;
Figure 4).

Exposure to 5 and 50 mg/L NO3-N did not result in a change
in stress-responsive transcript levels in the absence (p = 0.282 and
0.819, HSP30 and CAT transcripts respectively, Friedman) or pres-
ence of T3 (p = 0.074 and 0.819, respectively, Friedman; Figure 5).
Exposure to 50 mg/L Na-G had no effect on the stress-responsive
transcripts (p = 0.796—1.000, Wilcoxon; Figure 5).

Changes in population variation have been associated with
endocrine disruptive events and exposure to pollutants (Orlando
and Guillette, 2001). An increase in variance is often found in
contaminant-exposed sites compared with reference site popula-
tions, in part, due to varying individual responses to the envi-
ronmental stressor. Since more individuals are at the perimeter
of a population range away from the more homogeneous cen-
tral part of the range, the contaminant-exposed population is less
able to adapt to environmental stress and may require additional
energy budget expenditures to survive (Orlando and Guillette,
2001). Thus, variation can represent an additional indicator of
population health not necessarily captured by measures of central
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FIGURE 4 | QPCR analysis of heat shock protein 30 (HSP30) and
catalase (CAT) transcript levels in the C-fin assay after exposure to
nitrite in the absence or presence of 10 nM Ts. Tail fin biopsies were
exposed to vehicle control (water; 0) and the indicated test chemicals for
48h in the presence of 400nM NaOH or 10nMT; in 400 nM NaOH solvent.
Test chemical concentrations were 5 mg/L sodium control (in the form of
sodium gluconate, Na-G), 0.5 and 5 mg/L NO,—N (in the form of NaNO,).
The results are expressed as fold change relative to the vehicle control
(NaOH; upper panels) or to the vehicle +Ts-induced levels (lower panels)
and represent QPCR data from n=15-16 animals. Increasing
concentrations of test chemicals are represented by bevels. See Figure 1
legend for more details.

tendency (Orlando and Guillette, 2001). No alterations in het-
eroscedasticity were observed for any transcripts between the Na-G
controls or the nitrite treatments (Table 2). This was also the
case for nitrate in the absence of hormone. However, when T;
was present, nitrate exposure affected the degree of heteroscedas-
ticity in both TRB and RLKI mRNAs, but not HSP30 or CAT
transcripts (Table 2). A change in heteroscedasticity, as observed
with nitrate exposure, suggests an alteration in the response to
TH at the tissue level that is consistent with the conflicting accel-
eratory and inhibitory effects on TH-dependent processes that
have previously been observed (Xu and Oldham, 1997; Edwards
et al., 2006; Ortiz-Santaliestra and Sparling, 2007). The data in
the present study suggest that nitrate and nitrite differ in cellu-
lar effects on TH signaling while not eliciting stress responses in
the TH-responsive tail fin tissue. Moreover, direct cellular effects
of nitrate on peripheral tissues as a mechanism in influencing
metamorphosis still remains a possibility but that this effect is
not straightforward. Examination of additional time points would
be useful to evaluate whether TH-mediated response kinetics are
altered.

It has been postulated that nitrite and nitrate could act as
nitric oxide donors through a non-genomic mechanism (Guil-
lette and Edwards, 2005; Hannas et al., 2010). Nitric oxide donors
have been shown to mimic the ability of T4 to suppress cata-
lase enzyme activity associated with tail shortening and apoptosis
in vitro (Kashiwagi et al., 1999). However, a definitive connec-
tion between nitrate and nitrite and nitric oxide production in

0 Na-G el

NO,-N

0 Na-G el

NO,-N

FIGURE 5 | QPCR analysis of heat shock protein 30 (HSP30) and
catalase (CAT) transcript levels in the C-fin assay after exposure to
nitrate in the absence or presence of 10 nMT;. Tail fin biopsies were
exposed to vehicle control (water; 0) and the indicated test chemicals for
48h in the presence of 400 nM NaOH or 10nMT; in 400 nM NaOH solvent.
Test chemical concentrations were 50 mg/L sodium control (in the form of
sodium gluconate, Na-G), 5 and 50 mg/L NO;—N (in the form of NaNO;). The
results are expressed as fold change relative to the vehicle control (NaOH;
upper panels) or to the vehicle +Ts-induced levels (lower panels) and
represent QPCR data from n= 16 animals. Increasing concentrations of test
chemicals are represented by bevels. See Figure 1 legend for more details.

Table 2 | Analysis of variation using Levine’s test.

Treatment Transcript Levene statistic p Value
NO,-N TRB 0.484 0.624
RLKI 0.261 0.772
HSP30 0.563 0.574
CAT 0.5626 0.595
NO3-N TRB 0.183 0.834
RLKI 1.073 0.352
HSP30 2.891 0.066
CAT 0.348 0.708
NO2-N+T3 TRB 2.786 0.088
RLKI 0.174 0.841
HSP30 1.698 0.196
CAT 0.205 0.815
NO3-N+T3 TRB 3.449 0.041*
RLKI 7542 0.002*
HSP30 1.2564 0.296
CAT 0.102 0.903

Groups with significant heteroscedasticity are indicated with an asterisk.

amphibian tissues has not been established, although this rela-
tionship has been shown in Daphnia (Hannas et al., 2010). The
fact that nitrate elicited some response whereas nitrite did not
on cultured tail fin suggest that this influence could be limited.
Direct effects of nitrate and nitrite upon other amphibian tissues
(such as the thyroid gland) through genomic and/or non-genomic
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methods from tissue culture experiments and comparison to mol-
ecular responses elicited from whole animal exposures remain to

be determined.
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