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Chronic alcohol intake is associated with a wide variety of adverse health outcomes includ-
ing depression, diabetes, and heart disease. Unfortunately, the molecular mechanisms
through which these effects are conveyed are not clearly understood. To examine the
potential role of epigenetic factors in this process, we examined the relationship of recent
alcohol intake to genome wide methylation patterns using the Illumina 450 Methylation
Bead Chip and lymphoblast DNA derived from 165 female subjects participating in the
Iowa Adoption Studies. We found that the pattern of alcohol use over the 6-months imme-
diately prior to phlebotomy was associated with, severity-dependent changes in the degree
of genome wide methylation that preferentially hypermethylate the central portion of CpG
islands with methylation at cg05600126, a probe in ABR, and the 5′ untranslated region of
BLCAP attaining genome wide significance in two point and sliding window analyses of
probe methylation data, respectively. We conclude that recent alcohol use is associated
with widespread changes in DNA methylation in women and that further study to confirm
these findings and determine their relationship to somatic function are in order.
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INTRODUCTION
Together, alcohol use and dependence affect 8% of the adult United
States each year and cause over 200 billion dollars of economic
damage annually (Harwood, 2000; Grant et al., 2004). The mecha-
nism(s) through which alcohol exerts this toll varies. During acute
intoxication, much of the economic damage and personal injury
results from the increased rate of accidental injury (Harwood,
2000). But after returning to sobriety, the risk for further dam-
age from accidental injury markedly diminishes. However, in the
case of the sustained heavy use of alcohol, the risk for increased
morbidity does not remit after return to sobriety and the indi-
vidual remains at increased risk for a large number of medical
conditions including hypertension, heart disease, and impaired
executive function in the absence of acute intoxication (Harwood,
2000; Sesso et al., 2008). At the microscopic level, this increased
risk can be directly linked to adverse impact on tissue and organ
damage (Pace et al., 2009). However, at the molecular level, the
direct effects of long term alcohol use seem more complex with
chronic changes in a number of biochemical pathways being noted
(Köhnke, 2008).

Some of these cellular changes may be legacies of altered pro-
tein folding and trafficking bequeathed to the cell from periods of
intoxication (Esteban-Pretel et al., 2011). However, most cellular
proteins have limited lifetimes before they are intracellularly recy-
cled. Hence, they are unlikely to be directly responsible for some of
the chronic dysfunction seen in cells prepared from abstinent alco-
holics (Burim et al., 2004; Welsh et al., 2011). Instead, some of these
alterations may result from alcohol induced changes in genomic

tone, which is defined as the stable transcriptional repertoire of a
cell (Alter and Hen, 2009).

The factors that control the “genomic tone” or transcriptional
repertoire of the given cell are diverse but can be generally cat-
egorized as genetic variation, tissue specific transcriptional acti-
vators/repressors, and epigenetic factors. Conceivably, chronic
alcohol use could affect the type and distribution of both tran-
scriptional and epigenetic factors thus changing the genomic tone
of the given cell. Unfortunately, systematic methods for assessing
tissue specific transcription factors are not commonly available.
In contrast, recent advances in DNA methylation assessment tech-
nologies have made genome wide assessment of DNA methylation
more accessible. Using these technologies, using both lymphoblast
and primary tissues, we have recently demonstrated that smok-
ing is associated with genome wide changes in DNA methylation
and that those smoking associated changes are coordinated across
tissues are cell preparations including lymphoblast, lymphocytes,
and pulmonary macrophages (Monick et al., 2012).

These advancements are particularly welcome because in prior
work using more restricted approaches, we and others have pre-
sented evidence that alterations in DNA methylation may be in
part responsible for altered genomic tone observed in peripheral
blood cells from subjects who chronically use alcohol (Bonsch
et al., 2005; Bleich et al., 2006; Philibert et al., 2008; Hillemacher
et al., 2009a). However, these studies were limited by the low num-
ber of genes and the limited number of subjects surveyed. In this
communication, using the Illumina HumanMethylation450 Bead-
Chip, which interrogates over 485,000 CpG residues, we examine
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the relationship between alcohol consumption and degree of DNA
methylation in lymphoblast DNA prepared from 165 female sub-
jects from the Iowa Adoption Studies, the largest case and control
adoption studies of substance use in the world (Philibert, 2006).

MATERIALS AND METHODS
The protocols and procedures used in the Iowa Adoptions Studies
(IAS) have been described in detail elsewhere (Yates et al., 1998). In
brief, the IAS is a case and control adoption study of the effects of
genetic, environmental, and gene–environment interactions in the
etiology of substance use and antisocial personality. The sample is
a high risk cohort. Half of the 940 adoptees in the original study
had at least one biological parent with a history of severe antisocial
personality, alcoholism, or depression while the other half of the
subjects had no biological history of illness. After birth, they were
placed in adoptive homes without evidence of bias with respect to
biological birth status.

The data used in the current study is derived from interviews
with the Semi-Structured Interview for the Assessment of the
Genetics of Alcoholism, Version II (Bucholz et al., 1994), dur-
ing each of the last two waves of the IAS study (1999–2004 and
2005–2009). Using this data, subjects were classified on the basis
of the frequency of their alcohol use in the past 6 months prior
to assessment into four categories: (1) abstinent (no use in the
past 6 months); (2) mild users (use of alcohol in between 1 and
8 weeks in the past 6 months); (3) moderate users (use of alcohol in
between 9 and 25 weeks in the past 6 months); and (4) heavy users
(alcohol use in every week in the past 6 months). The lymphoblast
DNA was derived by Epstein Barr virus mediated transformation
(Caputo et al., 1991) of lymphocytes obtained from blood donated
by 165 female subjects during the last wave of the study.

The lymphoblast DNA used in this study was prepared from
growth-entrained lymphoblast cell lines using our standard pro-
cedures (Philibert et al., 2008). In brief, on the day before DNA
preparation, one-half of the cell media for each culture flask was
exchanged. DNA was then prepared from the cell lines 24 h later
using cold protein precipitation (Lahiri and Schnabel, 1993). After
quantification and purity assessment using a Nanodrop (Thermo
Scientific, USA) spectrophotometer, DNA was stored at −20˚C
and RNA was −80˚C until use.

Genome wide DNA methylation of the DNA was assessed using
the Illumina HumanMethylation450 BeadChip under contract by
the University of Minnesota Genome Center using the protocol
specified by the manufacturer and the contractor. The resulting
microarray data were inspected for complete bisulfite conversion
of the DNA, and average beta values (i.e., average methylation)
for each CpG residue were determined using the GenomeStudio
V2009.2; Methylation moduleVersion 1.5.5.,Version 3.2 (Illumina,
San Diego). The resulting beta values were exported into Microsoft
Excel and JMP (SAS Institute, USA) for data analysis. The Human-
Methylation450 BeadChip contains 485,577 probes that recognize
at least 20216 transcripts, potential transcripts, or isolated CpG
islands. With respect to this sample, >99.7% of the 485,577 probes
yielded statistically reliable data.

The methylation status of the serotonin transporter (SLC6A4)
promoter region was previously assessed for 163 of the 165 samples
using MALDI-TOF mass spectroscopy by Sequenom (San Diego,

CA, USA) as described previously (Philibert et al., 2008, 2010).
Using the sequence annotation files from both the current and the
prior studies, we identified CpG residues that were assessed using
both technologies. The methylation values for each residue were
compared using Least Squares regression (Fleiss, 1981).

After logarithmic conversion, data were inspected for outliers
then the initial data analyses were conducted using genome wide t -
tests. Subsequently, beta values for each of the probes were aligned
according to their physical location and the data re-analyzed using
paired t -tests over a 11-probe sliding window in order to more
adroitly capture methylation signatures over larger regions (Far-
thing et al., 2008; Dindot et al., 2009). All genome wide compar-
isons were corrected for multiple comparisons using the method
of Benjamini and Hochberg (1995). For select loci, data were
analyzed with respect to alcohol use status using ANOVA (Fleiss,
1981).

Pathway analysis of differentially methylated genes was con-
ducted using GoMiner™ using default settings (Zeeberg et al.,
2003). All values reported include nominal and FDR corrected
values.

RESULTS
The demographic and clinical characteristics of the 165 female
subjects is shown in Table 1. Overall, the subjects were largely
white and tended to be their mid-to-late 40s. Based on the analyt-
ical model and the distribution of daily drinking patterns among
the subjects over the 6 months prior to phlebotomy, we divided
the subjects into four groups. Consistent with enrichment of the
sample for the diathesis of substance use, the majority of these
165 subjects in the study reported the use of alcohol in the past

Table 1 | Clinical characteristics of the 165 female Iowa Adoptions

Studies probands.

Drinking status

Abstinent Mild Moderate Heavy

N 40 47 50 28

Age 47 ± 8 46 ± 8 44 ± 8 46 ± 8

ETHNICITY

White 38 45 49 26

Other 2 2 1 2

SMOKING STATUS

Current smoker 7 9 13 9

Former smoker 11 11 15 9

Never 22 27 22 10

LIFETIME DSM IV ALCOHOL DEPENDENCE SYMPTOM COUNTS

Sxs

0 35 32 36 13

1 1 10 5 6

2 2 2 4 5

3 0 1 3 2

4 0 1 2 2

5 0 0 0 0

6 2 1 0 0

7 0 0 0 0
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6 months with the 28 subjects in the “heavy” use group report-
ing alcohol use every week for the past 26 weeks while the 50
“moderate” drinkers and the 47 “mild” drinkers reported drinking
in 9–25 weeks, and 1–8 weeks in the past 26 weeks, respectively.
Their current drinking pattern was reflective of their lifetime
history of drinking alcohol. Only 5 of the 40 individuals who
reported recent abstinence also reported one or more symp-
toms of lifetime alcohol dependence. In contrast, 15 of 28 of
the heavy drinking reported one or more symptoms (p < 0.01
as compared to the abstinent group) with four of them meet-
ing criteria for a lifetime diagnosis of alcohol dependence (three
or more symptoms). Approximately 50% of the subjects also
reported a past history of smoking with 27% continuing to
smoke at the time of phlebotomy. However, despite the strong
epidemiological associations of smoking and drinking behaviors
(John et al., 2003), in this cohort of 165 subjects, there were no

significant differences in the rates of smoking between the three
groups.

In our initial analyses, we contrasted the methylation values
for the 40 abstinent individuals with the values for the 47 mild,
50 moderate, and 28 heavy drinkers using genome wide t -tests.
The results of those analyses are shown in Table 2. The overall
degree methylation was less in the abstinent group (44.26%) than
in mild (44.64%), moderate (44.65%), or heavy (44.62%) drink-
ing groups (all comparisons vs abstinent p < 0.0001). Despite this
overall difference, as the table indicates, although some of the val-
ues show strong consistency across several partially independent
comparisons, by themselves none of the comparisons between
individual groups (e.g., heavy drinker vs mild) are statistically
significant after genome wide comparison (best p-value after cor-
rection is p < 0.25) to values for the abstinent group. However,
when the moderate and heavy drinkers are pooled together and

Table 2 |The top 30 most significantly associated probes for individual alcohol group comparison.

Probe ID Gene Placement Island status Average methylation

for each use group

Nominal p-values for group comparisons

Abs Mild Mod Heavy Heavy vs Abs Mod vs Abs Heavy vs mild

cg24023553 N shore 0.10 0.11 0.11 0.12 2.64E−06 0.0021 0.0280

cg20310749 SHC4 TSS1500 S shore 0.05 0.06 0.06 0.07 2.68E−06 0.0068 0.0008

cg23865067 ARPP19 Body N shore 0.08 0.08 0.08 0.09 3.58E−06 0.0080 0.1053

cg05559557 Island 0.89 0.90 0.90 0.90 3.75E−06 0.0565 0.0042

cg24268236 CEP63 TSS200 Island 0.09 0.09 0.09 0.10 3.98E−06 0.0014 0.5055

cg09966309 RPS6KA2 Body 0.27 0.22 0.21 0.15 5.85E−06 0.0026 0.0510

cg23818046 CENPK TSS1500 Island 0.06 0.07 0.07 0.07 6.06E−06 0.0005 0.0774

cg22640209 DOCK10 Body N shore 0.05 0.06 0.06 0.06 6.92E−06 0.0023 0.0045

cg05128246 KHDRBS3 Body Island 0.04 0.04 0.04 0.05 7.61E−06 0.0029 0.0682

cg07211915 MAP3K15 TSS200 Island 0.44 0.46 0.45 0.48 7.61E−06 0.0017 0.1484

cg02606081 HRAS TSS1500 Island 0.13 0.13 0.14 0.15 8.47E−06 0.0026 0.0085

cg12502823 MGC70857 Body Island 0.06 0.07 0.07 0.08 8.86E−06 0.0007 0.1258

cg05497240 C5orf4 3’UTR 0.83 0.84 0.85 0.85 8.89E−06 0.0038 0.0005

cg26248486 BBS10 TSS200 S shore 0.07 0.07 0.07 0.07 1.00E−05 0.0249 0.0003

cg26213873 CTTNBP2NL 5’UTR Island 0.10 0.11 0.12 0.12 1.03E−05 0.0427 0.0000

cg16480634 ACTR2 3’UTR 0.61 0.65 0.62 0.68 1.04E−05 0.1278 0.5470

cg17879912 TNFAIP8 Body 0.77 0.78 0.79 0.80 1.11E−05 0.0034 0.0049

cg23554129 Island 0.11 0.11 0.12 0.12 1.13E−05 0.0024 0.0019

cg00717297 TMEM120B Body 0.85 0.86 0.86 0.87 1.14E−05 0.0001 0.0055

cg12999103 ATP13A2 Body Island 0.12 0.12 0.12 0.13 1.28E−05 0.0004 0.0409

cg16551665 CDK5R1 TSS200 Island 0.12 0.12 0.12 0.13 1.32E−05 0.0006 0.0130

cg03461296 TAF4 Body N shore 0.83 0.84 0.84 0.85 1.36E−05 0.0246 0.0041

cg12361155 ADO TSS200 Island 0.07 0.07 0.07 0.08 1.43E−05 0.0366 0.0367

cg25253419 NUCB1 TSS200 S shore 0.09 0.10 0.10 0.11 1.46E−05 0.0172 0.0064

cg18634443 TBPL1 3’UTR 0.63 0.66 0.66 0.67 1.54E−05 0.3750 0.0003

cg05353415 GLI3 5’UTR Island 0.07 0.08 0.08 0.08 1.58E−05 0.6627 0.0053

cg02988255 GPR44 Body Island 0.78 0.79 0.80 0.81 1.61E−05 0.0014 0.0013

cg05944623 PRPF31 5’UTR Island 0.08 0.08 0.08 0.09 1.62E−05 0.0001 0.0079

cg01766534 MRPL44 1st exon Island 0.08 0.08 0.08 0.09 1.64E−05 0.0025 0.0320

cg15090909 TBC1D9B Body Island 0.86 0.87 0.87 0.88 1.69E−05 0.0022 0.0006

Abs, abstinent; Mod, moderate; S, south; N, north. Placement refers to the probe region. In brief, 1500TSS = up to 1500 bp upstream of the transcription start site

(TSS), 200TSS = up to 200 bp from the TSS, Body = in the body of the gene. All methylation values are average beta values.
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compared to the abstinent group, the comparison at cg05600126, a
probe in ABR, a gene known to be involved in vestibular function
(Kaartinen et al., 2002), reaches genome wide significance after
genome wide correction (p < 0.05; Table 3) with several other
probes nearly reaching significance.

There appears to be effect of the category of drinking frequency
on both the strength of the overall comparisons (Table 4). Overall,
1711 of the 485,577 probes on the array were nominally significant
at the p < 0.001 level in the heavy vs abstinent group comparison
(expected value; 486 probes at p < 0.001). This number dimin-
ishes to 390 probes when comparing the moderate to the abstinent
and 128 probes at the p < 0.001 level when comparing the mild
drinkers to the abstinent drinkers despite the fact that the heavy
drinker group was the smallest of the three groups.

This effect is also reflected in the distribution of the differ-
entially methylated probes with respect to their island status.

In previous work, Doi et al. (2009) showed that changes in cell
fate preferentially affected CpG methylation based on the loca-
tion of the residue with respect to their location in the CpG
island. To examine whether this was happening with respect
to alcohol use, we examined the location of the nominally
significantly differentially methylated probes (at the p < 0.001
level) using the information contained in the Illumina file
annotations. As Table 4 demonstrates, alcohol seems to pref-
erentially affect the probes found in the center of the CpG
islands with the proportion of all differentially methylated probes
which localized to the center of the islands rising reaching
to 52% (p < 0.0001) in the heavy drinking group as com-
pared to the expected distribution of 30.9% localizing to the
island.

Next, using a sliding 11-probe window, we examined whether
using information from adjacent probes would strengthen the

Table 3 |The top 30 most significantly associated probes in the abstinent vs pooled moderate and heavy drinkers analysis.

Probe ID Gene Placement Island status Average methylation

Abst Mod Heavy H vs Abs* Mod vs Abs* H and

Mod vs Abs*

BH corrected

value

cg05600126 ABR Body N shore 0.80 0.83 0.83 3.15E−05 7.58E−06 1.02E−07 0.05

cg00004209 N shelf 0.74 0.78 0.78 0.000201 5.49E−05 6.12E−07 0.07

cg26213873 CTTNBP2NL 5’UTR Island 0.10 0.12 0.12 1.03E−05 2.32E−05 8.21E−07 0.07

cg02678356 ZXDA 1st exon S shore 0.22 0.28 0.29 0.000266 1.27E−05 8.49E−07 0.07

cg09978321 CEBPG TSS200 Island 0.02 0.03 0.03 0.000122 5.81E−06 9.01E−07 0.07

cg03033398 ZNF746 Body S shelf 0.83 0.85 0.85 5.20E−05 3.61E−05 9.10E−07 0.07

cg27044202 TRIM66 TSS1500 0.86 0.88 0.88 6.30E−05 4.81E−05 1.73E−06 0.11

cg21050392 HYLS1 5’UTR S shore 0.06 0.07 0.07 0.000135 1.17E−05 1.76E−06 0.11

cg07832337 ATP2C2 5’UTR Island 0.11 0.06 0.06 4.03E−05 0.000115 2.07E−06 0.11

cg16131534 TBC1D22A TSS1500 Island 0.05 0.06 0.06 0.000473 3.18E−06 2.64E−06 0.13

cg03589311 VPS52 Body S shelf 0.88 0.89 0.89 0.000831 1.30E−05 3.52E−06 0.13

cg23246509 TMEM109 3’UTR N shelf 0.83 0.85 0.85 7.20E−05 0.000151 3.72E−06 0.13

cg02800384 BANP Body Island 0.88 0.90 0.89 0.002061 5.30E−05 5.15E−06 0.13

cg17714794 BNIP1 1st exon 0.06 0.07 0.07 0.000365 5.21E−05 5.19E−06 0.13

cg05497240 C5orf4 3’UTR 0.83 0.85 0.85 8.89E−06 0.000503 5.32E−06 0.13

cg23363818 ZNF433 Body N shelf 0.73 0.76 0.76 0.000453 5.95E−05 5.90E−06 0.13

cg07086112 RHOBTB2 Body N shelf 0.77 0.79 0.79 0.000840 6.17E−05 6.07E−06 0.13

cg20258580 IGF1R Body Island 0.85 0.86 0.87 0.000107 0.000146 6.19E−06 0.13

cg00164894 USP24 Body 0.79 0.81 0.81 0.000189 0.000253 6.30E−06 0.13

cg24885794 SGCE TSS1500 Island 0.39 0.42 0.42 0.000854 4.57E−05 6.32E−06 0.13

cg03279631 0.82 0.85 0.86 0.000875 0.000682 6.38E−06 0.13

cg26248486 BBS10 TSS200 S shore 0.07 0.07 0.07 1.00E−05 0.000338 6.79E−06 0.13

cg12740512 C20orf94 5’UTR S shore 0.05 0.05 0.05 0.000414 1.66E−05 6.89E−06 0.13

cg13563193 PDCD5 Body Island 0.04 0.05 0.05 0.000878 2.97E−05 7.01E−06 0.13

cg01534273 FAM108A1 Body Island 0.55 0.60 0.61 0.000266 0.000110 7.08E−06 0.13

cg18634443 TBPL1 3’UTR 0.63 0.66 0.67 1.54E−05 0.000345 7.27E−06 0.13

cg03721017 ELL Body S shore 0.85 0.87 0.87 0.000182 0.000649 7.49E−06 0.13

cg03936229 MSI2 Body 0.81 0.82 0.83 0.000153 0.000244 7.59E−06 0.13

cg07574621 XPC TSS200 Island 0.02 0.03 0.03 9.96E−05 0.000307 7.78E−06 0.13

cg09008753 SMAP1 Body S shore 0.06 0.06 0.06 0.000709 2.72E−05 9.12E−06 0.13

*Nominal p-value before Benjamini–Hochberg step up correction. Abs, abstinent; Mod, moderate; H, heavy; S, south; N, north. All methylation values are average

beta values.
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findings with respect with to alcohol use. The effect on significance
was profound with values for 19 regional comparisons reach-
ing genome wide significance at the p < 0.01 level (Table 5). Not
surprisingly, many of the regions are overlapping with the top four
region comparisons all being found in BLCAP, a chromosome 6

gene with 121 probes localizing to it. Please see Supplementary
Table 1 for a complete list of the genomic location and context of
all probes.

Using the list of significantly differentiated unique genes
(n = 24) from the sliding window comparison, we conducted

Table 4 | Distribution of CpG values with respect to island status and extent of alcohol use.

Location All probes Mild user Moderate user Heavy user

Island 150254 30.94% 47 36.7% 203 37.9% 894 52.3%

S_shore 49197 10.13% 6 4.7% 26 4.9% 48 2.8%

N_shore 62870 12.95% 17 13.3% 67 12.5% 200 11.7%

N_shelf 24844 5.12% 7 5.5% 21 3.9% 36 2.1%

S_shelf 22300 4.59% 21 16.4% 73 13.6% 86 10.9%

No annotation 176112 36.27% 30 23.4% 146 27.2% 347 20.3%

485577 128 536 1711

Table 5 |The top 30 most significantly associated 11-probe regions.

Probe ID Gene Placement Island status Average methylation p-Value* Step up p-value

Abs Heavy

cg24338351 BLCAP 5’UTR Island 0.69 0.76 1.86E−10 4.75E−05

cg24675557 BLCAP 5’UTR Island 0.68 0.75 2.36E−10 4.75E−05

cg01466133 BLCAP 5’UTR Island 0.71 0.77 3.86E−10 4.75E−05

cg20479660 BLCAP 5’UTR Island 0.68 0.74 3.91E−10 4.75E−05

cg07557337 RAB1B TSS200 Island 0.07 0.07 1.29E−08 0.0011

cg26522319 C1orf103 1st exon Island 0.05 0.06 1.53E−08 0.0011

cg02898883 RAB1B TSS1500 Island 0.07 0.07 1.69E−08 0.0011

cg03436478 SGCE, PEG10 S_shore 0.51 0.52 2.28E−08 0.0013

cg09337653 SIN3A, SIN3A Island 0.08 0.08 3.29E−08 0.0016

cg27535677 N_shore 0.70 0.75 3.30E−08 0.0016

cg20041873 SGCE, PEG10 S_shore 0.51 0.53 3.86E−08 0.0017

cg07156273 BLCAP 5’UTR Island 0.71 0.77 4.87E−08 0.0019

cg24141738 ERMAP, CCDC23 Island 0.04 0.05 5.25E−08 0.0019

cg15473473 BLCAP 5’UTR Island 0.71 0.77 6.14E−08 0.0020

cg04303139 SGCE, PEG10 S_shore 0.51 0.52 6.34E−08 0.0020

cg01758634 SIN3A TSS1500 Island 0.07 0.08 6.87E−08 0.0020

cg05509218 SGCE, PEG10 S_shore 0.49 0.51 8.89E−08 0.0025

cg22421148 BLCAP 5’UTR Island 0.66 0.73 9.73E−08 0.0026

cg03759229 N_shore 0.68 0.73 1.14E−07 0.0029

cg22893248 ACTR3C 1st exon Island 0.07 0.10 1.25E−07 0.0030

cg20631204 ZNF562 TSS200 Island 0.11 0.13 1.34E−07 0.0031

cg02639123 ACTR3C, LRRC61 S_shore 0.21 0.23 1.47E−07 0.0031

cg01959416 ACTR3C, LRRC61 S_shore 0.07 0.10 1.47E−07 0.0031

cg12862537 BLCAP 5’UTR Island 0.76 0.82 1.63E−07 0.0031

cg22497095 N_shore 0.70 0.75 1.64E−07 0.0031

cg21516287 ACTR3C, LRRC61 S_shore 0.14 0.16 1.68E−07 0.0031

cg26544607 ARRDC3 S_shelf 0.07 0.07 1.88E−07 0.0032

cg04558861 LIN37 TSS200 N_shore 0.12 0.13 1.89E−07 0.0032

cg22510412 BLCAP 5’UTR Island 0.64 0.70 2.00E−07 0.0032

cg19998456 GGA1 TSS200 Island 0.05 0.06 2.03E−07 0.0032

*Nominal p-value before Benjamini–Hochberg step up correction. Abs, abstinent; S, south; N, north. All methylation values are average beta values. Probe listed is

the probe in the center of the linearly arranged group of 11-probes.
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pathway analyses using GoMiner. No significantly differentially
methylated pathways were identified using this approach.

Finally, to determine whether our current array based mea-
surements were valid, we compared the degree of methylation
determined by the Illumina platform with the values determine
previously for these 165 subjects at the serotonin transporter pro-
moter associated CpG island (SLC6A4) using MALDI-TOF mass
spectrophotometer. Overall, four CpG residues at this locus were
surveyed by both approaches. At each CpG residue, the degree of
methylation determined by each method was correlated with the
average adjusted r2 equaling ∼0.34 which is similar to the findings
by Bock et al. (2010) suggests that the current measurements are
reliable.

DISCUSSION
In summary, we present evidence that the pattern of alcohol
use over the most recent 6 months is associated with widespread
changes in the methylation of lymphoblast DNA derived from
middle aged female subjects participating in the Iowa Adoption
Studies. Limitations of the current findings include the fact that
lymphoblasts are not primary human cells, the modest degree
of differential methylation observed at any individual probe, the
likelihood of tissue and cell dependent differences in methyla-
tion, and the likely confounding effect of prior alcohol use history
on 6 month use history. Strengths of the manuscript include the
high significant sliding window analyses, the internal consistency
of the multiple comparisons, and the independent verification of
methylation signatures at the SLC6A4 locus.

The dependency of differential DNA methylation on the fre-
quency of drinking observed in the current study was to be
expected. Depending on context, alcohol can be viewed as either
as a drug or a potentially poisonous solvent. Under the latter view-
point, the observed epigenetic changes described herein could then
be explained as the gradated cellular responses to a exogenous
toxin. However, before assuming that viewpoint it is important to
acknowledge that the primary alcohol use variable employed in
the current study was number of weeks in the past 6 months in
which the subject drank which is more a measure of time of expo-
sure not total amount ingested. To a certain extent, our choice
to employ this measure is because our diagnostic instrument, the
SSAGA, readily provides this as a recent use metric. It may well
be that the choice of a different total consumption based met-
ric, such as the number of alcoholic beverages consumed in the
past 2 weeks, may have produced more robust findings. However,
because of the manner in which the alcohol use questions are asked
in our version of this instrument, information for all subjects is not
always available or directly comparable. Hence, it may well be that
other approaches to quantifying recent alcohol consumption may
produce more robust findings. But we feel that the current classi-
fication system which captures the pattern of use over an extended
period of time may be equally effective and that further analyses
using replicate data sets using more complex (e.g., factor analyses)
may be the best way to more adroitly define which recent alcohol
use measures are most correlated with DNA methylation changes.

The effect of alcohol use severity on the distribution of the dif-
ferentially methylated probes with respect to CpG island status is
intriguing. In previous work, Doi et al. (2009) demonstrated that

DNA methylation changes associated with assumption of cell fate
preferentially affected the less dense outer area of the CpG islands
referred to, poetically, as the “shore.” In this survey of the effects
of alcohol intake, we observed that overall that greater consump-
tion of alcohol is associated with increased levels of genome wide
methylation and that the changes in the most chronically exposed
subjects preferentially affects the centers of these islands. Because
two-thirds of all CpG islands in the genome are promoter associ-
ated and hypermethylation of promoter associated CpG islands is
thought to silence gene transcription (Suzuki and Bird, 2008), it
is tempting to speculate that this increased methylation observed
at these islands is associated with decreased gene expression at
these loci. Indeed, in subset of these same cell lines, we have
demonstrated that at the genome wide level, there are significant
effects of methylation on gene expression (Plume et al., 2012).
Unfortunately, because the magnitude of many of these changes
in methylation are relatively small and others have observed that
the relationship between DNA methylation and gene expression
may be complex and weak (De Bustos et al., 2009; Fan and Zhang,
2009; Pai et al., 2011), directly demonstrating that these changes
have biological relevance at any given locus may be difficult. How-
ever, the finding by Rodd et al. (2008) that the expression of BLCAP,
a gene region that is significantly hypermethylated in our study,
was significantly decreased in the nucleus accumbens of ethanol
treated rats is encouraging.

The directionality of the overall changes observed herein is
consistent with prior findings. In our single point and sliding
window analyses, almost of all of the top 30 most significantly
differentially methylated probes or regions were more methylated
in heavy alcohol use group. This is very consistent with prior find-
ing by ourselves and others (Bonsch et al., 2005; Philibert et al.,
2008; Hillemacher et al., 2009a,b). However, there are a number
of exceptions to this rule in this study and we expect that a fuller
understanding of differentially regulated pathways in alcoholism
to include a rich tapestry of both up-regulated and down-regulated
genes.

It is also important to note that despite the fact that alcohol and
nicotine use are frequently co-morbid, there were no differences
in the frequency of smoking between the four alcohol use groups
and controlling for smoking had no effect on the outcomes of the
current study. Taken in conjunction with the previous finding by
Breitling et al. (2011) as well as our own preliminary analyses, these
findings suggest that cigarette smoke and alcohol ingestion present
unique toxicological challenges to cells that have distinct effects
on methylation. However, these effects do not have to be shared
exactly. In our examinations that compared the smoking associ-
ated methylation signatures of whole blood DNA, lymphoblast
DNA, and alveolar macrophages, we have found significant dif-
ferences in individual CpG residues across loci whose signatures
were otherwise quite well coordinated (Philibert et al., 2010; Mon-
ick et al., 2012). Because lymphoblasts are immortalized cell lines
whose epigenetic signatures are partly affected by EBV transforma-
tion (Rollins et al., 2010) and to a certain extent have documented
certain intercellular differences, integrated studies of different cell
tissue preparations taken from the same individual would be ben-
eficial in the generation of a more global understanding of the
effects of alcohol in the entire body.
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A critical question that is not addressed by the current study is
the longevity of the methylation signatures associated with chronic
alcohol use. In prior studies of the MAOA locus, we have demon-
strated that cessation of smoking has dramatic effects on CpG
methylation (Philibert et al., 2010). Unfortunately, the number of
abstinent or nearly abstinent subjects contained within the cur-
rent study is too small to conduct meaningful tests at the most
significant loci for these purposes. Furthermore, not all abstinent
individuals in this study were abstinent for the same reasons. Some
are abstinent secondary to personal choice while others in our
study are abstinent secondary to medical or legal necessity. Con-
trolling for those and other potential confounders such as diet and
lifestyle issues in small samples such as this may be difficult.

Assuming that the current findings are replicated, particularly
in primary lymphocytes, the some of the most critical questions to
be addressed concern the relationship of differential DNA methy-
lation to the overall genomic tone of the cell. DNA methylation
is assumed to be intimately involved in regulation of genomic
tone. Hence, will reversal of the DNA methylation changes restore
normal genomic tone? This is an important question because
cells isolated from alcoholics also have more structural changes
such as shorter telomeres and manifest other signs of cellular
senescence such as abnormal post-translational modifications of
proteins. Will these indicators of cellular dysfunction similarly
revert if the methylation patterns can be reversed through dietary
or pharmacological means? If so, defining the methods through

which to accomplish this process could have substantial impact in
the rehabilitation of those suffering from the mental and physical
ravages of alcoholism.

In summary, we report that recent chronic alcohol intake
is associated with significant changes in CpG methylation, and
in particular, increased hypermethylation of CpG islands. We
suggest further studies to confirm and extend these findings
using primary cells and convergent epigenetic approaches are
indicated.
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