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Olfactory receptors (ORs) are a type of GTP-binding protein-coupled receptor (GPCR).These
receptors are responsible for mediating the sense of smell through their interaction with
odor ligands. OR-odorant interactions marks the first step in the process that leads to
olfaction. Computational studies on model OR structures can generate focused and novel
hypotheses for further bench investigation by providing a view of these interactions at
the molecular level beyond inferences that are drawn merely from static docking. Here
we have shown the specific advantages of simulating the dynamic environment asso-
ciated with OR-odorant interactions. We present a rigorous protocol which ranges from
the creation of a computationally derived model of an olfactory receptor to simulating the
interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of
GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will
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1. INTRODUCTION

G(TP-binding) protein-coupled receptors (GPCRs) are a super-
family of membrane-bound proteins that enable cells to interact
with the external extracellular environment. At the cellular level,
they allow cells to communicate with each other and to respond to
environmental changes (Hamm, 1998). At the physiological level,
they also provide the basic mechanisms responsible for peripheral
sensory modalities such as odor, taste, vision, and pain (Buck and
Axel, 1991; Dong et al., 2001). Among such receptors, olfactory
receptors (ORs) comprise the largest number of individual pro-
teins in the family of GPCRs and constitute the majority of GPCR
diversity found in mammalian genomes (Glusman et al., 2001;
Zozulya et al., 2001; Gilad and Lancet, 2003; Niimura and Nei,
2003). Therefore, ORs make good model systems for developing
techniques applicable across the entire GPCR proteome.

The binding of various exogenous small molecules to olfac-
tory receptors is believed to trigger conformational changes in
the protein that induce signal transduction leading to olfaction.
These presumed interactions (or the lack thereof) also have clinical
implications. Olfactory dysfunction at a younger age are often pre-
dictors of certain neurodegenerative disorders (Elian, 1991; Muro-
fushi et al., 1991; Westervelt et al., 1997; Mesholam et al., 1998).

Unlike many other GPCRs however, an individual olfactory
receptor may be activated by many different odorants and the
same odorant molecule may activate many different ORs (Malnic
etal,, 1999). The study of the intermolecular interactions between
the set of odorants and the ORs in which they activate is cru-
cial to understanding the basis for such promiscuous molecular
discrimination.

Molecular dynamics techniques have been used to study
ligand-GPCR interactions in opsins (Lemaitre et al., 2005),
cholecystokinin-1 receptor (Hénin et al., 2006), B;-adrenergic
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receptor (Huber et al., 2008; Niesen et al., 2011; Vanni et al., 2011),
and even computationally derived opioid receptor models (Zhang
et al., 2005). We published the first molecular dynamics study for
rat OR17 (Laietal.,2005). ORs must be modeled prior to perform-
ing any in silico simulations because experimentally determined
structures of the proteins do not yet exist. Because ligand bind-
ing and interaction with receptors physically and physiologically
occurs in the context of thermodynamically regulated motion,
going beyond “static” models and docking is essential to study-
ing these interactions. Continuing advances in the availability of
computational resources allows all-atom simulations to be con-
ducted at hundreds of nanosecond scale using affordable amounts
of computer time.

We introduce here a computational protocol which we have
developed for an experimentally characterized human olfactory
receptor hOR 17-209 (aliases hOR17-8; OR1G1; GENBANK
Accession Number AAF37317.1; Matarazzo et al., 2002), that can
be easily extended to (at least) Class A (rhodopsin-like) GPCRs.
This methodology includes: creation of a computational model of
an olfactory receptors, computational binding of an odorant lig-
and into the binding region of the receptor, creating the membrane
environment of the olfactory receptor and simulating the OR-
odorant interactions using molecular dynamics methods. Figure 1
gives a flow diagram of the procedure.

2. METHODS

2.1. MODEL CONSTRUCTION AND PARAMETERIZATION

2.1.1. Secondary structure prediction

The current state-of-the-art transmembrane region (TM) predic-
tion algorithms incorporate the use of Hidden Markov Models
(HMMs). The following HMM-based TM predictors are publicly
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FIGURE 1 | OR and GPCR end-to-end modeling and simulation flow
diagram.

available: TMHMM! (Krogh et al.,, 2001) and HMMTOP? (Tus-
nady and Simon, 2001), and have been identified to be the best
predictors over ten other programs (Moller et al., 2001). The
final assignments of helical structure to the primary receptor
amino acid sequence are based on the outputs of TMHMM, there
being no significant differences in the transmembrane predictions
between TMHMM and HMMTOP. Figure 2 shows the selected
predicted TM sequences in hOR 17-209. A defining feature of
ORs and other rhodopsin-like GPCRs is the universally conserved
E/DRY motif at the intracellular side of TM3 which known to
participate in G-protein interaction during the beginning of the
signal transduction sequence following ligand binding (Rovati
et al., 2007). The TM prediction correctly places the middle of
this motif (MAYDCY in hOR17-209) at the intracellular interface.

2.1.2. Structural alignment and coordinate assignment

Once the TM regions have been determined, initial atomic coor-
dinates of the resulting helices are assigned through the use of
Modeler® (Eswar et al., 2006). As ORs are classified as rhodopsin-
like GPCRs, the bovine rhodopsin template is used (PDB: 1U19)
in order to establish the positioning of the helices in the heli-
cal bundle (Singer, 2000). However, since hOR17-209 only shares
50% sequence (with many ORs showing even less) similarity with
rhodopsin (Matarazzo et al., 2005), a simple sequential alignment
cannot be performed. Furthermore, ORs sequences have long been

Uhttp://www.cbs.dtu.dk/services/ TMHMM/
Zhttp://www.enzim.hu/hmmtop
3http://salilab.org/modeller/
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FIGURE 2 | hOR17-209 TM prediction results from TMIHMM. Predicted
locations and lengths of transmembrane helices are highlighted in yellow.
The non-highlighted regions are modeled as free-standing loops.

predicted to have shorter TM regions and longer extra- and intra-
cellular loops compared to rhodopsin (Otaki and Firestein, 2001).
Finally, to avoid biasing the modeled TMs with rhodopsin-centric
features, such as the orthogonal intracellular helix found in TM
7 in rhodopsin, which does not appear to be in ORs, a positional
structural alignment based on the previously performed TM pre-
diction is conducted. The centers of masses of the predicted TM
regions are aligned to the center of mass of each resolved TM in
the rhodopsin model. This ensures that the continuous helicity
of each TM is kept intact in the resulting receptor model as well.
Figure 3 shows the alignment of hOR17-209 with the rhodopsin
template to be input into Modeler.

By default, Modeler passes generated structures through a
series of simulated annealing stages which will tend to denature
the TMs if position restraints are not used. Because restrained
all-atom molecular dynamics in a suitable solvent environ-
ment will be used to refine the model later, and Modeler is
only intended to be used here to assign the TM positions,
automodel.make (exit stage = 2) is used to ensure
that only the initial coordinates are generated without further
pertubation of the TMs. At this point, the individual TMs retain
all of the rhodopsin-specific characteristics, which need to be
removed. Earlier modeling protocols, such as Singer’s (2000),
began with constructing canonical helics, but Modeler is useful
for easily maintaining the correct helical bundle assembly ter-
tiary structure. The goal of this alignment is to preliminarily
identify inter-helical distances and angles, without committing
structure specific artifacts of rhodopsin to eventual computational
OR model.
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FIGURE 3 | hOR17-209 TM prediction results and structural alignments
against the TMs in Bovine Rhodopsin (PDB: 1U19).

2.1.3. TM refinement and minimization

The initial TM structures produced by Modeler (as described
above) are the result of overlaying the existing positions of
the backbone/alpha-carbon atoms of rhodopsin and substitut-
ing the side-chains with those found in the olfactory receptor
TM sequences through extrapolation. The GROMACS 4.5* (Hess
et al., 2008) molecular dynamics package is next used to refine the
initial TM structures so that the side-chains can be relaxed and
any remaining rhodopsin-specific features are compensated for
(such as the proline-induced “kink” in TM6 that does not occur
in ORs). The TM is first parameterized with neutral termini using
a cross-term energy correction map (CMAP) dihedral-corrected
CHARMM?27 force field (and 1 charge group per atom), then sol-
vated in a 3-point model (TIPS3P) water box. Distance restraints
are applied between the backbone O and i + 4 backbone N, with
ro=0.28 nm, r; =0.30 nm and r, = 0.31 nm. The restraint force
constant used is the default 1000 kJ/mol/nm?. This enforces the
canonical hydrogen bonding distances found in a-helices (Arora
and Jayaram, 1996). Steepest-descent energy minimization con-
ducted with a convergence tolerance of 102 kJ/mol/nm for each
TM. The waters are removed once the TM secondary structures
have been minimized.

2.14. TM rotation

Because only a structural and not sequential alignment was used
to construct the TMs where the center of masses of the TMs in the
rhodopsin template were used, the matter of hydrophobic pack-
ing of the helical bundle needs to be addressed. The secondary

4http://www.gromacs.org

structure alignment does not guarantee that the hydrophobic
moment of each TM along its long-axis is oriented in the cor-
rect direction as observed in GPCRs. The Hydro-Eff® tool is used
to calculate a consensus aggregate hydrophobic moment ®y for
each TM according to the following equation:

360—6
Oy = Z Ly - COS (1)
n=0

where p1g is the point hydrophobicity of the residue found at the
angle 6 when the sequence of the TM is projected onto a helical
wheel (Crasto, 2010). The sequences input into Hydro-Eff® con-
sists of the majority of each TM, but the two residues closest to
both ends of each TM sequence are to be omitted when determin-
ing the hydrophobicity moment using Hydro-Eff®, as they tend
to exhibit a more dynamic conformation from their proximity
to the TM-loop interface, and a different residue-per-turn count
can alter their positions on the idealized helical wheel used in the
calculation.

The TM is rotated along its median long-axis as determined
from the center of the helix to orient the residue-angle representing
the minimum or maximum hydrophobicity so it is pointed in the
correct direction; the residue representing the lowest hydrophobic
moment is directed toward the hydrophilic center of the bundle.
The TM:s are rotated through vector manipulation using the VMD
computational modeling and visualization software® (Humphrey
et al., 1996) so that they meet the vector directions determined
through Hydro-Eff.

2.1.5. Loop addition

After the TMs have been rotated, the intracellular and extracel-
lular loops are added. The much longer loops do not align well
to the much shorter loops in rhodopsin, so the loops are mod-
eled by excising everything from the rhodopsin templates except
the N- and C-termini, and “gapping out” the Modeler alignments
accordingly.

Again, automodel .make (exit stage = 2) isusedto
ensure that only the initial coordinates are generated, since the TM
regions have been semi-finalized previously. This typically results
in long-dangling or discontinuous loop regions.

The entire molecule is reparameterized in GROMACS in prepa-
ration for another round of energy minimization. The N- and
C-termini are parameterized to be charged. It is here that the
conserved disulfide bridge observed in GPCRs between the first
and second extracellular loops (EL1-EL2; Fredriksson et al., 2003)
is parameterized. For hOR17-209, this disulfide bridge appears
between CYS 97 and CYS 179. All TM alpha carbons are frozen
while the entire receptor is now minimized in another TIPS3P
box with the appropriate counterions added. This ensures that the
existing helicity remains intact but allows side-chains and loops to
relax. Using large cutoffs (up to 10 nm depending on the distance
between the dangling loop end and the TM to which it needs to be
connected) allows the bonds to resolve and reconnect the loops to
the TMs.

Shttp://bioinfo.genetics.uab.edu/hydro-eff.pl
Ohttp://www.ks.uiuc.edu/Research/vmd
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During the reparameterization, the protonation states of any
histidine residues are resolved by visually estimating their solvent
accessibility or inter-helical contact distances, and also considering
the presence of any 7 -stacking in the TMs (Schlegel et al., 2005).
When the individual TMs are being minimized and refined, -
stacking is first evaluated as the only histidine interactions during
that stage are intrahelical; the nitrogen pair that is protonated is
selected randomly. After helix-rotation, the TM histidine nitro-
gens closest to the center of the binding pocket are protonated.
Loop histidines are usually randomly selected to be protonated.
In the case of histidines in OR 17-209, all epsilon nitrogens were
protonated.

2.1.6. Membrane bilayer construction

Next, an appropriate lipid bilayer and solvent system for run-
ning the all-atom simulation reflecting a fully dynamic mem-
brane have to be constructed. A 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphatidylcholine (POPC) bilayer is appropriate for simu-
lating mammalian cell membrane systems. Such a bilayer can
be constructed using the Membrane plugin distributed with
VMD. An initial bilayer area of approximately 9.5nm x 9.5 nm
allows the receptor to fit with sufficient buffer zones to alleviate
any artifacts from periodic boundary condition (PBC). Adding
enough TIPS3P water to the top and bottom of the bilayer to
result in an initial 12 nm box height is sufficient to solvate the
intra- and extracellular loops and to shield them from their
PBC images. A single POPC molecule is parameterized using a
CHARMM36 force field conversion for GROMACS’. The result-
ing system, which consists of around 238 lipids is then equilibrated
for at least 50 ns at 310K and 1atm under NPT ensemble with
anisotropic pressure coupling or until the area per lipid converges
close to the consensus value of around 63—65 A per headgroup
(Klauda et al., 2010). The GROMACS molecular dynamics para-
meters are discussed below. The area per lipid calculations are
done using GridMAT-MD?® (Allen et al., 2009). Another met-
ric for confirming that equilibrium has been reached in the
bilayer is to wait until the moving averages of the box dimen-
sions (box-x/y and box-z) have stabilized (the initial box quickly
compresses under pressure as the long acyl chains adopt relaxed
conformations at temperature). Once the bilayer is equilibrated,
the resulting coordinates can subsequently used for any other
rhodopsin-like GPCR simulation without having to construct it
again.

2.1.7. Ligand construction

Atom coordinates for various ligand structures were constructed
using ArgusLab’. They are parameterized using a conversion of the
CHARMM 36 Generalized Force field (CGenFF; Vanommeslaeghe
et al., 2010) to GROMACS. Because the ligand-receptor interac-
tion is intermolecular, there is good interoperability between the
protein/lipid/water system using CHARMM27/36 and the ligand
using CGenFF as intermolecular interactions between the atoms
of both parameter sets have not changed.

7http://www.gromacs.org/Downloads/User_contributions/Force_fields
Shttp://www.bevanlab.biochem.vt.edu/GridMAT-MD/
http://www.arguslab.com/arguslab.com/ArgusLab.html

2.2. DOCKING

Because subsequent molecular dynamics techniques will be used to
explore the receptor-ligand interaction and conformation domain,
a low-resolution and low-intensity solvent accessible and volume-
fitting search can be used to select an initial docked position for
the ligand using a tool such as a GRAMM!? (Vakser, 1996). We
have observed that removing the loops prior to docking allows the
program to perform a better search of the solvent accessible spaces
within the inter-helical bundle.

The docking results are screened visually (using a visualiza-
tion program such as VMD, excluding non-physiological results,
such as all intracellular docking conformations and ligands that
are associating with loops but far away from the TM bundle. Sim-
ulation candidates are then chosen from the largest conformation
clusters. Figure 4 shows hOR17-209 with the primary cluster of its
docked activating ligand, isoamyl acetate, situated between TMs 1,
2,3,and 7. A single conformation close to the center of mass of the
cluster is selected for subsequent molecular dynamics simulation.

2.3. RECEPTOR-MEMBRANE INTEGRATION

The entire minimized receptor structure is rotated and translated
into an appropriate position within the equilibrated membrane
bilayer. Either the GROMACS editconf tool or VMD can be
used to do this. Because the length of the TMs are close to the
thickness of the bilayer the resulting placement of the receptor
within the bilayer is fairly symmetrical along the long-axis of
the TM (z-axis), so there is no special consideration necessary
to determine any z-axis offset between the protein and the bilayer,
as compared to other membrane proteins (Ulmschneider et al,,
2006). The receptor is oriented to the lipid’s z-axis to maximize
the exposure of TMs to the lipid environment. This can be done
using the editconf tool in Gromacs. It aligns the center of mass
of the TM bundle to the Z-axis and then to center the TM bundle
in the x/y plane. Any inaccuracies will be resolved by lipid bilayer
repacking during equilibration.

After the bilayer coordinates are appended to the transformed
receptor coordinates, g membed (Wolf et al., 2010) is used to
embed the protein into the bilayer, which will remove overlap-
ping lipids and water molecules, as well as perform a short MD
run to restore the protein dimensions back to unity scale and
repack the lipids. g¢_membed can be adjusted so that the number
of lipids removed is kept at a minimum, in particular by using the
-zinit option, which stretches the initial z-axis length of the
protein so long loops can clear the membrane region. In the case
of hOR17-209, we have applied a -zinit factor of 1.1, stretch-
ing the initial z-axis of the protein by 10%, which resulted in the
lowest number of lipids removed as compared to the default factor
of 1.0 or a increased factor of 1.2. For the hOR 17-209 case, the
resulting complex system revolves around the receptor, 230 lipids,
21468 waters, 2 sodium counterions, and 1 isoamyl acetate ligand,
totaling 100199 particles per periodic cell.

24. MOLECULAR DYNAMICS
The receptor-lipid-water complex, with or without the ligand is
further equilibrated. The addition of ligands may require that

Ohttp://vakser.bioinformatics.ku.edu/main/resources_gramm1.03.php
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FIGURE 4 | hOR17-209 docked with its activating ligand, isopentyl hydrophilic core) clusters are shown in blue and the discarded conformations
acetate using GRAMM. The loops from the receptor model were removed are shown in red. One conformation from the blue cluster is selected for
prior to docking, and GRAMM was configured to provide 100 docked molecular dynamics simulation. (A) Longitudinal view. (B) Extracellular
conformations. The physiologically relevant (extracellular and within the cross-section view.
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the counterions be adjusted and the entire complex needs to
be energy minimized again with the TM alpha carbons frozen.
The g membed tool has already performed some lipid repack-
ing, so a shorter equilibration run of 10 ns is sufficient to allow
for resetting the thermostat (resulting from any modifications
to the complex system such as adding or removing atoms) and
further packing refinement. Final area per lipid calculations can
also be conducted to ensure equilibrium has been reached. Posi-
tion restraints are applied to the TM alpha carbons with a force
constant of 1000-10000 kJ/mol/nm in each direction to preserve
the helical bundle and allow the lipids to pack around it. The
ligand is similarly restrained during this equilibration which
is carried out at 310K and latm in NPT ensemble with the
choice of thermostat and barostat determined by a combina-
tion that will not lead to divergence, such as velocity rescaling
(V-rescale) thermostats and Berendsen pressure coupling. For
CHARMM force fields operating in GROMACS, the appropri-
ate cutoffs while using Partial Mesh Ewald (PME) electrostatics
are: rlist = 1.2, rcoulomb = 1.2, rvdw = 1.2,
vdwtype = switch, rvdw _switch = 0.8. The default
PME order of 4 and fourierspacing of 0.16 are kept. The pressure
coupling mode is set to semi-isotropic due to the asymmetry of the
lipid bilayer-solvent box. The lipid, protein, and solvent (or sol-
vent + lipid) are thermodynamically un-coupled from each other
to avoid the “cold solvent, hot solute” problem (Lingenheil et al.,
2008; Mor et al., 2008).

Using GROMACS necessitates center of mass motion (COM)
“corrections,” particularly while employing periodic boundary
conditions. It is typical to use COM correction on the entire
system in a globular protein-solvent system. While the use of sep-
arate centers of masses between the protein-lipid complex and
the solvent mass (COM = protein lipid solvent) may

prevent bilayer “tearing,” where the solvent layer separates from the
lipid layer on the xy-plane, this has not been observed to happen
with ORs, possibly because the loops are long enough to stabilize
the lipid-water interface. In GPCRs with longer helices, extensions
past the membrane region should also perform a similar stabi-
lization role. It preferable to avoid the introduction of artificial
corrections which may lead to artifacts, so COM can be set to
System for OR simulations.

In production MD, the checkpoint file, which contains the atom
velocities and system state from the end of the equilibration is
used as input and the restraints are removed. The Nose-Hoover
thermostat and Parinello-Raman barostat are used. Production
simulation runs can configured to run between 1 to over 10 or
more nanoseconds.

3. RESULTS

Matarazzo et al. (2005) experimentally showed that human olfac-
tory receptor hOR 17-209 (OR1Gl) is activated by mix of
esters, including a strong response to 3-methylbut-1-yl ethanoate
(isoamyl acetate). A model of hOR 1109 was created using Argus-
Lab and inserted into a 238 molecule POPC bilayer according to
the methods described. A high scoring docked conformation from
GRAMM was selected for further molecular dynamics study. The
initial placement of the ligand is the central blue one shown in
Figure 4, where it is positioned between TMs 1, 2, 3, and 7.

Ten ns of production MD was performed after the 10-ns of
post-docking restrained equilibration; thus the loops underwent
a total of 20 ns unstrained MD. An unbound receptor also under-
went 10 ns of production MD. Figure 5 depicts a top and side view
of the hydrated hOR17-209 isoamylacetate system with surround-
ing lipid bilayer. Figure 6 shows the energy convergence of the two
systems. Compared to the equilibration portion of the simulation,

red, respectively.

FIGURE 5 | hOR17-209 is embedded into the lipid bilayer-solvent complex with g_membed. The receptor, lipids, and waters are colored orange, gray, and
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FIGURE 6 | The total energy of two hOR 17-209 simulation systems, with of the unbound system during equilibration (first 10 ns) and production MD
and without docked ligand. The orange/pink regions show the total energy (final 10 ns). The solid lines are 200 ps moving averages. During production
of the ligand-bound system and the gray/blue regions reflect the total energy MD, no significant fluctuations are observed in the energy profiles.

the energies of both the ligand-bound and unbound simulations
show a marked decrease in total drift. For example, in the ligand-
bound system, the total energy drift during equilibration was
—2291 kJ/mol, but across the entire production simulation of the
second 10 ns, the drift was reduced to —790 kJ/mol. When the
energy drift is measured across the final 5ns of the simulation
the energy drift drops to —194kJ/mol. This evidence suggests
the energy of the system stabilizes through the entire production
portion of the simulation.

The primary behavior of note throughout the trajectory is the
migration of the ligand from its starting position and crossing over
into another binding region bounded by TMs 3-6. The ligand sam-
pled this space for approximately 2 ns after which it returned to
settle in the region bounded by TMs 1, 2, and 7 for the remainder
of the simulation. The transition period between the two confor-
mation clusters is very rapid, on the order of 100 ps. Such “exit
events” were observed in earlier, more primitive simulations with
the I7 olfactory receptor (Lai et al., 2005).

A minimum-distance contacts analysis was performed of the
trajectory of the bound receptor. This measurement selects a
side-chain atom in the receptor which satisfies the closest dis-
tance between the carbonyl oxygen of the ligand with the receptor
around a 6-A maximum radius of the carbonyl at every timestep
of the simulation as a “contact” during that timestep. The average
“contact” distance between the carbonyl oxygen and a heavy atom
of the receptor was 3.7 A, and the minimum “contact” distance
was 2.6 A. Each contact corresponding to a residue made along
the trajectory was tabulated. This allows a quantitative observa-
tion of the number of interacting residues which are closest to
the ligand during the simulation. The top “contacts” and their
contact counts per residue are found in Table 1. Graphically,
the “contact” frequency can be illustrated in the receptor by the
size of the residue representation in Figure 7. This figure further

Table 1 | Number of times a side-chain atom from the listed residue
has been the minimum-distance from the carbonyl oxygen of isoamyl
acetate, as compared to all other receptor atoms, during the

simulation.

Residue Number of contacts
VAL 78 1000
LEU 99 963
PHE 31 594
MET 34 344
SER 75 299
ASN 182 299
VAL 276 240
PHE 204 212
THR 279 208
ILE 181 160
MET 163 129
VAL 280 121
GLN 100 93
ASN 164 80

illustrates the sampling of the two clusters of binding conforma-
tions between isoamyl acetate and hOR 17-209. While the majority
of interactions appears to be relatively non-polar, of some interest
is some interactions in the “second” binding pocket which are with
residues in the long EL2 extracellular loop that is forced to “dip”
into the region bounded by TMs 3-7 due to the conserved disulfide
bridge. While there are no explicit ionic residues with which the lig-
and interacts, there are still some slightly polar residues which may
be involved: N182 and T279 enter within long-range electrostatic
distance of the ligand carbonyl group when the ligand samples
that region. The phenylalanine and other non-polar residues on
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FIGURE 7 | A graphical representation of the interaction frequency
between the carbonyl oxygen of isoamyl acetate and hOR 17-209
through 10 ns of MD. Green represents the primary binding pocket and
orange represents a second binding pocket which is sampled by the ligand
for 2 ns. Pink residues line the saddle point between the two regions. The
larger the residue’s appearance, the higher the interaction frequency. The N-
and C-termini were removed for clarity.

both boundaries of the binding regions may help serve to stabi-
lize the hydrocarbon tail of the odorant through Van der Waals
interactions.

Data captured from molecular dynamics simulations can help
to develop mechanistic explanations for ligand binding, recogni-
tion, and receptor activation supported by experimental observa-
tions; as well as assist in focusing testable hypotheses and variable
options for the further experimental study of particular ORs and
GPCRs.

4. DISCUSSION

We have developed a comprehensive modeling and advanced sim-
ulation protocol designed to study olfactory receptor-odor interac-
tions which is also fully applicable to other class A GPCRs. Despite
a significant lack of sequence similarity to rhodopsin, olfactory
receptors and other rhodopsin-like GPCRs all share the follow-
ing features: seven «-helix transmembrane regions arranged in
a distinct barrel shaped tertiary structure with solvent accessible
hydrophilic core and the E/DRY G-protein interaction motif at
the intracellular loop interface of TM 3. In this section, the var-
ious choices of methodology throughout the simulation pipeline
is rationalized.

The lack of experimentally resolved structures for all but three
GPCRs leads to the requirement of modeling our receptors using
rhodopsin as the template. The use of bovine rhodopsin as a
template is sufficient for the purposes of assigning the initial
helix structures and assembling the TM bundle. While the more
recently resolved GPCR structures such as the §,-adrenergic or
adenosine A, receptors can also be used as co-templates (Tebben
and Schnur, 2010), it should be noted that these latter structures
were refined with the substantial use of molecular replacement
methods using rhodopsin as a structural template for resolving
the areas lacking sufficient original electron-density detail from
the X-ray diffraction studies performed on their crystal struc-
tures (Jaakola et al., 2008; Warne et al., 2008). We have previously
observed (Lai et al., 2005) that even the construction of idealized
canonical helices arranged along a low-resolution (>6 A) electron-
diffraction map of rhodopsin (Singer, 2000) is well matched
against much higher resolution rhodopsin X-ray structures. Using
Modeler with a high-resolution rhodopsin template is an easier
way to generate the a-helix structures and inter-helix positioning
information.

Since the construction of the helices themselves are not depen-
dent on the sequence alignment to rhodopsin (or other GPCR
template), but rather, the spatial-structure alignment as shown
in Figure 3, the resulting helices may not be oriented to satisfy
the hydrophobic interaction with the side of the helix that will
eventually be in contact with the lipid bilayer. Thus, the helix
must be rotated around its long-axis to satisfy this requirement.
To determine the correct hydrophobic moment on which to base
this rotation, we developed a tool called Hydro-Eff. Hydro-Eff
requires minimal computational resources to calculate the cor-
rect helix orientation. The Hydro-Eff system has been validated
with the known structures of bovine rhodopsin, 8,-adrenergic,
and adenosine Ay receptors (Crasto, 2010). Hydro-Eff correctly
determines the orientation angle of each TM in all three charac-
terized structures, when the first and last two residues at the ends
of each predicted TMs are omitted from the ® calculations. Since
Hydro-Eff starts with an idealized matrix, the positioning of the
residues at the helix-loop junctions do not meet idealized helical
distance and angle restraints.

Other than the conserved cysteine bridge located between the
end of EL1 and middle of EL2, loop structure and behavior among
GPCRs appear to be diverse, even among the three known GPCR
structures. Through all stages of the workflow, from model refine-
ment to final equilibration, the loop regions not predicted to be
involved in TM structure are allowed to move freely in explicit
solvent and adopt their preferred conformations in a physiolog-
ically relevant thermodynamic ensemble. This continuous sam-
pling enables the assessment of potential ligand-loop interactions
regardless of initial loop conformation.

A CHARMM-based force field in conjunction with the GRO-
MACS 4.5 molecular dynamics package were used at different
stages of the described protocol that called for energy mini-
mization, geometry optimization, and full dynamics simulation.
CHARMM22/27/36 supports lipids and proteins; CHARMM?27
with CMAP dihedral angle corrections are also appropriate for
“helix-heavy” structures such as GPCRs. CHARMM36 lipids have
been revised to not require the extra use of surface tension
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parameterization. CGenFE, the general force field designed for
drug-like molecules, is appropriate for use in parameterizing
the small molecules interacting with the receptor. Because the
intermolecular interactions are derived from CHARMM?22/27/36,
no coupling corrections are needed when interoperating with
CHARMM?22 proteins and CHARMMS36 lipids; the only differ-
ences are with intramolecular 1-4 Van der Waals interactions.
GROMACS 4.5 has incorporated explicit support for CHARMM-
specific parameters, such as multiple dihedral types. The conver-
sion of CHARMM.prm files to GROMACS.1 tp files are straight-
forward. In addition, GROMACS supports the CHARMM variant
of TIP3P water, TIPS3P, which recognizes additional Van der Waals
interactions involving hydrogens and affects bilayer simulations
with CHARMM lipids. Finally, GROMACS 4.5 was also selected
for its good parallel performance across large computational clus-
ters, the customizability of the simulation parameters, and its
open-source license.

Molecular dynamics enables the ligand to explore the entire
conformation space, both intra- and intermolecularly. Thus, there
is no need to rely on a computationally intensive extensive search
of ligand rotamer libraries along with intermolecular interaction
energy surface searches. GRAMM is easy to setup, uses a unified
atom model, does not require external charge assignments or tools
(other than to create the initial ligand coordinates), and grid or
sphere generation, but still provides a satisfactory solvent accessi-
ble space and volumetric search with the option to include elec-
trostatic interaction terms. The downloadable version!! supports
small molecule docking.

Table 1 illustrates the significant advantages of dynamic simu-
lations of protein ligand interactions versus relying on the results
of static docking. From static docking, i.e., following energy min-
imization of the OR-odor system surrounded by the bilayer and
water molecules, we identified ten amino acid residues that were
within 6 A of any atom of the ligand. These are: VAL74, LEU99,
GLN100, LEU101, PHE103, PHE104, PHE107, VAL276, THR279,
and VAL280. These residues are from the TMs 1, 2, 3, and 7. The
results of the dynamic simulations presented in Table 1 identify

Uhttp://vakser.bioinformatics.ku.edu/main/resources_gramm1.03.download.php
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