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The emerging transdisciplinary field of Toxicogenomics aims to study the cell response to
a given toxicant at the genome, transcriptome, proteome, and metabolome levels. This
approach is expected to provide earlier and more sensitive biomarkers of toxicological
responses and help in the delineation of regulatory risk assessment. The use of model
organisms to gather such genomic information, through the exploitation of Omics and
Bioinformatics approaches and tools, together with more focused molecular and cellular
biology studies are rapidly increasing our understanding and providing an integrative view
on how cells interact with their environment. The use of the model eukaryote Saccha-
romyces cerevisiae in the field of Toxicogenomics is discussed in this review. Despite the
limitations intrinsic to the use of such a simple single cell experimental model, S. cerevisiae
appears to be very useful as a first screening tool, limiting the use of animal models. More-
over, it is also one of the most interesting systems to obtain a truly global understanding of
the toxicological response and resistance mechanisms, being in the frontline of systems
biology research and developments. The impact of the knowledge gathered in the yeast
model, through the use of Toxicogenomics approaches, is highlighted here by its use in
prediction of toxicological outcomes of exposure to pesticides and pharmaceutical drugs,
but also by its impact in biotechnology, namely in the development of more robust crops
and in the improvement of yeast strains as cell factories.
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YEAST TOXICOGENOMICS: GENOME-WIDE APPROACHES TO
ELUCIDATE TOXICITY MECHANISMS AND GLOBAL STRESS
RESPONSES IN YEAST
The transdisciplinary field of Toxicogenomics is defined as the
merging of Omics approaches with toxicology to elucidate the
response at the genome level to environmental stressors, drugs,
and other toxicants (Hamadeh et al., 2002; Gomase and Tagore,
2008; North and Vulpe, 2010). The coupling of such approaches
with classical toxicology studies combined with bioinformatics has
the potential to provide a more comprehensive knowledge of the
molecular and cellular effects of chemicals in biological systems
than more traditional approaches. Understanding these complex
responses is of paramount importance in fields ranging from Envi-
ronmental Health to Pharmacology and drug development and to
Biotechnology in general (Hamadeh et al., 2002; Guerreiro et al.,
2003; Teixeira et al., 2007). Toxicity testing using animal models
has a number of limitations that make it difficult to deal with
the increasingly large number of potentially toxic compounds
found in the environment and in the pharmaceutical industry
for which toxicity data available is scarce (North and Vulpe, 2010).
Mechanism-centered analysis represents an alternative approach

to animal testing and, in this context, the yeast Saccharomyces
cerevisiae can be an invaluable asset.

SACCHAROMYCES CEREVISIAE AS AN EXPERIMENTAL MODEL IN
TOXICOGENOMICS
S. cerevisiae is a thoroughly established and widely used eukaryotic
model for molecular and cellular biology studies. Yeast also plays
a significant role in biotechnology, where it is used as a cell fac-
tory with diverse applications (Botstein and Fink, 2011). There
are several inherent features that make yeast such a proficient
model system: (1) it is a unicellular non-pathogenic microor-
ganism with rapid and inexpensive growth, (2) it is amenable to
genetic manipulation, (3) genome-wide analyses are easily imple-
mented, with a vast array of experimental tools and biological
material readily available, (4) it possesses a strikingly high-level
of functional conservation within the human genome and other
higher eukaryotes, and (5) it has the unique advantage of pos-
sessing functional information available for nearly every gene.
The paradigm of research using S. cerevisiae changed with the
publication of its genome sequence more than 15 years ago (Gof-
feau et al., 1996). A wealth of biological information has been
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gathered over several years of post-genomic research facilitated by
easy access to public databases (Saccharomyces Genome Database,
SGD1; andYEASTRACT2,among others). Research on S. cerevisiae
pioneered the development of several post-genomic experimental
approaches and computational tools, changing the field of yeast
research with the application of innovative methodologies in func-
tional genomics and proteomics (Mager and Winderickx, 2005;
Smith et al., 2010; Botstein and Fink, 2011). In summary, yeast
is a robust and inexpensive experimental platform where mol-
ecular studies difficult to carry out in more complex and less
accessible eukaryotes are deeply facilitated (Wuster and Madan
Babu, 2008; Smith et al., 2010; Botstein and Fink, 2011). More-
over, although many cytotoxic compounds act on their target
organisms via physiological mechanisms that do not exist in yeast,
many of the basic mechanisms underlying toxicity, adaptation, and

1www.yeastgenome.com
2http://www.yeastract.com

resistance to chemical and environmental stresses are apparently
conserved between yeast and phylogenetically distant organisms
(Foury, 1997; Hohmann and Mager, 1997; Parsons et al., 2003;
Mager and Winderickx, 2005).

In this review we will focus on the field of yeast toxicogenomics
and how it can be exploited to obtain mechanistic insights into
the action of drugs or toxicants with relevance in environmental
health and agriculture (pesticides and environmental pollutants),
medicinal and biomedical research (drugs used in the treatment
of cancer, malaria, bacterial infections, etc.), and biotechnology
(wine, beer, and other alcoholic fermentation processes, including
the production of bio-ethanol, etc.; Figure 1), with a particular
emphasis on the contribution of our research group to the field.

OMICS TOOLS APPLIED TO YEAST TOXICOGENOMICS
Variations in gene and protein expression or metabolite levels
following exposure to a toxicant can contribute to identify the
cellular components and pathways that are most relevant to a

FIGURE 1 | Predicted contribution of Omics approaches applied in the yeast Saccharomyces cerevisiae to obtain toxicological mechanistic insights

with application in environmental health, agriculture, drug development, and biotechnology.
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toxicological response (Hamadeh et al., 2002; North and Vulpe,
2010). S. cerevisiae provides a privileged experimental system for
obtaining an integrated assessment and genome-wide perspec-
tive of toxicity mechanisms (Figure 1), through the combination
of transcriptomics and quantitative proteomics, for the evalu-
ation of genome-wide expression changes occurring as part of
the yeast response to environmental toxicants, metabonomics, for
the study of the cell’s small-molecule metabolite profile as the
ultimate response to the toxicant, and chemogenomics, for the
identification of cellular toxicity molecular targets (Figure 1). It
is noteworthy that, as stand-alone, these analyses are not expected
to provide decisive insights into the role of genes or proteins in a
toxicological response, and should instead be integrated and cou-
pled with suitable bioinformatics tools. Future research in the field
will require the development of computational tools aiming the
integration of high-throughput data and the collaborative activity
of multidisciplinary teams with expertise in biological sciences,
functional and comparative genomics, and bioinformatics.

A considerable amount of toxicity assessment data is available
from yeast DNA microarrays. Upon toxicant exposure, yeast cells
reprogram mRNA expression in order to adapt to the new envi-
ronmental conditions, which produces a gene expression pattern
(or “signature”) characteristic of the compound (Simmons and
Portier, 2002; Schwartz et al., 2004). These transcriptional sig-
natures are shared by compounds with similar modes of action
and can be used to infer mechanisms of action and predict tox-
icological outcomes of uncharacterized toxicants (Marton et al.,
1998; Lamb et al., 2006; Teixeira et al., 2007). In fact, alterations of
global gene expression can occur almost immediately after expo-
sure, and the assessment of these changes could potentially provide
an earlier and more sensitive biomarker of a toxic response than
traditional toxicological methods (Hamadeh et al., 2002; Simmons
and Portier, 2002). However, gene expression alone is not adequate
to fully understand a toxicant’s action and the resulting outcome
(Hamadeh et al., 2002), since abnormalities in protein production
and/or function are also expected to occur. As such, proteomics
approaches are employed to identify the protein alterations asso-
ciated with toxicant exposure (Teixeira et al., 2005, 2009b; Santos
et al., 2009; Sa-Correia and Teixeira, 2010). Finally, genomic and
proteomics methods do not address how the cell’s dynamic meta-
bolic status is affected by exposure to a toxicant. Metabonomics is
an approach that allows the study of metabolic profiles based on
the premise that toxicant-induced alterations will provide infor-
mation on chemical toxicity (Nicholson et al., 2002). Data in yeast
are still scarce, however it has already contributed to increase the
current understanding of weak acid toxicity (Hasunuma et al.,
2011; Lourenço et al., 2011).

FUNCTIONAL TOXICOGENOMICS USING YEAST GENE DELETION
COLLECTIONS
Functional toxicogenomics is defined as the global study of the
biological function of genes regarding the toxic effect of a com-
pound or environmental stress, providing a direct link between
gene and toxicant (Hamadeh et al., 2002; North and Vulpe, 2010).
In this context, a major breakthrough with respect to studies on
the mechanism of action and one of the main advantages of
using yeast bioassays for toxicity assessment was the generation

of heterozygous/homozygous diploid and haploid gene deletion
collections (Figure 2; Scherens and Goffeau, 2004). Fitness is the
primary phenotypic descriptor for yeast studies, and these collec-
tions enable comprehensive and systematic genetic screens that
provide direct links between a specific gene and the requirement
for that gene product function in the cellular response to a partic-
ular condition (Auerbach et al., 2005; Hoon et al., 2008b; Wuster
and Madan Babu, 2008). The different types of fitness-based assays
that can be used to identify toxicant-induced phenotypes include
homozygous (knock-out deletion, gene dosage = 0%), haploin-
sufficiency (heterozygous deletion strains, gene dosage = 50%)
and multicopy- and overexpression (gene dosage > 100%) screens
(Figure 2; Hoon et al., 2008b). In homozygous profiling, each non-
essential gene is knocked-out leading to complete loss-of-function.
These screens are often used to identify genes that are important
for conferring stress resistance, for example by genetic interaction
with the toxicant’s target. It is also applied to identify biologi-
cal functions that are affected by a given stress, and infer from
those the mechanisms of toxicological action. Finally, it is possible
to screen for deletions that confer resistance to a compound in
conditions that are deleterious to the wild-type strain. The deleted
genes can be direct targets, or be involved in modifications or path-
ways that enable the compound’s cytotoxic action. Naturally, one
obvious downside of homozygous or haploid gene deletion strains
is that only non-essential genes can be deleted, but the mechanism
of action of many toxicants might target essential gene products.
On the other hand, haploinsufficiency screens are based on the
premise that lowering the gene dosage of the molecular target
increases susceptibility, and thus enables direct identification of a
toxicant’s cellular target (see Hoon et al., 2008b; Wuster and Madan
Babu, 2008). Libraries of double mutants have also been generated
to uncover interactions between genes through synthetic lethality,
which can be integrated with functional screens data to elucidate
toxicity mechanisms and modes of action (Costanzo et al., 2010).
Many bioinformatics tools are available to facilitate interpretation
of the results. For example, Gene Ontology (GO) annotation and
GO-based resources such as GOToolBox3 (Martin et al., 2004)
allow the identification of biological functions that are enriched
within datasets, thus creating a “functional fingerprint” compara-
ble to transcriptional signatures by expression profiling. These can
be used to identify responses and pathways that are common to
different classes of toxicants.

Our current literature survey found at least 80 publications
that have used yeast deletion collections in the context of toxic-
ity testing, in which hundreds of different stresses were explored
and phenotypes were attributed to over 90% of all yeast genes
(see Table 1 for an overview). Remarkably, although many of
these conditions had been previously scrutinized using classical
methodologies or even DNA microarrays, many of the genes iden-
tified using deletion collections had not been known to be involved
in the toxicological pathways investigated. One major contribution
arising from the use of homozygous and heterozygous yeast dele-
tion collections was the so-called “chemical genomic portrait of
yeast”(Hillenmeyer et al., 2008). The authors carried out over 1100

3http://genome.crg.es/GOToolBox/
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FIGURE 2 | Construction and screening of yeast collections.

Schematic representation of methodologies and cell libraries available for
chemogenomics testing in S. cerevisiae (homozygous or haploid
deletion – gene dosage 0%, heterozygous deletion – gene dosage 50%,
and overexpression – gene dosage > 100%; see Section “Functional
Toxicogenomics using Yeast Gene Deletion Collections”; Auerbach et al.,
2005; Hoon et al., 2008b; Wuster and Madan Babu, 2008; North and
Vulpe, 2010; Smith et al., 2010). The fitness of strains upon chemical
treatment is usually assessed in non-competitive arrays or in competitive

bar-coded pools. In the first case, the toxicant can be added to a well plate
and each mutant occupies a separate well; the effects are observed
directly by comparison with wild-type strain fitness. In the second case,
the screen is executed in a pooled format where uniquely tagged
(“bar-coded”) strains are grown together in the presence of a toxicant.
Fitness is assessed by determining the abundance of the different mutant
strains using microarrays coupled with a PCR strategy that amplifies the
molecular bar-codes associated with each mutant. Strain depletion in the
toxicant-treated pool indicates chemical hypersensitivity.

assays in the presence of chemical or environmental stress condi-
tions, ranging from approved therapeutic drugs to compounds
with uncertain activity. Functional enrichment analysis led to the
identification of several biological functions that were required
for growth in at least 20% of the assays performed, in particular
endosome transport, vacuolar degradation, and transcription, a
coordinated system that is conserved from yeast to humans (Hil-
lenmeyer et al., 2008). The remarkable amount of data generated
can be applied, for example, to predict toxicological modes of
action for the compounds tested and other structurally related, or
to predict the effects of synergies between some of these stresses.
Other important contributions using yeast deletion collections
will be described throughout this review.

INTEGRATION OF GENOME-WIDE DATA TO IDENTIFY MECHANISMS OF
TOXICITY
To achieve a more complete understanding of the mechanisms
of action and toxicological response, it is necessary to intersect
and integrate the genome-wide data coming from the different
approaches (Figure 1). Interestingly, several studies have now
shown that the previous belief that genes that are up-regulated
under a given stress are also required for growth under those condi-
tions is often false (Giaever et al., 2002; Mettetal et al., 2008; Batova
et al., 2010; Landstetter et al., 2010; dos Santos and Sá-Correia,
2011). Although this seems to suggest that deletion collections
provide a better assessment of genes required for the response
to a toxicant treatment, an integrated approach can lead to other
important insights, for example the identification of key regulators
of stress response. In yeast, the identification of the transcription
factors predicted to underlie the transcriptomic response to stress

is facilitated by freely accessible databases and computational tools
such as YEASTRACT, a database focused on the delineation of
yeast transcription regulatory networks, at a genomic scale (Teix-
eira et al., 2006b; Abdulrehman et al., 2011). Comprising more
than 48,000 documented regulatory associations between yeast
transcription factors and target genes (Abdulrehman et al., 2011),
YEASTRACT offers one of the best platforms for the study and
understanding of genomic regulation in an integrative perspective.
The growing use of mathematical descriptions of the dynamical
behavior of such networks (Teixeira et al., 2010a) is now allow-
ing the prediction of the possible behaviors of biological systems
under the action of pollutants, pesticides, drugs, and other chem-
ical stresses, emphasizing the outstanding position of the yeast
model in the field of toxicogenomics. Moreover, yeast toxicoge-
nomics data can be integrated with studies from other sources,
such as toxicological results obtained in the toxicant’s target organ-
ism when appropriate, to obtain a view of a compound’s toxicity
at the systems level. This raises the potential of yeast toxicoge-
nomics very high but poses additional challenges to the tasks of
data integration and usage.

YEAST TOXICOGENOMICS APPLIED TO ENVIRONMENTAL
POLLUTANTS AND XENOBIOTIC COMPOUNDS WIDELY USED
IN AGRICULTURE
GENOME-WIDE RESPONSES TO ENVIRONMENTAL POLLUTANTS
The toxicological outcome of sudden or chronic exposure to
environmental pollutants (e.g., metal ions or organic solvents,
including benzene, or phenol derived compounds), is scarcely
understood at the molecular and cellular levels. However the
genome-wide yeast response to toxic concentrations of metal ions,
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Table 1 | Selected publications in yeast toxicogenomics studies using deletion mutant collections.

Assay Result Reference

Quinine Identification of 279 mutants that display hypersensitivity and 62 mutants that

display resistance to quinine

dos Santos and Sá-Correia

(2011)

Identification of 43 quinine-sensitive strains and tryptophan uptake as a target of

quinine toxicity

Khozoie et al. (2009)

214 psychoactive drugs Identification of off-target effects Ericson et al. (2008)

78 compounds with therapeutic

activity

Identification of lanosterol synthase as a target of the antianginal drug

molsidomine, and identification of rRNA processing exosome was identified as a

potential target of the growth inhibitor 5-fluorouracil

Lum et al. (2004)

Imatinib mesylate Identification of V-ATPase activity and vacuolar function as potential new imatinib

targets

dos Santos and Sá-Correia

(2009)

Antifungal agents Identification of 20 strains displaying increased caspofungin sensitivity Markovich et al. (2004)

12 bioactive compounds Identification of multidrug sensitivity in yeast mutants lacking a functional

V-ATPase

Parsons et al. (2004)

DNA-damaging anticancer agents Identification of 231 mutants that display hypersensitivity and five mutants that

display resistance to bleomycin

Aouida et al. (2004)

Role of V-ATPase and cytosolic acidification in sensitivity to DNA-damaging

agents such as cisplatin

Liao et al. (2007)

Identification of 117 and 73 genes whose deletion results in increased or

decreased resistance to tirapazamine

Hellauer et al. (2005)

Identification of gene ERK5 as susceptible to cisplatin, methyl methane sulfonate

and 5-fluorouracil, confirmed in human studies

Sletta et al. (2011)

Antimicrobials No deletion strains are sensitive to amoxicillin, penicillin G, rifampin, or

vancomycin. Two strains are sensitive to tetracycline sensitive and four to

oxytetracycline

Blackburn and Avery (2003)

Dermaseptin induces programmed cell death Morton et al. (2007)

10 small therapeutic molecules Identification of a chemical core structure shared among three compounds that

inhibit the ERG24 deletion strain

Giaever et al. (2004)

Nitrogen-containing

bisphosphonates

Identification of tubulin cofactor B as a new target and DBF4 as a key player in

cytotoxicity

Bivi et al. (2009)

Introduction of human Huntingtin or

α-synuclein fragments

Identification of 52 strains sensitive to mutant Huntingtin, 86 that are sensitive to

α-synuclein, and one mutant sensitive to both

Willingham et al. (2003)

Library of 188 novel synthetic

chemical compounds

Identification of potential targets and structure–activity relationships Hoon et al. (2008a)

Endoplasmic reticulum stress Identification of MAPK signaling pathways Chen et al. (2005)

Fitness profiling under non-optimal

growth conditions

Identification of genes required for growth in the presence of high salt or sorbitol

or [60] galactose, or at pH8, or in minimal medium, or following nystatin treatment

Giaever et al. (2002)

High glucose Identification of 44 susceptible strains Teixeira et al. (2010b)

Ethanol Identification of 250 determinants of resistance to ethanol and of gene FPS1 Teixeira et al. (2009a)

Weak acids Identification of 650 determinants of resistance to acetic acid Mira et al. (2010b)

Identification of vacuolar function and of the RIM101 pathway in propionic acid

resistance

Mira et al. (2009)

Oxidative stress Identification of 394 strains sensitive to hydrogen peroxide and/or menadione Tucker and Fields (2004)

Identification of 456 mutants sensitive to at least one of five different types of

oxidant

Thorpe et al. (2004)

Multiple environmental stresses

and small molecules (1154 assays)

“A chemical genomic portrait of yeast: uncovering a phenotype for all genes” Hillenmeyer et al. (2008)

Benzene Confirmation by RNAi in human cells Zhang et al. (2010)

Metals Identification of determinants of resistance to cadmium, nickel, mercury, zinc,

cobalt, and iron

Ruotolo et al. (2008)

Identification of a regulatory crosstalk of iron and zinc regulons Landstetter et al. (2010)

Identification of mRNA mistranslation as a primary cause of cellular chromium

toxicity

Holland et al. (2007)

(Continued)
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Table 1 | Continued

Assay Result Reference

Fungicides Identification of 286 determinants of resistance to mancozeb Dias et al. (2010)

Identification of intracellular superoxide production and oxidative stress as a

mode of action of CTBT

Batova et al. (2010)

Killer toxin HM1 Identification of eight resistant strains including high-osmolarity glycerol

pathways HOG1 and FPS1

Miyamoto et al. (2011)

Toxicants inducing Parkinson’s

disease

Identification of the multivesicular body pathway as an element of toxicity

induced by MPP and paraquat

Doostzadeh et al. (2007)

such as nickel, cadmium, copper, chromium, arsenic, cobalt, man-
ganese, and zinc has been studied by exploring chemogenomics
and transcriptomics approaches. These studies led to the identifi-
cation of several functional groups that are important in the yeast
response to all or to part of the metal ions tested, mostly involved in
sulfur amino acid and iron metabolism, oxidative stress response,
vacuolar function, protein modification, transport and degrada-
tion, enzyme inactivation, cation and transition metal transport,
mRNA decay, and DNA metabolism (Momose and Iwahashi, 2001;
Jin et al., 2008; Ruotolo et al., 2008; Serero et al., 2008; Yasokawa
et al., 2008; Takumi et al., 2010; Bleackley et al., 2011). The tox-
icological outcome of the exposure to agrochemicals, including
herbicides and agricultural fungicides, is difficult to predict, since
many times it takes years to develop. Genome-wide analyses in
yeast have been successfully used to identify the genes responsi-
ble for response and resistance to stresses induced by pesticides of
agricultural interest (Cabrito et al., 2009, 2011). These pesticides
include the herbicide sulfometuron methyl (Jia et al., 2000), the
dithiocarbamate fungicides mancozeb (Santos et al., 2009; Dias
et al., 2010), thiuram, zineb and maneb (Kitagawa et al., 2003),
the benzimidazole fungicide benomyl (Lucau-Danila et al., 2005),
the pesticide lindane (Parveen et al., 2003), the herbicide 2,4-D
(Teixeira et al., 2005, 2006a, 2007), and the herbicides paraquat
and cyperquat (1-methyl-4-phenylpyridinium – MPP+; Doost-
zadeh et al., 2007). Toxicogenomics approaches have been applied
to define and predict new toxicological outcomes of exposure to
pesticides, including the agricultural fungicide mancozeb (Santos
et al., 2009; Dias et al., 2010) and the herbicide 2,4-D (Teixeira
et al., 2005, 2006a). A review of the main results of these two case
studies follows.

TOXICOGENOMIC STUDIES FOCUSED ON THE AGRICULTURAL
FUNGICIDE MANCOZEB
Mancozeb, a mixture of manganese- and zinc-ethylene-bis-
dithiocarbamate (Mn:Zn, 9:1), is an agricultural fungicide with
a broad spectrum of action and multiple cell targets, widely
used against phytopathogenic fungi in several crops and vine-
yards (Maroni et al., 2000; Ballantyne, 2004). This compound
displays low acute toxicity, however, in recent years, mounting
evidence suggests that chronic exposure to this fungicide increases
the probability of developing Parkinson’s disease and certain forms
of cancer (Belpoggi et al., 2002; Zhou et al., 2004; Calviello et al.,
2006).

The early global response to mancozeb and the genome-wide
resistance mechanisms established by S. cerevisiae were analyzed

by expression proteomics (Santos et al., 2009) and chemogenomics
(Dias et al., 2010; see Figure 3 for a schematic representation of
the main findings obtained in these studies with mancozeb). Inter-
estingly, 70% of the proteins differently expressed in cells exposed
to mancozeb (Santos et al., 2009) and 53% of the determinants
of yeast resistance to the fungicide (Dias et al., 2010) have human
orthologs. This is the case for proteins involved in V-ATPase func-
tion (Vma4 and Vma13), protein synthesis, folding (e.g., Kar2),
protein degradation/proteasome sub-units (e.g., Pre3, Pre7, Pre8,
Pre9, Nas2, Sem1, and Ubp6), and in the oxidative stress and anti-
oxidant response (e.g., Tsa1, Tsa2, Glr1, Gsh1, Gsh2, Sod1, Sod2,
and Yap1). Interestingly, V-ATPases are overexpressed in several
metastatic cancers (Sennoune et al., 2004) and the overexpression
of proteasome sub-units leads to increased survival rate of human
cell lines following oxidative stress, due to a higher proteasome
degradation of oxidized modified protein (Chondrogianni et al.,
2005). Other human orthologs related with the oxidative stress
response (PRDX2, PRDX3, GSR, GCLC, GSS, SOD1, and SOD2),
have been involved in the onset and progression of neurodegen-
erative diseases, namely Parkinson’s disease, by protecting the cell,
acting as anti-oxidant agents and neuroprotectors (Chang et al.,
2004; Ihara et al., 2005; Cumming et al., 2007). Besides, PAK1,
MAP2K1, and LCP1, three other genes described as being involved
in tumor development and invasiveness (Wang et al., 2006a,b),
are orthologs of yeast determinants of mancozeb resistance CLA4,
PBS2, and SAC6 (Dias et al., 2010).

Using the YEASTRACT database, more than 90% of the genes
that encode proteins up-regulated under mancozeb imposed stress
were found to be known targets of Yap1 (Santos et al., 2009), the
major oxidative stress regulator in yeast. Yap1 was also found,
based on a chemogenomics study (Dias et al., 2010), to be a deter-
minant of yeast resistance to the fungicide, and also to control the
regulatory network underlying the up-regulation of the multidrug
transporter encoding gene FLR1 (Teixeira et al., 2010a; Monteiro
et al., 2011). Remarkably, the human orthologs of Yap1, Jun, and
Jdp2, are activated during acute and chronic phases of several
neurodegenerative diseases (Shaulian and Karin, 2002), establish-
ing a possible link between the predicted response to mancozeb
toxicity and neurodegenerative disease progression through the
Yap1/Jun/Jdp2 regulators. Although mancozeb was reported to
induce reactive oxygen species (ROS) production as a consequence
of mitochondrial dysfunction in mesencephalic cells (Domico
et al., 2007), Dias et al. (2010) registered no increase in ROS pro-
duction in yeast in response to the fungicide, probably due to the
fact that in glucose fermenting yeast the level of mitochondrial
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FIGURE 3 | Proposed model for the action of mancozeb in S.

cerevisiae cells. This model results from the integration of yeast
chemogenomics (Dias et al., 2010) and proteomics (Santos et al.,
2009) approaches. The complex mancozeb-induced expression
changes and mancozeb determinants of yeast resistance, were found

to be related to oxidative stress, V-ATPase function, protein
translation initiation and protein folding, disassembling of protein
aggregates and degradation of damaged proteins, lipid and ergosterol
biosynthesis, mitochondrial function, cell wall remodeling, and
multidrug resistance transporters.

respiration is reduced. In the absence of mitochondrial electron
leakage, which masks other aspects of mancozeb toxicity, a direct
role of mancozeb in protein damage, as a thiol-reactive compound,
was thus identified in the yeast model, with a possible parallel in
human cells (Dias et al., 2010).

TOXICOGENOMIC STUDIES FOCUSED ON THE HERBICIDE 2,4-D
The herbicide 2,4-D is the most commonly used member of the
auxin-like herbicide family. Although being considered relatively
safe, exposure to 2,4-D has been linked to the development of non-
Hodgkin lymphoma and sarcoma (Ibrahim et al., 1991). Further-
more, several cases of 2,4-D resistant weeds have been described4,
raising the need to increase herbicidal application rates, with the
risk of reaching environmental toxic levels.

S. cerevisiae genome-wide approaches, including transcrip-
tomics (Teixeira et al., 2006a) and expression proteomics (Teixeira
et al., 2005), were used to gain insights into the mechanisms
of response and resistance to 2,4-D. The results obtained in
yeast have been used to guide studies on the molecular mecha-
nisms underlying 2,4-D toxicity and response in plants and other
higher eukaryotes. Interestingly, the quantification of the relative
toxicity of 2,4-D compared to other herbicides measuring elec-
trophysiological parameters and vitality of an animal nervous
system (the frog’s sciatic nerve) was comparable to the results
obtained when yeast growth inhibition due the same herbicides

4www.weedscience.org

was tested (Papaefthimiou et al., 2004). The early transcriptional
response of yeast to 2,4-D includes the up-regulation of sev-
eral genes involved in oxidative stress and anti-oxidant response
(Teixeira et al., 2006a), which correlates with the increase in
hydroxyl radicals and lipid peroxidation levels registered as a con-
sequence of acute 2,4-D stress in yeast (Teixeira et al., 2004).
Significantly, 2,4-D was found to induce fatty acid β-oxidation
and also electron leakage from the mitochondrial respiration
and catalase activity in rat cells (Bradberry et al., 2000, 2004).
Given the fact that oxidative stress is associated with neurologi-
cal diseases, aging, and cancer, these results can give clues on the
effect of massive or repeated human exposure to the herbicide.
In parallel to the implications of these studies in environmen-
tal health, results of herbicide resistance obtained in the yeast
model have also proven useful to study herbicide toxicity mech-
anisms in plants, with expected impact in agriculture and plant
biotechnology (Cabrito et al., 2009; Cabrito et al., unpublished
results).

In acidified growth medium, yeast cells challenged with the
herbicide 2,4-D suffer a strong reduction in their cytosolic and
vacuolar pH (Fernandes et al., 2003; Simões et al., 2003), which is
counteracted by the activation of the plasma and vacuolar mem-
brane H+-ATPases (Fernandes et al., 2003; Teixeira et al., 2005). In
fact, auxins, similar to 2,4-D, were also shown to induce the activ-
ity of the model plant Arabidopsis plasma membrane H+-ATPase,
contributing to maintain the intracellular pH in plant roots (Shen
et al., 2006).
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Both the microarray and the proteomic analyses carried out
indicated the up-regulation of a large number of genes involved
in carbon and nutrient source metabolism and amino acid home-
ostasis in response to 2,4-D (Teixeira et al., 2005, 2006a), which
can be a response to the damaging effects of the herbicide on
the plasma membrane lipid and sterol organization and perme-
ability, with consequences in terms of nutrient uptake. Teixeira
et al. (2007) suggested that the auxin-like herbicide 2,4-D exerts
a repressing effect over the TOR (target of rapamycin) pathway,
recognized as a central controller of cell growth in all eukary-
otes, which control the balance between protein synthesis and
degradation in response to nutrient availability and quality (Cre-
spo and Hall, 2002). Interestingly, in plants, namely Arabidopsis
thaliana, the existence of a functional TOR kinase pathway has
been reported and linked to cell proliferation and growth regula-
tion, auxin being suggested as a possible signaling molecule in the
pathway (Berkowitz et al., 2008).

Additionally, several other mechanisms of yeast resistance to
the herbicide are similar to processes described in plants, namely
those involved in cytosolic detoxification (Smart and Fleming,
1996; Teixeira and Sá-Correia, 2002; Ito and Gray, 2006; Teixeira
et al., 2006a; Cabrito et al., 2009). Exposure to the herbicide leads
to the up-regulation of several genes encoding MDR transporters
in yeast (Teixeira et al., 2006a). The MDR transporters Tpo1, Pdr5,
and Pdr18 were confirmed as determinants of yeast resistance to
2,4-D (Teixeira et al., 2004; Cabrito et al., 2011). 2,4-D induces
the expression of PDR5 orthologs, SpTUR2, in the aquaphyte
Spirodela polyrrhiza, and AtPDR9, in the model plant A. thaliana,
the latter catalyzing 2,4-D extrusion from root cells (Smart and
Fleming, 1996; Ito and Gray, 2006). Recently, Tpo1 homologs
encoding putative plasma membrane MFS transporters from A.
thaliana were analyzed by Cabrito et al. (2009) for a possible role
in 2,4-D resistance. At5g13750/ZIFL1 transcript levels were found
to increase in 2,4-D stressed plants. The functional heterologous
expression of AtZIFL1 in yeast was found to confer increased resis-
tance to the herbicide in wild-type and Δtpo1 cells, through the
reduction of the intracellular concentration of 2,4-D counter-ion
(Cabrito et al., 2009). Interestingly, Zifl1 was the first eukaryotic
transporter of the MFS identified as a multidrug resistance deter-
minant, opening an entirely new field of research with promising
repercussions in medicine, biotechnology, and agriculture.

These case studies highlight the similarities of toxicological
effects of these pesticides from yeast to higher eukaryotes, such
as humans and plants. Hence, the use of the yeast model sys-
tem is expected to continue to contribute to the understanding of
the molecular mechanisms underlying pesticide toxicity in more
complex and less easily accessible eukaryotes.

YEAST TOXICOGENOMICS IN BIOMEDICAL AND MEDICINAL
RESEARCH
YEAST IN DRUG DEVELOPMENT AND PHARMACOLOGICAL RESEARCH
The use of yeast as a eukaryotic model is particularly important
in the field of medicinal research and drug discovery (Simon and
Bedalov, 2004; Mager and Winderickx, 2005; Menacho-Marquez
and Murguia, 2007; Hoon et al., 2008b). Approximately 17% of
all yeast genes are members of orthologous gene families associ-
ated with human disease, and for the majority of these genes their

mammalian homolog is functional in yeast and complements the
yeast deletion mutant (Foury, 1997; Heinicke et al., 2007). Mod-
ern medicine faces the challenge of developing safer and more
effective therapies to treat human diseases; toxicogenomics repre-
sents a new paradigm in drug development and risk assessment,
particularly in mechanistic and predictive toxicology as well as in
biomarker discovery (Guerreiro et al., 2003; Gomase and Tagore,
2008). To better evaluate drug-associated adverse effects, the drug’s
specific mode of action needs to be elucidated first. However, the
successful identification of drug targets and mechanisms of action
requires a prior understanding of the high-level functional interac-
tion between the key components of cells and systems (Guerreiro
et al., 2003; North and Vulpe, 2010).

The primary advantage of yeast in drug discovery is the contri-
bution to identify the mechanisms of action of compounds when
they are unknown. Moreover, yeast is currently the only system
where it is possible to assess all targets in the cell simultaneously
and in vivo (Smith et al., 2010). These strategies are important
not only to identify new drugs for further development, but also
to find new uses for already approved drugs. The contribution of
yeast toxicogenomics to this field takes on a pharmacogenomics
perspective. This emerging post-genomic discipline is character-
ized by having a genome-wide perspective on the action of drugs,
making use of global approaches to identify candidate drug targets
and off-target effects (Swen et al., 2007; Wang and Weinshilboum,
2008; Ruderfer et al., 2009). Off-target effects are more difficult
to detect and are often the cause of deleterious side effects. Such
effects can arise, for example, when the direct binding interaction
between one protein and a target results in an interaction with
a second protein (Parsons et al., 2006; Ericson et al., 2008; West
et al., 2010). In recent years, yeast fitness screens and other Omics
approaches have been employed to search for new targets and
elucidate the mode of action of different compounds, including
anticancer drugs, antimalarials, antimicrobials, and other bioac-
tive compounds (see Table 1). Yeast methodologies have also been
used to study human disease genes and model human disorders
(Steinmetz et al., 2002; Outeiro and Lindquist, 2003; Willingham
et al., 2003; Gammie et al., 2007; Yuen et al., 2007), screen for new
drugs to treat cancer, obesity, prion disease, etc. (Hammonds et al.,
1998; Bach et al., 2003; Tribouillard et al., 2006; Marjanovic et al.,
2010), and predict drug responses in relation to indicators such
as genotype and expression levels (Perlstein et al., 2007; Ruderfer
et al., 2009; Chen et al., 2010).

In an illustrative example, Ericson et al. (2008) identified 81
psychoactive drugs that affected yeast fitness at the level of evo-
lutionarily conserved cellular processes such as secretion, pro-
tein folding, RNA processing, and chromatin structure. These
processes might constitute secondary drug targets and point to
additional, previously uncharacterized mechanisms of action for
these drugs in humans. Information of this nature can be used
to guide the rational design of new compound derivatives with
fewer side effects and for tailoring drug treatment to individ-
ual patient genotypes, in a personalized medicine perspective. In
another interesting study, yeast was applied to identify secondary
targets of nitrogen-containing bisphosphonates, drugs commonly
used to treat bone-related disorders including cancer (Bivi et al.,
2009). The only known target of these compounds was farnesyl
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pyrophosphate synthase, but the authors showed that the action
of this drug in yeast involves additional mechanisms, predomi-
nantly at the level of DNA damage, and cytoskeleton dynamics.
The dataset obtained from the yeast screen was validated in a
mammalian system, and confirmed the involvement of new bio-
logical processes and specific genes that represent potential new
targets for compounds with antitumor activity (Bivi et al., 2009).
Genome-wide expression patterns were applied for target vali-
dation and identification of secondary drug targets of FK506,
an immunosuppressant drug known to inhibit the protein phos-
phatase calcineurin (Marton et al., 1998). The authors identified a
transcriptional signature of FK506 and found that it closely resem-
bled that of the calcineurin null mutant. However, an increase
of the drug dosage resulted in a different expression profile,
suggesting that targets other than calcineurin mediated FK506
effects. Using a similar approach, Hughes et al. (2000) compared
the transcriptomes of 13 compounds with those of 286 deletion
mutants representing a variety of functional classes, identifying
novel targets and off-targets for several drugs.

Yeast deletion mutants have also been used to identify targets
for 78 compounds with diverse chemical structures and thera-
peutic relevance (Lum et al., 2004), resulting in identification
of a lanosterol synthase in the sterol biosynthetic pathway as a
target of the antianginal drug molsidomine, while the rRNA pro-
cessing exosome was singled-out as a potential target of the cell
growth inhibitor 5-fluorouracil. A similar study screened 10 dif-
ferent compounds (including anticancer and antifungal agents)
against a deletion collection in 80 competitive pool assays (Giaever
et al., 2004) and identified a chemical core structure that is shared
by three compounds that inhibit the ERG24 deletion strain, sug-
gesting that cells respond similarly to compounds of related struc-
ture. Several compounds with in vivo activity against yeast and
mammalian prions were identified in a yeast-based screen (Tri-
bouillard et al., 2006), establishing this method as an economic
and efficient high-throughput approach to identify novel prion
inhibitors or to carry out comprehensive structure-activity stud-
ies for already isolated anti-mammalian prion drugs. The results
also seem to highlight the extensive conservation of biochemical
pathways controlling prion formation and/or maintenance from
yeast to human.

GENOME-WIDE RESPONSES AND DETERMINANTS OF RESISTANCE TO
ANTIMALARIAL DRUGS
A comprehensive example of yeast toxicogenomics is its appli-
cation to the study of the antimalarial quinine. It was the first
effective treatment against malaria and is still the drug of choice
for chloroquine-resistant or severe malaria (WHO, 2006; Alkadi,
2007), but the molecular mechanism of action and toxicity of
quinine in the Plasmodium parasite are still a topic of debate
(Fitch, 2004). In a clear demonstration of the merging of toxicoge-
nomics with pharmacogenomics, Khozoie et al. (2009) screened
a yeast deletion collection to address the mode of action of
quinine and its adverse side effects. The authors observed an
enrichment of genes involved in tryptophan biosynthesis, and
additional assays seemed to demonstrate that quinine causes tryp-
tophan starvation and that dietary tryptophan supplements could
help to avert the toxic effects of quinine (Khozoie et al., 2009).

Another chemogenomics-based analysis identified for the first
time several genes encoding ribosome protein sub-units whose
deletion leads to increased quinine resistance (dos Santos and
Sá-Correia, 2011). The particular involvement of phosphate sig-
naling and transport in quinine tolerance was also studied, with
indications that phosphate-starvation responsive genes are acti-
vated in response to quinine. P. falciparum homology searches
identified several relevant functional homologs in the parasite,
suggesting that the quinine targets identified in the yeast model
are good candidates to be transposed and explored in a par-
asitic context (Figure 4A). The transcriptomic analysis of the
yeast early response to quinine unveiled glucose de-repression
reprogramming (Figure 4A; dos Santos et al., 2009). Moreover,
quinine was shown to inhibit the uptake of glucose into yeast
cells following a competitive inhibition kinetic model. These find-
ings have an important parallel in the malaria parasite, where
glucose uptake is vital and mediated by PfHT1, a single-copy trans-
porter homologous to yeast’s hexose HXT transporters (Woodrow
et al., 1999; Saliba et al., 2004). The mechanism by which qui-
nine enters and accumulates in the parasitic cell is not clear, but
it is believed that a carrier-mediated import system is involved
(Sanchez et al., 2008). The yeast results suggested PfHT1 as
a quinine target, possibly involved in quinine uptake into the
cell and depriving the parasite of glucose (dos Santos et al.,
2009).

Yeast has also been used as model for mechanistic studies with
other antimalarial drugs, namely mefloquine (Delling et al., 1998),
chloroquine (Emerson et al., 2002), artemisinins (Li et al., 2005;
Alenquer et al., 2006), and quinidine (Delling et al., 1998; Nunes
et al., 2001; Felder et al., 2002; Tenreiro et al., 2002; Vargas et al.,
2004).

GENOME-WIDE RESPONSES AND DETERMINANTS OF RESISTANCE TO
ANTICANCER DRUGS
Anticancer drugs have been the subject of several yeast phar-
macogenomics studies. For example, at least three genome-wide
screens for cisplatin susceptibility have been performed using
yeast deletion collections (Wu et al., 2004; Huang et al., 2005;
Liao et al., 2007). The vacuolar H+-ATPase (V-ATPase) and its
action in cytoplasmic pH maintenance was shown to have an
important role in sensitivity to this drug (Liao et al., 2007), an
important result given how cisplatin cytotoxicity is potentiated
by synergistic treatment with a V-ATPase inhibitor in human cell
lines (Murakami et al., 2001). In a demonstration of how results
obtained in the yeast model can be extended to human cells,
Schenk et al. (2001, 2002) identified SKY1 as a cisplatin sensitiv-
ity gene whose disruption conferred cisplatin resistance in yeast;
later work in human ovarian carcinoma cell lines showed that
inactivation of its human homolog, SRPK1, induces cisplatin resis-
tance as well. The paradigmatic anticancer drug imatinib mesylate
(Glivec, Novartis) was also studied in yeast. Imatinib is a selec-
tive tyrosine kinase inhibitor used in chronic myeloid leukemia
with outstanding results, but drug resistance is an arising prob-
lem (Quintás-Cardama et al., 2009; Volpe et al., 2009). Fifty-one
genes emerged as determinants of resistance to imatinib from the
screening of a yeast deletion mutant collection, including 83%
human homologs (dos Santos and Sá-Correia, 2009). Imatinib
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was also shown to act as a potent inhibitor of the highly conserved
yeast V-ATPase, both in vivo and in vitro (dos Santos and Sá-
Correia, 2009; dos Santos and Sá-Correia, unpublished results),
suggesting that vacuolar function is a novel imatinib target. In
fact, V-ATPase activity has been shown to be necessary to limit
the deleterious effects of several drugs in yeast, namely the geno-
toxic tirapazamine and cisplatin, weak acids, mancozeb, toxins,
and others (Parsons et al., 2004; Hellauer et al., 2005; Liao et al.,
2007; Mira et al., 2009; Dias et al., 2010). However, in none of
these studies vacuolar acidification was affected directly, which
is in striking contrast with imatinib, where a clear loss of vac-
uolar acidification in cells treated with this drug was reported
(dos Santos and Sá-Correia, 2009). Quantitative- and phospho-
proteomic analyses identified 18 proteins altered at the content
level or displaying imatinib-repressed phosphorylation (dos San-
tos and Sá-Correia, unpublished results). All these proteins have
human homologs and are mainly involved in glycolytic pathways,
translation, and protein folding. A role for HSP70 proteins in the
response to imatinib in yeast, as well as decreased glycolysis as a
metabolic marker of imatinib action were suggested, consistent
with findings from studies in human cell lines (Nowicki et al.,
2003; Ferrari et al., 2007; Pocaly et al., 2008; Kominsky et al.,
2009). The previously proposed effect of imatinib as an inhibitor
of V-ATPase function was supported by the identification of an
under-expressed subunit of this complex in imatinib-stressed yeast
cells (Figure 4B).

YEAST TOXICOGENOMICS TOOLS APPLIED TO OVERCOME
FERMENTATION-RELATED STRESSES RELEVANT IN
INDUSTRIAL BIOTECHNOLOGY
S. cerevisiae has been used for millennia in fermentation processes
behind wine, beer, and spirits production. Its remarkable capabil-
ity of carrying out alcoholic fermentation very efficiently, leading
to the production of very high ethanol titers, has also launched S.
cerevisiae as a preferable host for the production of bio-ethanol,
as a renewable biofuel. Furthermore, genetic engineering and
synthetic biology methods have allowed the development of S.
cerevisiae strains to be used as cell factories for the production of a
number of interesting biomolecules, of biotechnological and phar-
maceutical interest. In all these industrial processes, yeast cells have
to cope with stressful environmental conditions, including chemi-
cal stress coming from the raw material composition, and from the
accumulation of ethanol, weak acids, and other toxic byproducts
of the yeast metabolism (Teixeira et al., 2011).

Toxicogenomics tools have been used with success to character-
ize the toxicological outcome of yeast exposure to fermentation-
related chemical stress inducers. Such an approach has the poten-
tial to elucidate the mechanisms of yeast tolerance to fermentation
stressors, thus providing clues on how to improve process con-
ditions and to engineer yeast strains to increase fermentation
yield. A particularly good example of the use of such an approach
can be found in the efforts to improve bio-ethanol production
process whose efficiency is compromised by several stress factors
throughout fermentation. First generation bio-ethanol produc-
tion relies on the use of very high gravity (VHG) media, highly
enriched in fermentable carbon sources, which induce osmotic
stress in the beginning of the fermentation process. In recent

years, the interest in the production of bio-ethanol from agri-
cultural lignocellulosic residues, the so-called second-generation
bio-ethanol, has gained strength. These residues appear to be
preferable for a sustainable large-scale production of bio-ethanol
since they are largely available and do not compete with food
resources (van Maris et al., 2006). However, in lignocellulosic
hydrolysate fermentations, the first phase of the process is hin-
dered by the presence of toxic concentrations of inhibitory side-
products of the raw material hydrolysis process, including acetic
acid, furfural, and vanillin. During the later stages of alcoholic fer-
mentation for first or second-generation bio-ethanol production,
the accumulation of toxic concentrations of ethanol and weak
organic acids are responsible for lower fermentation productivity
and, eventually, for fermentation arrest, limiting the final ethanol
concentration achieved. Having this in mind, transcriptomics,
expression proteomics, and metabolomics approaches have been
used to study the expression and metabolic profile of yeast cells
exposed to sudden stress induced by ethanol (Alexandre et al.,
2001; Hirasawa et al., 2007; Stanley et al., 2010), weak acids
(Mira et al., 2009, 2010a; Hasunuma et al., 2011), high sugar con-
centrations (Erasmus et al., 2003; Pham et al., 2006), but also
throughout industrial or industrial-like fermentation processes
(Devantier et al., 2005; Marks et al., 2008; Ding et al., 2009; Li
et al., 2010). Using such toxicogenomics tools, the involvement
of three signaling pathways mediated by the transcription fac-
tors War1 (Schüller et al., 2004), Haa1 (Mira et al., 2010a), and
Rim101 (Mira et al., 2009) in the yeast response to weak acids
was recently characterized. Weak acid toxicity mechanisms are
additionally interesting in this context, given that they are widely
used as food-preservatives against spoilage yeasts and molds and
because S. cerevisiae is arising as an interesting alternative host
for the industrial production of carboxylic acids, being more
tolerant to their toxicity than currently used bacterial systems
(Abbott et al., 2009). In this context, the use of transcriptomic
and chemogenomic (Mollapour et al., 2004; Schüller et al., 2004)
screenings focused on the food preservative sorbate has further
highlighted the importance of vacuolar acidification and redox
homeostasis for weak acid stress resistance. Clues on the mech-
anisms of weak acid toxicity have also come from metabolomics
approaches (Hasunuma et al., 2011; Lourenço et al., 2011). For
example, in a S. cerevisiae strain, modified through metabolic
engineering tools to be able to ferment xylose, metabolomics
data revealed that metabolites involved in the pentose phosphate
pathway (PPP) were significantly accumulated by the addition of
acetate during xylose fermentation, suggesting that acetic acid
slows down the flux of the pathway (Hasunuma et al., 2011).
Based on this result, a gene encoding a PPP-related enzyme was
overexpressed in the xylose-fermenting yeast, conferring increased
ethanol productivity in the presence of acetic acid (Hasunuma
et al., 2011).

A particularly successful approach, in this context, has proven
to be the use of the yeast deletion mutant collections to identify the
determinants of yeast resistance to all these stresses, individually, or
in combination. This chemogenomics strategy was used to unveil
the global mechanisms and determinants of yeast resistance to
stresses occurring during alcoholic fermentation, in particular to
high ethanol (Fujita et al., 2006; van Voorst et al., 2006; Teixeira
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FIGURE 4 | Proposed model for the action of (A) quinine and (B) imatinib

in S. cerevisiae cells. These models result from the integration of
chemogenomics, transcriptomics and proteomics approaches (dos Santos
and Sá-Correia, 2009; dos Santos et al., 2009; dos Santos and Sá-Correia,
2011; dos Santos and Sá-Correia, unpublished results), suggesting new
targets and modes of action for quinine and imatinib that possess extensive

functional conservation in the organisms of interest, Plasmodium falciparum,
and human cells, respectively. The most important results are the
identification of PfHT1 as a potential target of quinine, as well as the vacuolar
H+-ATPase (V-ATPase) as a target of imatinib (see Genome-wide Responses
and Determinants of Resistance to Antimalarial Drugs and Genome-wide
Responses and Determinants of Resistance to Anticancer Drugs).
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et al., 2009a; Yoshikawa et al., 2009), high glucose (Teixeira et al.,
2010b), and acetic acid (Mira et al., 2010b) concentrations. Based
on these results, the aquaglyceroporin Fps1 was proposed as a
major determinant of yeast resistance to ethanol and shown to
play a role in reducing intracellular ethanol accumulation. The
manipulation of FPS1 expression levels was found to result in
an increase of the final concentration of ethanol produced under
conditions close to high gravity industrial fermentation (Teix-
eira et al., 2009a). The chemogenomics analysis of acetic acid
stress resistance has further highlighted, among other things, the
importance the potassium concentration in this process, suggest-
ing that the control of potassium levels in the fermentation broth
may be crucial to increase fermentation performance (Mira et al.,
2010b).

Since it is the combination of all fermentation stresses, and
not their individual effect, that affects yeast fermentative capac-
ity, a recent study (Pereira et al., 2011) focused on the integration
of several chemogenomics studies to identify the few genes that
are able to increase yeast tolerance to: (1) ethanol (Fujita et al.,
2006; van Voorst et al., 2006; Teixeira et al., 2009a; Yoshikawa
et al., 2009), acetate (Mira et al., 2010b), and high glucose (Teixeira
et al., 2010b) concentrations, (2) ethanol (Fujita et al., 2006; van
Voorst et al., 2006; Teixeira et al., 2009a; Yoshikawa et al., 2009),
acetate (Mira et al., 2010b), and vanillin (Endo et al., 2008), and (3)
ethanol (Fujita et al., 2006; van Voorst et al., 2006; Teixeira et al.,
2009a; Yoshikawa et al., 2009), acetate (Mira et al., 2010b), and
furfural (Gorsich et al., 2006). The effect of the deletion of these
genes in VHG or biomass fermentation performance, respectively,
was evaluated. The identified genes, including BUD31, HPR1,
PHO85, VRP1, and YGL024w, found to contribute to improved
performances in VHG, and ERG2, PRS3, RAV1, RPB4, and VMA8,
required for improved performance in wheat straw hydrolysate fer-
mentations, stand as preferential targets for genetic engineering
in order to generate more robust industrial yeast strains, bet-
ter suited for industrial bio-ethanol production (Pereira et al.,
2011).

CONCLUDING REMARKS
Functional genomics approaches applied to the simple single cell
model S. cerevisiae have deeply modified the understanding of
drug/chemical stress resistance and response mechanisms. The
gathered data reinforces the idea that observations made in yeast
are very likely to have a parallel in more complex eukaryotes, vali-
dating the use of this model organism in the context of toxicoge-
nomics. The extrapolation of these results to higher eukaryotes,
which has been so far carried out with relative success, is obviously
of paramount importance.

This article emphasizes how yeast toxicogenomics enables a
rapid and reproducible assessment of the mechanisms of toxicity
of, and resistance to, many chemicals, requiring small amounts of
growth medium and compound under testing, leading to reduced
costs and reduced toxic wastes, effectively contributing to reduce,
refine, and replace (3R) the use of animals in toxicological testing
of pesticides (Gad, 1990). However, and in spite of these numer-
ous advantages, yeast is not without its drawbacks. The simplicity
of yeast is a disadvantage, since unicellularity is not conducive to

study complex phenomena and cannot provide data on organ or
tissue-specific toxicity. Moreover, studies in yeast do not provide
accurate indicators for determination of toxic doses of a com-
pound, since S. cerevisiae is usually much more tolerant to high
doses of toxicants than higher eukaryotic cells. This is likely due
to the barrier presented by the cell wall as well as the expression of
numerous active efflux pumps and detoxification mechanisms that
are highly abundant in yeast cells, who together make it virtually
impossible to know the real concentration that is acting on the tox-
icant targets (Sá-Correia et al., 2009; Smith et al., 2010). Another
important limitation is the possible absence of adequate molecu-
lar targets in yeast, since many cytotoxic compounds act in their
target organisms via physiological mechanisms that do not exist
in yeast (Foury, 1997; Hohmann and Mager, 1997; Parsons et al.,
2003; Mager and Winderickx, 2005). Furthermore, the finding of
homology between yeast and human genes does not necessarily
imply that they are orthologs (Foury, 1997; Heinicke et al., 2007),
demanding experimental verification of which (if any) is the true
homolog of interest.

Nonetheless, the exploitation of high-throughput technologies
and the global molecular analyses of the effects of drugs and
other chemicals using the yeast model are revealing previously
unsuspected on unknown molecular targets or adverse effects. It
has proven a valuable first platform for the screening and pre-
diction of the toxicological outcome of new or still unstudied
drugs/chemicals and for the study of toxicity mechanisms. These
first analyses are very much facilitated by the exploitation of the
yeast model, given that signaling and regulatory pathways are
highly conserved and may uncover the interactions of a chem-
ical with its expected and unexpected gene/protein/metabolite
targets. The use of yeast, together with other model organisms,
and cross-species comparison of important genes/proteins in the
toxicological response will facilitate the understanding of the
response of an organism to toxic insults at a systems level. This
strategy is expected to allow the description of all toxicological
interactions occurring in a living system under chemical stress
and the prediction of action of similar compounds in other
species.

In conclusion, and based on the results reviewed in this paper,
we believe that yeast stands out as an unavoidable and preferen-
tial system for toxicogenomics studies, through a combination of
large-scale experimental approaches and expertise with biological
and computational tools.
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