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Next-generation sequencing (NGS) technologies have made it possible to address popula-
tion genetic questions in almost any system, but high error rates associated with such data
can introduce significant biases into downstream analyses, necessitating careful experi-
mental design and interpretation in studies based on short-read sequencing. Exploration
of population genetic analyses based on NGS has revealed some of the potential biases,
but previous work has emphasized parameters relevant to human population genetics and
further examination of parameters relevant to other systems is necessary, including situa-
tions where sample sizes are small and genetic variation is high. To assess experimental
power to address several principal objectives of population genetic studies under these
conditions, we simulated population samples under selective sweep, population growth,
and population subdivision models and tested the power to accurately infer population
genetic parameters from sequence polymorphism data obtained through simulated 4×,
8×, and 15× read depth sequence data. We found that estimates of population genetic
differentiation and population growth parameters were systematically biased when infer-
ence was based on 4× sequencing, but biases were markedly reduced at even 8× read
depth. We also found that the power to identify footprints of positive selection depends
on an interaction between read depth and the strength of selection, with strong selection
being recovered consistently at all read depths, but weak selection requiring deeper read
depths for reliable detection. Although we have explored only a small subset of the many
possible experimental designs and population genetic models, using only one SNP-calling
approach, our results reveal some general patterns and provide some assessment of what
biases could be expected under similar experimental structures.
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population structure

INTRODUCTION
Principal objectives in population genetics are to identify targets of
natural selection, infer historical shifts in demography, and define
genetic differentiation among groups. Over the past four decades,
the power to address these questions has improved markedly with
the increase in scale and availability of genetic markers. The recent
arrival of next-generation sequencing (NGS) marks another shift
on multiple scales (Pool et al., 2010). The relative low cost and high
throughput nature of NGS technologies has made it possible to
collect full genome sequence data on population samples, provid-
ing the opportunity to address population genetic questions at the
genomic scale, sometimes across multiple populations (e.g., Xia
et al., 2009; Durbin et al., 2010; Magwene et al., 2011). For example,
NGS makes possible unbiased scans of the genome for signatures
of positive selection (Durbin et al., 2010), tests of demography and
population structure that include rare (<5%) variants (Henn et al.,
2010; Gravel et al., 2011), as well as genomic mapping of popula-
tion parameters such as nucleotide diversity or fine-scale linkage
disequilibrium (e.g., Branca et al., 2011; Magwene et al., 2011).

While NGS has expanded the realm of possible experi-
ments, NGS-based population genomic analyses and experimental

designs are not yet standard and free of complications. The main
challenges to population genomic analysis using NGS data stem
from the substantially higher error rates in NGS relative to tra-
ditional Sanger sequencing, which complicates identification of
low-frequency variants in populations (Johnson and Slatkin, 2006,
2008; Hellmann et al., 2008; Lynch, 2008, 2009; Jiang et al., 2009),
uneven sequencing of the homologous chromosomes in a diploid
individual, which may compromise accuracy in detecting het-
erozygotes (Hellmann et al., 2008; Johnson and Slatkin, 2008;
Lynch, 2008, 2009; Jiang et al., 2009), and a higher false-negative
SNP detection rate due to the Poisson read sampling, which can
result in some regions not being sequenced at all (Durbin et al.,
2010). One approach to mitigating these challenges is to sequence
each sampled individual to substantially greater coverage depth
or to obtain larger sample sizes of individuals. However, cur-
rent experimental designs typically consist of either small, deeply
sequenced samples (Xia et al., 2009; Branca et al., 2011; Magwene
et al., 2011) or large samples sequenced to low read depths (Durbin
et al., 2010), reflecting a common, and practical trade-off between
sample size and sequencing depth. In general practice, population
genomic experiments in ecological and other non-model systems
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will likely have to compromise on both sample size and read depth,
possibly resulting in losses in power and biases not incurred with
larger experimental designs.

In addition to modifying experimental design to mitigate chal-
lenges related to NGS data analysis, statistical corrections may also
provide a means for accommodating uncertainty in the data. Most
current methods for conducting population genetic analysis are
based on allele frequencies (reviewed in Nielsen, 2005) or a sum-
mary of allele frequencies (e.g., Gutenkunst et al., 2009; but see Yi
et al., 2010), and, broadly speaking, two statistical approaches have
been proposed to estimate this information from NGS data. The
first approach entails calling genotypes of each individual using
either a Bayesian or Likelihood framework (Hoberman et al., 2009;
Li et al., 2009b; Bansal et al., 2010; DePristo et al., 2011). The other
approach attempts to estimate allele frequencies directly from the
data without first inferring individual genotypes (Lynch, 2009;
Kim et al., 2010, 2011; Martin et al., 2010). In some cases, a poste-
rior probability is generated that provides a quantification of the
uncertainty of each genotype call (e.g., Martin et al., 2010; DePristo
et al., 2011) that could be directly incorporated into population
genetic analyses (e.g., Yi et al., 2010). However, until population
genetic analyses are further adapted to incorporate posterior prob-
abilities, standard population genetic analyses must be applied
directly to genotype calls. The number of applications of such
statistical approaches to empirical data is thus far relatively small
with a bias toward human-based studies (e.g., Hellmann et al.,
2008; Durbin et al., 2010; Yi et al., 2010), but some examples in
non-human systems exist as well (e.g.,Williams et al., 2010; Ahmad
et al., 2011). More importantly, the biases introduced when pop-
ulation genetic analyses are applied to genotypes inferred from
NGS data have not been well characterized, particularly in systems
other than humans.

The aim of the present study is to determine how variation
in the structure of NGS experiments and inaccuracies inher-
ent to NGS-based genotype calling impact the ability to address
several common population genetic questions in non-model or
ecological systems. In particular, we sought to provide some
assessment of what can be accomplished with NGS data when
genetic variation is high, sample sizes, and sequencing budgets are
small and independent datasets are not available for calibration.
We simulated population genetic samples under Wright–Fisher
equilibrium, selective sweep, population growth, and population
subdivision models. Short-read datasets were generated in sil-
ico and processed through a read-mapping and multi-sample-
genotyping-based SNP-calling pipeline similar to that used by
the human 1000 Genomes Project (Durbin et al., 2010). We
determined the power to infer population genetic parameters
and conduct population genetic tests using NGS data of varying
depths. Our results demonstrate that very low sequencing depth
introduces systematic biases under some, but not all, inference
frameworks, yet significant power and accuracy is recovered with
as little as 8× sequencing depth.

MATERIALS AND METHODS
A graphical flowchart presentation of our analysis pipeline can be
found in Figure A1 in Appendix.

COALESCENT SIMULATIONS
We conducted coalescent simulations to generate population sam-
ples under a variety of equilibrium and non-equilibrium popu-
lation models. Our null model is at Wright–Fisher equilibrium
with no natural selection, constant population size, and complete
random mating. Our alterative models included selective sweeps,
exponential population growth, and subdivided populations. The
general structure of our simulation approach was to simulate 100
population samples comprised of 30 haplotypes that were 30-kb
in length per sample under each set of measured parameters. The
departures from this structure were that we conducted 500 simula-
tions under the growth model, and for the subdivided population,
we simulated two subpopulations with 30 haplotypes each (total
of 60 haplotypes per iteration). Because we wanted to consider
levels of genetic variation seen in many organisms with naturally
large population sizes, we modeled a population with an effective
population size (N ) of 106, a per base mutation of 3.5 × 10−9

(Keightley et al., 2009), and a recombination rate of 10−8 per base
per generation. These parameters correspond to levels of genetic
variation of θ = 0.011 per site for the Wright–Fisher model and
θ = 0.027 per site for population structure model, and are similar
to what one might expect from abundant insects with large geo-
graphic ranges such as Drosophila (e.g., Charlesworth, 2009) or
Anopheles mosquitoes (e.g., Michel et al., 2006).

We used the coalescent simulation program ssw to simulate
population samples under the selective sweep model of Kim and
Stephan (2002). We conducted two rounds of simulations for each
parameterization of the sweep model. In the first round, we con-
ducted simulations under a rejection framework in which we kept
the simulation result only if the likelihood ratio obtained using the
program SweepFinder (Nielsen et al., 2005) was deemed significant
(described below). As such, this round of simulations contains only
datasets that contain patterns of polymorphism that reject in favor
of selection with true genotypes, thereby providing a direct con-
trast when the simulations are processed through the sequencing
pipeline and re-tested for selection. In a second round of simula-
tions, we conducted a set of sweep simulations that were retained
without regard to whether the null hypothesis of no selection could
be rejected with the complete data set. This round of simulations
provides a more complete power curve reflecting both the inherent
power of the test implemented in Sweepfinder as well as the loss
of power due to sequencing. For both rounds, we generated pop-
ulation samples under 6 parameterizations of the sweep model,
including three strengths of selection (α = 2N s) varying from
weak (α = 50) to moderate (α = 200) to strong (α = 1000). For
each value of selection strength, we also varied the time since com-
pletion of the sweep [τ (in units of 2N CURR generations) = 0.01
and 0.005] to reflect a variety of plausible recent selective sweep
events. In addition, we simulated population samples under the
null Wright–Fisher equilibrium model with ssw. ssw allows for
both coding and non-coding sequences to be modeled, and we
included six coding regions (covering approximately 21% of the
30-kb simulated) where the mutation rate was reduced by a factor
of 0.3, the default value in ssw.

To simulate population samples under growth and structure
models, we used the coalescent simulation program ms (Hudson,
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2002). The growth model included exponential growth resulting
in a doubling of the population size (N ANC/N CURR = 0.5) over the
last 1N CURR generations. We also simulated paired samples from
diverging populations. These models were based on the island
model in which, going backward in time, two subpopulations
exchanged migrants at a rate of 4N CURRm = 0.05, and at either
2N CURR, 1N CURR, 0.025N CURR generations ago began exchang-
ing migrants at a much greater rate (4N CURRm = 10 or 100) meant
to reflect near panmixia. These models generated paired sub-
populations with current F ST values of approximately 0.54, 0.37,
0.15, and 0.01. Chromosomes were sampled evenly from each cur-
rent sub-population and population assignment was maintained
throughout the analysis.

SHORT-READ GENERATION AND MAPPING
Short-read sequence libraries were computationally generated and
mapped to a reference sequence. A reference sequence of randomly
chosen nucleotides was generated and used as the starting mate-
rial for each simulated chromosome. To generate chromosomes,
simulated polymorphism data from above was used as a guide
for applying nucleotide changes resulting in a population sam-
ple of nucleotide sequences that reflects the simulated sample.
Nucleotide changes, or SNPs, were applied to reflect the presence
of derived alleles in the simulated polymorphism data. Diploid
“individuals” were generated by randomly pairing simulated chro-
mosomes. These diploid sequences were then computationally
fragmented and sampled to generate short-reads that emulate
Illumina’s HiSeq 2000 platform using the short-read simulation
program SimSeq (Earl et al., 2011). One hundred base-pair (bp)
paired-end reads were sampled with an average insert size of 500bp
(SD = 50) and a duplicate probability of 0.01. SimSeq adds a fixed
rate and distribution of “sequencing” errors using an error profile
trained on alignments of human-derived HiSeq 2000 reads. Indels
were not included in this model. While human data was used to
train the error model, patterns of sequencing errors are largely
based on sequencing platform and are likely to be similar between
experimental systems. We converted BAM alignment files gener-
ated by SimSeq into SAM format using SAMtools (Li et al., 2009a),
and ultimately into FastQ short-read libraries using the BAMto-
FastQ program in the Picard Tools (v1.48) package1. Paired-end
short-read libraries were aligned to the reference sequence gener-
ated above using BWA (Li and Durbin, 2009) allowing for an edit
distance of 4 between each read and the reference, except for sam-
ples from the population structure models which we mapped with
an edit distance of 5 to accommodate the higher number of SNPs
in these samples. Reads with duplicate mapping positions were
removed with the rmdup function in SAMtools (Li et al., 2009a).
Cleaned BAM files from each of 15 diploids per population were
used in subsequent steps for SNP calling. To determine how the
power of inference is affected by read depth, we generated short-
read libraries for each diploid such that the resulting alignments
would achieve an average of 4×, 8×, and 15× read depth. Thus,
for each individual diploid, we generated BAM alignments at each
of the three read depths resulting in a total of 45 BAM alignment
files per population sample.

1http://picard.sourceforge.net/

SNP CALLING
We used the Genome Analysis Toolkit (GATK v. 1.1-30) to recal-
ibrate FastQ quality scores and call candidate SNPs. The GATK
implements a FastQ quality score re-calibration step that is
designed to recalibrate reported quality scores by accounting for
technology and sequence features that are known to co-vary with
the reported quality score (DePristo et al., 2011). The GATK builds
a recalibration model by ignoring all sites in a dbSNP database file
provided by the user, correlating sequence and technology fea-
tures with reported quality scores at remaining sites that differ
from the reference, and calculating a recalibrated score based on
residuals from this model (DePristo et al., 2011). This approach
is designed for human genetic analysis, and relies heavily on the
well-populated human dbSNP database. It is less ideal for systems
with fewer independent SNP datasets. Although, it may be possi-
ble in a full genome re-sequencing study to use high-confidence
SNPs as the “known” set, this step is likely to be project-specific
so we opted not to model SNP ascertainment in this way. Instead,
we circumvented the issue by training the re-calibration model
on a sample of 15 diploid alignments that are 20 Mb in length
and entirely lack “true” SNPs, but that have been processed using
SimSeq to introduce “sequencing” error. We confirmed the valid-
ity of the re-calibration model and its effectiveness by analyzing
the covariates and quality scores before and after re-calibration
using the GATK. All BAM alignments in the primary study were
recalibrated with this model, and recalibrated BAMs were used for
subsequent SNP calling.

We tested the GATK’s Unified Genotyper (UG) for calling
SNPs in our simulated population samples. The UG considers all
individuals simultaneously to make genotype calls in a technology-
aware fashion and uses a Bayesian genotype likelihood model to
calculate genotypes for each individual and estimate the allele fre-
quency at each variant site. We submitted each batch of 15 BAMs
to the UG with default settings except the expected heterozygosity
was set equal to the scaled mutation rate used in the simulations.
The UG generates a Phred-scaled Quality score (Q) for each vari-
ant indicating the probability that a SNP exists at each site, where Q
of 20 indicates a 1 in 100 chance that the call is incorrect. These Q
scores are calculated without regard to the surrounding sequence
context so the GATK implements a sophisticated variant quality
score re-calibration method that has been shown to be more effec-
tive at sorting true from false positives than hard filtering based on
un-calibrated Q scores or other parameters (DePristo et al., 2011).
However, despite efforts to simulate larger SNPs datasets for train-
ing, we did not find that re-calibration led to better distinction
between true and false positives under our simulation framework
(data not shown). Therefore, we opted to use hard filtering based
on the Q score and use all SNPs with a score of at least 5. Although
this is a quite liberal threshold compared to the standard of Q20,
preliminary analyses indicated that, even at 4× read depth, many
true positives had Q values on this scale (data not shown). We
found a threshold of 5 struck a good balance of minimizing false
negatives while permitting a small number of false positives (8.4
false negatives for each false positive for 4× read depth). SNP calls
were made for each population sample, converted into appro-
priate input formats and used in subsequent population genetic
analyses.
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POPULATION GENETIC ANALYSIS
The goal of this study was to determine the impact of the short-
read sequencing, alignment, and SNP-calling process on the infer-
ence of population genetic patterns. Therefore, for each simulation
under a specific model and sequence read depth, we quantified
the difference between the population genetic model inferred
using complete, pre-sequencing data, and the model inferred from
post-sequencing data to directly measure the effect of sequencing.

To infer selective sweeps, we scanned SNP sets from the sweep
simulations as well as the Wright–Fisher simulations using the
Parametric version of the Composite Likelihood Ratio Test imple-
mented in the program SweepFinder (Nielsen et al., 2005), which
compares the likelihood of a selective sweep under the model of
Kim and Stephan (2002) to the likelihood of a model without
selection based on background allele frequencies. We used a grid
size of 25, which corresponds to 1250 bp. For this part of the
study, we aimed to compare the power to infer selection before
and after sequencing as well as to specifically quantify the false-
negative rate after sequencing. To quantify the difference in power
to infer selection before and after sequencing, we searched for
selective sweeps in the pre-sequencing data and then searched
the SNP set inferred from the post-sequencing alignments. To
determine significance, we established a null distribution of the
likelihood ratio by conducting 104 simulations under the neutral
Wright–Fisher equilibrium model, and collecting the maximum
likelihood ratio from each simulation. The simulated “experimen-
tal” sweep datasets were considered significant if their likelihood
ratio was greater than the 95% threshold from this null distrib-
ution. Simulations from both the significance-naïve set and the
significance-enriched set (see Coalescent Simulations) were ana-
lyzed in this way. The proportions of significant CLRT results were
compared between read depths and sweep models.

To infer the population growth parameters, we searched a
grid of population growth models using a Poisson log-likelihood
approach to determine the fit of the complete and inferred data to
each simulated dataset. We used the program PRFREQ (Boyko
et al., 2008) to calculate the expected site-frequency spectrum
(SFS) across the grid and find the model within the grid with
the maximum likelihood for each SNP set. We used the Poisson
likelihood function in PRFREQ to determine the best-fit between
the data and the models, first using the full pre-sequencing data
and then with the SFS inferred from each post-sequencing SNP
set. We used the scaled mutation rate and effective population
size used in the simulations above, the instantaneous population
growth model (two epochs), and the neutral distribution of selec-
tive effects (2N s = 0). The grid consisted of 16 grid points for
the timing of growth (τ), varying from 0.05 to 0.9, in units of
2N CURR and 16 points for the ratio of ancestral to current pop-
ulation size (ω), again varying from 0.05 to 0.9, for a total of 256
models. Since SNPs from the same population sample were used
for inference before and after sequencing, we compared the pre-
sequencing model to the post-sequencing model by subtracting
the post-sequencing parameter values from the pre-sequencing
values and plotting the difference.

To determine the effect of short-read sequencing on infer-
ence of genetic divergence between populations, we calculated
F ST between the two simulated subpopulations before and after

short-read sequencing. We estimated global genetic differentia-
tion between the two subpopulations across the 30-kb fragment
using Weir and Cockerham’s unbiased estimator (Weir and Cock-
erham, 1984) implemented in an R script written by Eva Chan2.
We compared the differences between pre- and post-sequencing
F ST values between read depths using a Paired Student’s t -test
(t.test function in R; R Development Core Team, 2011) to deter-
mine whether increasing read depth resulted in significantly better
inference of population differentiation. We also fit a loess curve to
the data using the scatter.smooth function in R (R Development
Core Team, 2011).

RESULTS
SNP RECOVERY
To quantify the effect of short-read sequencing on the power to
infer population genetic models, we simulated a typical empiri-
cal re-sequencing pipeline including sequencing and SNP-calling
errors inherent to such experimental frameworks. For all popula-
tion genetic models, short-read datasets were generated at three
read depths, aligned to a simulated reference, and queried for
SNPs. We found that, under the parameterization of this simu-
lation pipeline, read depth had a significant effect on the rate of
true SNP recovery as well as on the rate of false-positive SNP ascer-
tainment. The rate of true SNP recovery was high, increasing as a
function of read depth, with average recovery rates across popula-
tion genetic models of 86.7% at 4× read depth (SD, σ = 0.0134),
95.7% at 8× (σ = 0.0067), and 99.2% at 15× (σ = 0.0025). Fur-
thermore, even without using the false-positive SNP culling steps
in the GATK, the false-positive rates across all models were rea-
sonably low with 4.1% (σ = 0.0206) of called SNPs being spurious
at 4×, 0.95% (σ = 0.0047) at 8×, and 0.39% (σ = 0.0025) at 15×,
highlighting the effect of read depth on the false-positive rate.
Importantly, false negative and false-positive rates differed among
population genetic models and disproportionately affected low
(<0.1) frequency SNPs (Table 1). For example, at 4× read depth,
the rates of true SNP recovery (or 1 minus the false-negative rates)
differed among population genetic models, with the rate under the
selective sweep model being significantly lower than that under
the Wright–Fisher equilibrium model (t df=170 = 2.17, p = 0.0314;
Figure 1), and the rate under the growth model being significantly
lower than the sweep model (t df=165 = 8.02, p = 1.85 × 10−13;
Figure 1). On the other hand, the rate of false positives was high-
est under the selection model at 6.1%, which was significantly
greater than the rate under the growth model (t df=195 = 5.67,
p = 5.09 × 10−8), and the rate under the growth model (5.2%)
was significantly greater than that under the equilibrium model
(4.4%; t df=195 = 7.93, p = 1.7 × 10−13). Since rare variants are dis-
proportionately missed at low read depths (Figure 2; Table 1),
the lower rate of recovery under the selective sweep and growth
models can likely be attributed to the proportionally greater num-
ber of low-frequency variants under these models relative to the
Wright–Fisher model (Figure A2 in Appendix). The structure
model showed a lower true SNP recover rate relative to Wright–
Fisher (Figure 1) and a substantially lower rate of false-positive

2www.evachan.org
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Table 1 | Effect of read depth and population genetic model on false

negative and false-positive SNP rates.

Model Proportion false-negative

SNPsa

Proportion false-positive

SNPsb

Total Low

freqc

High

freqd

Total Low

freqc

High

freqd

4× READ DEPTHe

Equilibriumf 0.1268 0.2761 0.0026 0.0444 0.1187 0

Sweepg 0.1295 0.2822 0.0024 0.0608 0.1672 0

Growth 0.1463 0.2653 0.0021 0.0516 0.1154 0

Structureh 0.1340 0.2583 0.0011 0.0084 0.0201 0

8× READ DEPTH

Equilibrium 0.0400 0.0875 0.0005 0.0099 0.0235 0

Sweep 0.0417 0.0910 0.0006 0.0134 0.0318 0

Growth 0.0464 0.0843 0.0003 0.0119 0.0234 0

Structure 0.0449 0.0862 0.0007 0.0031 0.0065 0

15× READ DEPTH

Equilibrium 0.0062 0.0133 0.0003 0.0041 0.0091 0

Sweep 0.0064 0.0137 0.0004 0.0053 0.0118 0

Growth 0.0067 0.0121 0.0001 0.0048 0.0088 0

Structure 0.0095 0.0177 0.0006 0.0013 0.0026 0

aProportion of all true SNPs that were not called after sequencing, bProportion

of all called SNPs that were not present in true data, cSNPs with true frequency

less than or equal to 0.1 in sample, dSNPs with true frequency greater than 0.1

in sample, eSimulated read depth for each diploid individual, fEquilibrium refers

to Wright–Fisher equilibrium model, gOnly rates for sweep model with τ = 0.005

and α = 1000 are presented, hOnly rates for structure model with FST = 0.37 are

presented.

SNPs (Table 1), but these are not a fair comparison since the struc-
ture model is a different genotyping environment as it is comprised
of twice as many chromosomes and approximately three times as
many true SNPs as the other models.

INFERRING SELECTIVE SWEEPS
We assessed the effect of short-read sequencing on the power to
infer a selective sweep by testing for selection in patterns of vari-
ation in simulated population samples before and after simulated
NGS. When we tested a set of random sweep simulations under
each sweep model parameterization, we found that power curves
are quite comparable before and after simulated sequencing, with
only minor loss in power to identify the signature of a selective
sweep at lower read depths (Figure A3 in Appendix), although
further losses might be incurred under different parameteriza-
tions of the selection model, including modeling of older sweeps.
To more directly quantify the loss in power of inference at lower
read depths, we conducted a second set of genealogical simula-
tions in which we required that the simulation give a significant
result prior to simulated sequencing. In this case, we found that the
power to infer selection depended on both the strength of selection
and the depth of sequencing (Figure 3). Depth of sequencing did
not have a strong effect on the power to identify the signature of
selection after sequencing when selection was strong (2N s = 1000;
Figure 3). But, when the strength of selection is weak (2N s = 50),

FIGURE 1 | Proportion of true SNPs recovered with 4× sequencing.

Data from 100 simulations is presented for each population model (only the
selection model with τ = 0.005 and α = 1000 and structure model with
F ST ≈ 0.37 is presented in each case, see Materials and Methods). Models
were compared with paired t -test at a significance threshold of 5%. Note
that the y -axis scale is limited from 0.84 to 0.92. The population structure
model was not included in this particular statistical contrast (see Materials
and Methods).

we found a 29.9% reduction in power to infer selection with 8×
sequencing relative to 15×, and an additional 29.1% reduction
with 4× relative to 8× read depth (Figure 3). Interestingly, a small
but noteworthy number of simulated samples that did not give a
significant test based on full sequence data yielded a significant
result after simulated NGS (data not shown). Inspection of these
test results indicated that many of the pre-sequencing likelihood
ratios were nearly significant in their rejection of the null hypothe-
sis. We suspect that the higher rate of undetected SNPs in low-pass
sequencing datasets altered inference of the background (no selec-
tion) model just enough to result in a significant likelihood ratio
supporting selection. Collectively, our results indicate that strong
and recent selective sweeps can be detected reliably even with low
read depths, but that deeper sequencing will be required for con-
sistent detection of weak selective sweeps and, by extrapolation,
older sweeps. Although not directly assessed here, we suspect that
the shift in power we observe would not apply to the detection of
incomplete sweeps since the such sweeps are most reliably detected
with statistical tests based on haplotype structure (Sabeti et al.,
2002), a feature of the data not likely to be greatly affected by the
SNP recovery patterns observed here.

INFERRING DEMOGRAPHY
We simulated population samples under a simplistic model of pop-
ulation size expansion in which the population doubled in effective
size 1N CURR generations ago, where N CURR equals the effective
population size at the time of sampling. To determine the effect
of short-read sequencing on the accuracy of demographic infer-
ence, we used a Poisson log-likelihood approach to infer growth
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A B

C D

FIGURE 2 | Comparison of allele frequencies before and after

sequencing at 4x. Frequencies for SNPs, including false positives and
false negatives, from population samples simulated under (A)

Wright–Fisher model, (B) Population Growth model, (C) Selective
Sweep model (α = 1000, τ = 0.005), and (D) Population Structure
(F ST ≈ 0.37). The frequencies of false-positive SNPs are found in the left

most column of each plot. The frequencies of true SNPs that were
missed after sequencing (false negatives) are plotted in the bottom row
of each plot. For the population structure model, frequency was
calculated as average frequency across both subpopulations. Colors
indicate the total number of SNPs (on a log scale) in each bin from 100
simulations for each model.

parameters from each simulation dataset before and after sequenc-
ing. Comparison of inferred values before and after simulated
sequencing showed that SNP data inferred from 15× sequenc-
ing recovers the demographic signal extremely well (Figure 4). At
8× sequencing depth, a large proportion of simulations returned
post-sequencing parameter values that differed slightly from the
pre-sequencing values. Sequencing depths of only 4× introduce
a systematic downward bias in the inferred timing of expansion,
resulting in conclusion of more recent growth (by an approxi-
mate difference of 0.17∗N CURR generations, under our simulation
framework).

INFERENCE OF GENETIC DIFFERENTIATION
We simulated structured population samples with four levels of
current genetic differentiation between the two subpopulations.
The four groups of simulated subdivided populations have mean
F ST values of 0.54, 0.37, 0.15, and 0.01 as estimated from the sim-
ulated samples. Analysis of these same samples after they had been
processed through the simulated NGS pipeline revealed a system-
atic downward bias in F ST values (Figure 5). Although, the bias was
most severe at 4× read depth with a mean reduction of 0.0147,

higher read depths also suffer the downward bias (mean diff at
8× = 0.0069, and 0.0018 at 15×), albeit significantly less so (4× vs.
8× t df=299 = 39.34, p < 2.2 × 10−16; 8× vs. 15× t df=299 = 46.41,
p < 2.2 × 10−16). Interestingly, the bias increases with the degree
of differentiation (Figure 5). While this suggests that the bias is
minimized when differentiation is low, it is in systems with low
differentiation that such a bias would have the greatest effect on
biological interpretation. Therefore, the significant improvements
in precision achieved with greater read depths would prove par-
ticularly valuable when differentiation is being estimated between
closely related subpopulations.

DISCUSSION
Next-generation sequencing technologies hold promise for
expanding the field of population genomics into a diverse array of
biological and ecological systems (Pool et al., 2010). However, care-
ful consideration of experimental structure and statistical analysis
is essential to avoid compounding data-related uncertainty and
biases in downstream analyses. Multiple statistical approaches
have been proposed to accommodate the limitations of NGS, many
specifically designed to handle low (<5×) read depth data (e.g.,
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FIGURE 3 |The effect of next-generation sequencing on the power to

infer selective sweeps. The proportion of simulated samples that rejected
the null hypothesis with complete, pre-sequencing data and also rejected
after sequencing is plotted as a function of the strength of selection. Thirty
kilobase regions of 30 chromosomes with one selective sweep (n = 100 for
each α − τ) were simulated. Simulations were compared to a null
distribution generated by neutral simulations and considered significant at
0.05 cutoff.

Lynch, 2009; Martin et al., 2010; DePristo et al., 2011; Kim et al.,
2011). A preferred standard approach that performs well in popu-
lation genetic analyses under a variety of experimental structures
has not surfaced, perhaps due to the limited number of applica-
tions to empirical data. While these approaches result in improved
ability to call SNPs and estimate their population frequencies, par-
ticularly for human data or data simulated to resemble human
data, the effect of sampling error in low-coverage sequencing data
on the capacity to address population genetic questions has not
been previously addressed in a broad sense. It is important to note
that our study is not meant to be an evaluation of any particu-
lar SNP-calling approach, but instead is intended to provide an
evaluation of how using NGS data processed through a typical
SNP-calling pipeline can affect the power to address population
genomic questions, recognizing that both the sequencing tech-
nologies and related statistical approaches are likely to change
and improve over time. Moreover, we chose to address population
genetic models that are most vulnerable to NGS related errors,
but other models such as population bottlenecks and incomplete
sweeps are also of interest and should be explored.

We evaluated the effect of sequence coverage on the ability
to detect three common population genetic scenarios: directional
selection, population growth, and partial subdivision. The pri-
mary source of variation among read depths is the rate of true
SNP recovery, or the false-negative rate. Consistent with previous
observations (e.g., Jiang et al., 2009; Lynch, 2009), rare variants
are disproportionately missed (Figure 2) due to sparse read sam-
pling, and the rate of SNP recovery increased substantially with

A

B

C

FIGURE 4 |The effect of 4×, 8×, and 15× sequencing on demographic

inference. Population samples of 30 chromosomes were simulated under a
population expansion model (n = 500), and the timing and magnitude of
growth were inferred using a likelihood approach both from full sequence
data and after simulated (A) 4×, (B) 8×, and (C) 15× next-generation
sequencing. The difference in the timing of growth, or bias, was calculated
by subtracting the parameter value inferred post-sequencing from the
pre-sequencing inferred value. The same calculation was used for the
magnitude of growth. Colors indicate the proportion of simulations in each
region of the parameter space.

read depth (Table 1). Contrary to previous reports that showed an
excess of rare variants when the SFS is inferred from short-read
data (e.g., Kim et al., 2011), we inferred a deficit of rare vari-
ants after computational elimination of putative sequencing errors
(Figure 2), underlining how the ability to distinguish between
errors and true SNPs in a system with high genetic variation dif-
fers from the ability in systems where variation is rare. Another
possible explanation for this discrepancy is the fact that in our
study the sequencing quality scores were recalibrated in a way
that may have lead to an unrealistically accurate estimate of error
rates, perhaps resulting in false negative and false-positive SNP-
calling rates unachievable in empirical studies. Comparison of
recalibration performance in our study to that achieved using
human data from the 1000 genomes (DePristo et al., 2011) sug-
gests that our approach resulted in comparable improvements in
base quality distributions with this empirical example. Interest-
ingly, we also observed significantly lower rates of SNP recovery
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FIGURE 5 |The effect of 4×, 8×, and 15× sequencing on inference of

genetic differentiation. F ST was calculated with full sequence data (“True
F ST”) and after simulated next-generation sequencing using Weir and
Cockerham’s unbiased estimator (Weir and Cockerham, 1984), and the
post-sequencing bias is plotted. A loess curve was fit to the data for each

sequencing depth to illustrate both the effect of increasing F ST as well as
read depth. The difference between pre- and post-sequencing F ST was
calculated for all simulations (n = 100 for each value of F ST) and these
differences were compared between sequencing depths using a paired
t -test.

from simulations under the growth and sweep models compared
to those under the equilibrium model (Figure 1), a difference
we attribute to the rare-skewed SFS under the growth and sweep
models (Figure A2 in Appendix). While this result may be specific
to the models and simulation framework used here, the broader
implications is that the dependence of the SNP recovery rate on
the SFS itself could lead to heterogeneous error in SFS inference,
even among regions of the same genome. Genomic regions of
low recombination exhibiting low diversity may experience further
complications in SNP recovery since SNP detection is also sensitive
to the diversity-to-error ratio (Lynch, 2009). However, in humans
and possibly other systems with sufficient external data, improve-
ments in rare-variant recovery can be made through imputation
from haplotype information or statistical tuning modeled on inde-
pendent deep sequencing data from the same diploid individuals
have been employed (Durbin et al., 2010; Gravel et al., 2011).

How do the differences in SNP recovery across depths of
sequencing affect the ability to address population genetic ques-
tions? We compared the power to detect selective sweeps, infer
demographic shifts, and estimate genetic differentiation among
populations from “true” complete sequence information to the
power when sequences inferred from NGS data at 4×, 8×, and
15× read depths are used. Interpretation of our findings follows
below, but it is important to recall throughout that our results
are specific in their detail to our particular simulated experimen-
tal structure. General conclusions can be drawn from our results,
but numerical details, such as exact power curves, will depend
on experimental parameters such as sample size, levels of genetic
variation, and SNP calling approach.

DETECTING POSITIVE SELECTION
The rapid fixation of a newly arising beneficial mutation leaves a
distinct pattern of diversity in flanking chromosomal segments,
including an excess of rare variants and high frequency derived
alleles. Multiple statistical tests have been developed to detect
such selective sweeps (reviewed in Nielsen, 2005). We used the
composite likelihood ratio test (Nielsen et al., 2005) to detect
sweeps among population samples simulated under a selective
sweep model (Kim and Stephan, 2002). We found that, over-
all, the strength of selection had a larger effect on the power to
detect selective sweeps than that of the sequencing process and
changes in sequencing coverage (Figure A3 in Appendix). Since
the effects of NGS on genotyping accuracy are physically diffuse
but the genomic footprint of positive selection is genomically local
(reviewed in Nielsen, 2005), it stands to reason that the selection
footprint can be inferred with relative accuracy provided that the
data is not riddled with false-positive SNPs that will both obscure
the selection footprint and alter the neutral background model
based on data genomic patterns of variation. However, when we
addressed the reduction in power related to read depth with greater
resolution, we found an interaction between the strength of selec-
tion and read depth (Figure 3), suggesting that strong selective
sweeps, leaving large and dramatic selection footprints, can be
detected with very low read depths, but weaker selective events
will only be detected with greater genotyping and allele frequency
accuracy. It should be noted, however, that weak selective events
are difficult to detect even with complete true data (Figure A3 in
Appendix; Nielsen et al., 2005). Incomplete sweeps (e.g., Sabeti
et al., 2002; Juneja and Lazzaro, 2010) and sweeps from standing
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genetic variation (Przeworski et al., 2005) are also likely to be
difficult to detect with low read depth sequencing.

INFERRING DEMOGRAPHY
Many systems show genomic patterns of genetic variation that are
inconsistent with expectations under canonical equilibrium mod-
els, making inference of demography a standard component of
genomic analyses, both for its own sake and to inform accompa-
nying tests of other hypotheses (Boyko et al., 2008; e.g., Crawford
and Lazzaro, 2010; Gravel et al., 2011; Locke et al., 2011). Demo-
graphic inference is typically accomplished by testing the fit of one
or several summaries of polymorphism data that include informa-
tion about both the number of SNPs and their frequency in the
sample to expectations under demographic models (e.g., Craw-
ford and Lazzaro, 2010; Gravel et al., 2011; Locke et al., 2011).
Thus, accurate inference of polymorphism from NGS is essential
for avoiding biases in demographic inference. We simulated a pop-
ulation growth model and quantified the difference in parameter
estimates between models inferred from complete sequence data
and models inferred from simulated short-read sequence data.
Population growth has been shown to result in a negative skew
in the SFS owing to an enrichment of external branches in geo-
logical structures of populations that have experienced growth
(Tajima, 1989; Slatkin and Hudson, 1991; Rogers and Harpend-
ing, 1992), suggesting that the lower recovery rate for rare SNPs in
low-pass sequencing will obscure the signal of growth. We found
that the high genotyping accuracy at 15× read depth results in
near perfect recovery of the demographic signal (Figure 4). How-
ever, at lower depths, we found a systematic bias toward inference
that growth was more recent than it truly was, without any bias
in the inferred magnitude of growth. These results suggest that
accurately inferring demographic parameters will hinge on full
recovery across the SFS, most likely via sequencing depths of
at least 8×. This need may be somewhat mitigated in systems
that allow alternative approaches for recovery of rare variants
such as haplotype imputation (Durbin et al., 2010) or statisti-
cal tuning based on reduced-representation deep sequencing data
(Gravel et al., 2011). It should be noted that we have tested only
one, argruably simplistic, population growth model here. Further
study will be required to extend these results to more complex
models.

INFERRING GENETIC DIFFERENTIATION
When a panmictic ancestral population is divided into two pre-
dominantly reproductively isolated populations, allele frequencies
of shared polymorphisms diverge over time via neutral genetic
drift at a rate that depends on the amount of gene flow between

the populations and the effective population size of the nascent
populations (reviewed in Holsinger and Weir, 2009). The signature
of this process can be summarized using, among other statistics,
F ST, which directly compares the partitioning of genetic variance
among populations (Weir and Cockerham, 1984; Holsinger and
Weir, 2009). Rare variants contribute less to estimates of F ST than
do intermediate frequency variants (Weir and Cockerham, 1984),
suggesting that the missing rare-variant issue inherent to low-pass
sequencing may not have a large impact on estimates of genetic dif-
ferentiation. We compared the accuracy of F ST estimates of genetic
differentiation between two partially isolated populations inferred
from NGS data of various depths and found a systematic under-
estimation of F ST, even at 15× read depth (Figure 5). Inspection
of Figure 2 suggests that underestimation of allele frequency is
more common than overestimation. A systematic reduction in
perceived diversity as well as a tendency to underestimate allele
frequencies both result in reduced estimates of differentiation.
Interestingly, the bias we inferred here varied across a range of
F ST values (Figure 5), suggesting that sequencing depths should
be tailored according to expected levels of differentiation. When
population differentiation is substantial, even short-read data as
shallow as 4× is sufficient to detect substantial differences in allele
frequencies, suggesting significant progress can be made toward
measuring genetic differentiation with minimal investment in
sequencing.

In summary, we assessed the power to address population
genetic questions using NGS, providing quantification of both the
power and accuracy of population inference under experimental
conditions typical of many ecological systems with large popula-
tion sizes. We found that the prospect of identifying strong selec-
tive sweeps is good even at low sequencing depths, while inferring
weak selection, non-equilibrium population demographics and
population structure may suffer significant biases without higher
coverage. While our results improve our understanding of the
dependencies between read depth, SNP calling and allele frequency
estimates, and population genetic inference using NGS, further
investigation is warranted to explore how biases and power-loss
changes across a broader set of population genetic models and
experimental parameterizations.
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APPENDIX

FIGURE A1 | Flowchart of analysis pipeline. This flowchart describes
the analysis pipeline used to assess the effects of NGS on population
genetic inference and hypothesis testing. Population samples were
simulated under four population genetic models and processed
through both (A) the “Raw” track of the pipeline and (B) the
“Sequencing” track of the pipeline. In the “Raw” track, unmodified,
simulated polymorphism datasets were used for population genetic

analysis. In the “Sequencing” track, simulated polymorphism datasets
were processed through an in silico sequencing pipeline, and
polymorphisms inferred from the “sequence” data were used for
population genetic analysis. Comparisons were made between
population genetic analysis results from the “Raw” track and the
“Sequencing” track to quantify the differences in accuracy and power
of inference after “Sequencing.”

FIGURE A2 | Site-frequency spectrum from “complete” data for each

population genetic model. The proportion of all true SNPs at various
frequencies in the population is presented. For the structure model,
frequency was calculated across both subpopulations (60 chromosomes) and

proportions calculated according to that distribution, but only SNPs with
frequencies less than 30 are presented here. Data from only one selective
sweep model (α = 1000, τ = 0.005) and one structure model (F ST = 0.38) are
presented here.
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FIGURE A3 |The power to detect selective sweeps before and after

simulated next-generation sequencing. The proportion of statistically
significant detections of positive selection was calculated from simulations of
a 30-kb region of 30 chromosomes with one selective sweep. Simulations
were compared to a null distribution generated by neutral simulations and

considered significant at 0.05 cutoff. The top panel shows the results for
recent selective sweep models (τ = 0.005) and the bottom panel shows
results for models with relatively older selective sweeps (τ = 0.01). “Pre-seq”
refers to the complete sequence information, without simulated
next-generation sequencing and SNP calling.
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