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Genetic/transcriptional regulatory interactions are shown to predict partial components of
signaling pathways, which have been recognized as vital to complex human diseases. Both
activator (A) and repressor (R) are known to coregulate their common target gene (T ). Xu
et al. (2002) proposed to model this coregulation by a fixed second order response surface
(called the RS algorithm), in which T is a function of A, R, and AR. Unfortunately, the RS
algorithm did not result in a sufficient number of genetic interactions (GIs) when it was
applied to a group of 51 yeast genes in a pilot study.Thus, we propose a data-driven second
order model (DDSOM), an approximation to the non-linear transcriptional interactions, to
infer genetic and transcriptional regulatory interactions. For each triplet of genes of interest
(A, R, andT ), we regress the expression ofT at time t + 1 on the expression of A, R, and AR
at time t. Next, these well-fitted regression models (viewed as points in R3) are collected,
and the center of these points is used to identify triples of genes having the A-R-T relation-
ship or GIs. The DDSOM and RS algorithms are first compared on inferring transcriptional
compensation interactions of a group of yeast genes in DNA synthesis and DNA repair
using microarray gene expression data; the DDSOM algorithm results in higher modified
true positive rate (about 75%) than that of the RS algorithm, checked against quantitative
RT-polymerase chain reaction results.These validated GIs are reported, among which some
coincide with certain interactions in DNA repair and genome instability pathways in yeast.
This suggests that the DDSOM algorithm has potential to predict pathway components.
Further, both algorithms are applied to predict transcriptional regulatory interactions of 63
yeast genes. Checked against the known transcriptional regulatory interactions queried
from TRANSFAC, the proposed also performs better than the RS algorithm.
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INTRODUCTION
Inferring networks of genetic interactions (GIs) from microar-
ray data is one of the challenging tasks in the area of functional
genomics. If the reconstruction is reliable, it will provide useful
information relatively inexpensively. An inferred genetic network
predicts how a given gene interacts with the other genes. A type
of important GIs is synthetic sick or lethal interaction (SSL) in
yeast (Hartman et al., 2001; Tong et al., 2001), which is defined as
double mutations in genes resulting in sickness or lethality while
each single mutation does not. Here predicting transcriptional
compensation (TC; Kafri et al., 2005) and transcriptional dimin-
ishment (TD) interactions (Chuang et al., 2008; Shieh et al., 2008)
from a pair of SSL genes is of interest. Given a SSL or paralog gene
pair, following a gene’s loss, its partner gene’s expression increases;
this phenomenon is known as TC. Quantitative RT-polymerase
chain reaction (qRT-PCR) experiments (in Appendix) show that
besides TC, in some cases following a gene’s absence, its partner
gene’s expression decreased; we call this phenomenon TD. TC/TD
interactions among a group of 51 yeast genes, involved in DNA

synthesis and DNA repair, is of interest to our collaborator, and
this motivates us to develop this algorithm.

Recently, GIs in yeast have been shown to be consistent with
some components of existing DNA repair or genome instabil-
ity pathways (Chuang et al., 2008; Shieh et al., 2008). Because
GIs derived from yeast may be conserved in humans (Boone
et al., 2007), predicted GIs in yeast may shed light on pathways
of complex human diseases, such as cancer. It has been gradu-
ally elucidated that pathways, rather than individual genes, control
tumorigenesis (Vogelstein and Kinzler, 2004). For instance, altered
components of certain signal transduction pathways have been
shown to be involved in colorectal, breast, and lung cancer (Wood
et al., 2007; Ding et al., 2008), and these components may be poten-
tial therapeutic targets. Thus, inferring genetic networks, once
successful, would have an impact on molecular medicine.

With the abundant sets of microarray gene expression data
(MGED) now available, inferring genetic/transcriptional inter-
actions has become feasible, and various approaches have been
proposed. Most of the approaches may be classified into three

www.frontiersin.org May 2012 | Volume 3 | Article 71 | 1

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=Ying_ChaoHung&UID=45376
http://www.frontiersin.org/people/CHUNG-MINGCHEN/52129
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GraceShieh&UID=13074
mailto:gshieh@stat.sinica.edu.tw
http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/10.3389/fgene.2012.00071/abstract


Jiang et al. Inferring genetic interactions

classes: graphical models, discrete variable models, and continu-
ous variable models. Due to space constraints, here we limit our
review on continuous variable models that are directly relevant to
the proposed; see Shieh et al. (2008) for reviews of models from
other classes. The relationship of a target gene and its activator and
repressor is known to be non-linear (Wray et al., 2003). However,
for simplicity, Chen et al. (2005) used linear stochastic differential
equation model to approximate these non-linear relationship, and
Zhang and Horvath (2005) introduced “co-expression concept”
to reconstruct gene networks. To approximate non-linear regula-
tion of an activator and a repressor on their common target gene,
Woolf and Wang (2000) applied some fuzzy functions using gene
expression data, which included a standard heuristic process of
fuzzification, decision making, and defuzzification. However, the
idea of applying a fuzzy logic method to the area was novel. The RS
algorithm in Xu et al. (2002) improved the fuzzy logic approach
by using a continuous regulatory influence (Eq. 1 below) that had
biological bearings.

Specifically, Xu et al. (2002) fitted triplets of activator, repres-
sor, and target genes (A, R, T ) into a fixed second order response
surface as follows.

T = T (A, R) =

⎧⎪⎨
⎪⎩

2A (1 − R) , 0 ≤ A ≤ 0.5, 0.5 ≤ R ≤ 1;

1 − 2 (1 − A) R, 0.5 ≤ A ≤ 1, 0 ≤ R ≤ 0.5;

A − R + 0.5, otherwise.

(1)

This RS approach captures the principle that the effect of A
(R) is positive (negative) and the resulting expression level of the
target gene falls in the interval [0, 1], provided that the expression
level of both A and R are from [0, 1] (personal communication
with Xu). This A-R-T response surface does depict the biological
relationship of A, R, and T, in which a highly expressed activator
and a lowly expressed repressor result in high-expression of their
target gene, and the regulation is a continuous function of A and
R. However, the surface in Eq. 1 is merely one of many surfaces
which satisfy the aforementioned biological relationship of A, R,
and T. Moreover, when we fitted the alpha data set in Spellman
et al. (1998; NCBI GEO accession number: GSE 22) to infer GIs
of interest, this response surface did not yield a sufficient amount
of GIs. This suggests that the response surface which most triples
of genes (GIs) are close to may vary with data sets, and this sur-
face should be identified by a relevant data set. These motivate
us to develop a data-driven approach, which is called data-driven
second order model (DDSOM).

The proposed approach has been implemented on gene pairs
that have indirect interactions such as TC. For ease of description,
we use direct interaction activator-target (AT ) and repressor-target
(RT ) to denote TD and TC, respectively. We propose that the GI
patterns result from the majority of fitted second order models
which describe a biological A, R, and T relationship. Namely, the
mode surface results from well-fitted models, and those AT and
RT gene pairs close to this mode surface will be used to pre-
dict TD and TC interactions, respectively. Furthermore, a time
lag is incorporated in the model to describe a period required
for a target gene to respond to the regulation of its activator

and/or repressor. Note that this time lag in a predicted network
also suggests the ordering of gene products (proteins) in DNA
repair/genome instability pathways as shown in Section “Applica-
tion 1: Genetic Networks of the 51 Yeast Genes Involved in DNA
Synthesis and DNA Repair.”

Both the DDSOM and RS algorithm are applied to cDNA
microarray data (Spellman et al., 1998) to infer TC/TD interac-
tions of yeast genes involved in DNA synthesis and DNA repair.
The prediction accuracies of these algorithms are checked against
qRT-PCR experiment and compared. Importantly, some of the GIs
predicted by DDSOM coincide with existing DNA repair path-
way of yeast in the literature. This suggests that DDSOM can
infer meaningful GIs, and it may be used to infer biochemical
pathways as well. In addition, DDSOM has been compared to
the RS algorithm using a microarray data set in Spellman et al.
(1998) to predict transcriptional regulatory interactions (TIs) of
63 yeast genes, and their performances have been checked against
the known TIs queried from TRANSFAC (Matys et al., 2003).

MATERIALS AND METHODS
In this section, we introduce some data pre-processing meth-
ods and the proposed algorithm for inferring genetic networks.
When A and R are highly correlated, the DDSOM algorithm is
not applicable due to the collinearity problem. Thus these cases
are excluded; see the flowchart in Figure1 for an outline of the
DDSOM algorithm.

GENE EXPRESSION DATA SETS
There are three sets of data synchronized by using alpha
pheromone (the alpha data set) or temperature sensitive muta-
tion (cdc15 and cdc28) in Spellman et al. (1998). However, some
of the 51 genes of interest had high levels of missing data (50–
100%) in cdc15 and cdc28 data sets. Imputation of those heavily
missing data might be problematic, thus we used the alpha data set
in which only one gene had about 20% missing data across time.
Log ratios of red to green channel intensities of cDNA microarray
were taken, where the red (green) channel intensities were gene
expression (mRNA) levels of synchronized (non-synchronized)
yeast cells. Let Ri(t ) and Gi(t ) be the red and green intensity of
gene i at experiment t. The data used were normalized by Spellman
et al. (1998) such that for a fixed i,

∑T
t = 1 log2 [Ri(t )/Gi(t )] = 0,

namely
∑T

t = 1 log2Ri(t ) = ∑T
t = 1 log2Gi(t ). For details, we refer

to the yeast cell cycle project of the Stanford Genome database
(http://genome-www.stanford.edu).

DATA IMPUTATION
To impute missing data, we applied the k-means clustering
to 6056 genes, and treated each missing cell as the centroid
of each cluster. Next, we grouped genes that had correla-
tion, computed from other non-missing data, with the cen-
troid across time (rT) greater than 0.7 into one cluster, where
gi(t ) = log2 [Ri (t ) /Gi(t )] and rT = ∑18

t=1(gi(t ) − ḡi)(gj(t ) −
ḡj)/[∑18

t=1 (gi(t ) − ḡi)
2 ∑18

t=1 (gj(t ) − ḡj)
2]1/2. For a fixed time t,

each missing value of the centroid was imputed by the average
of the top-10 or fewer (if fewer than 10 existed in the cluster)
correlated genes.
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FIGURE 1 |The flowchart of the DDSOM algorithm. Triplets in which A
and R are not highly correlated are fitted to the second order model via
regression to approximate the non-linear A-R-T relationship. A network is
reconstructed by triplets which are close to the mode surface in terms of
small Score values.

TRANSFORMATION
To compare the proposed DDSOM with the response surface algo-
rithm (Xu et al., 2002), we transformed the log ratios of gene
expression levels into the interval [0, 1].

ONE CELL CYCLE DATA USED
There may be more contamination in data near the beginning of
the microarray experiment (right after the yeast cells have been
washed by a buffer following treatment with the alpha-factor)
and toward the end of the experiment (after one and half cell
cycles, yeast cells may not be that synchronized). Since the pro-
posed model is of order two, we used data from only one cell cycle
whose expression curve is in general close to a parabola. Specif-
ically, we used microarray data measured from the 21st to 77th

minutes, which corresponded to the first and second peaks of gene
expression curves for genes having clear cell cycle trends. We note
that each microarray experiment in the alpha data set was done in
7 min apart, thus one cell cycle was about 56 min. Both one cell
cycle set and the full (two cell cycle) set of alpha data were fitted in
a pilot study. As expected, the one cell cycle set fitted the proposed
model better than the full set in terms of better goodness-of-fit
(higher R2).

DATA-DRIVEN A-R -T MODELS
To obtain the surface that the majority of triplets (A, R, T ) satisfy,
we first fitted each triplet to the following second order model via
regression.

Ti (t + 1) = β0 + β1Ai (t ) + β2Ri (t ) + β3Ai (t ) Ri (t ) + εi , (2)

where 1 ≤ i ≤ n, β1 > 0, β2 < 0, and β3 are unknown parameters
to be estimated from data. Note that this second order regression
model is an approximation to the underlying non-linear interac-
tion between A (R) and T (Chen et al., 2010). The lag-1 in time
of Eq. 2 has the following biological bearings. Because MGED
measure the concentration of mRNA, this time lag describes the
period of time required by mRNAs of gene A(R) (assumed to be
the same) to translate into protein a(r), then the protein a(r) acti-
vates (repress) its target gene T. An A-R-T relationship, with T
expressing at a time behind A and R, is depicted by the three genes
in Figure 2, in which the curves of R and T are roughly antisimilar
(converse) to each other whereas T ’s curve is roughly similar to
A’s curve. A few RT-PCR confirmed TD and TC gene pairs also
showed patterns similar to AT and RT in Figure 2, which justified
this A-R-T model.

Next, we propose that the mode model (surface) should result
from the majority (in geometry the center) of well-fitted models.
Specific procedures are stated in the following.

THE MODE SURFACE
For triplets in which the correlation of A and R is not too high
(including most of cases in real world), e.g., less than 0.8, the
proposed approach is applicable. Fitting one cell cycle microarray
data, e.g., the 4th to the 12th time points, of each given triplet
to the model in Eq. 2, we obtained in total n(n − 1)(n − 2) fit-
ted models (β̂0i , β̂1i , β̂2i , β̂3i), where i = 1, . . ., n(n − 1)(n − 2)
and n was the number of genes. Among them, the goodness-of-
fit criterion R2 > C1 and all p-values of β̂i ’s < C2, for exam-
ple C1 = 0.7 and C2 = 0.2, were used to select well-fitted mod-
els. Because this was an initial selection and all four estimates
((β̂0i , β̂1i , β̂2i , β̂3i) or (β̂1i , β̂2i , β̂3i)) were required to be signif-
icant, we used a relaxed threshold, e.g., 0.20, for all p-values to
include a sufficient amount of triplets. However, both thresholds
in the criterion can be adjusted by users. For instance, when there
are few triplets satisfying the criteria, one can loosen the threshold
for C2 or both thresholds.

To gain insight into identifying the mode surface, we demon-
strate a case in R3. Triplets of 51 genes involved in DNA synthesis
and DNA repair in yeast were fitted to the model in Eq. 2, and all
models with (β̂1i , β̂2i , β̂3i) satisfying the criterion that R2 > 0.85
and p-values of β̂i < 0.15 for i = 1, 2, and 3 were kept. These
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FIGURE 2 | A graph that shows the relationship of activator-repressor-target displayed by three genes (YRO2–YHP1–MRH1) using time course

microarray data of the alpha set. The x -axis is the time points, and the y -axis is log-transformed (base 2) gene expression levels of the triplet.

571 fitted models (β̂1i , β̂2i , β̂3i) (denoted by +) and the models
fitted by the RS algorithm using Eq. 1 (denoted by o) are plot-
ted in Figure 3, in which the center of points (namely the mode
surface) seems closer to the cluster of points (the majority of well-
fitted models) than Xu’s model (denoted by o). This justifies our
data-driven approach.

For all models (surfaces) that passed the goodness-of-fit cri-
terion, Silverman’s rule was applied to identify the mode surface.
Treating (β̂0i , β̂1i , β̂2i , β̂12i)’s as points in R4, we partitioned
them by Silverman’s rule, which partitioned each coordinate pro-
portional to the number of data and their noise (SE) for a fixed
dimension d. Silverman’s rule identifies the mode (densest place)
of a group of high dimensional points (Scott, 1992), and the
formula to compute the partition number for each coordinate is

hi = 0.9 × min {si , IQRi/1.34} × n−1/(d+4),

where si and IQRi denote the SE and interquantile range of data
in coordinate i, and d is the dimension of the points. Note that
the mode surface is determined by the majority of fitted models,
which depend on gene expression profiles, thus this approach can
be applied to any time course microarray data set.

PREDICTED GENETIC NETWORKS
After the mode surface is identified, some measures to select
triplets close to the mode surface are applied. If a given triplet
(A, R, T ) fits the mode surface well, then the predicted target gene
value T̂ should be close to the observed value T, and this would
result in a small lack-of-fit score. This can be captured by the
lack-of-fit score in Xu et al. (2002), which assumes the form

LF (A, R, T ) =
∑T0

t=1

(
Tt − T̂t

)2

∑T0
t=1

(
Tt − T̄

)2 , (3)

where T̄ is the average of Tt across all time points T 0. If there
is one or more outliers in the time course data of a gene, then

its lack-of-fit score with and without the outlier(s) will deviate
greatly. This rationale is depicted in the diagnostic function (Xu
et al., 2002)

Diag (A, R, T ) =
(

1
T0

∑T0
t=1

[
LF(t ) (A, R, T ) − LF (A, R, T )

]2
)

LF (A, R, T )
,

(4)

where LF (t ) (A, R, T ) denotes the lack-of-fit score of (A, R, T ) with
t th sample deleted. A large Diag (A, R, T ) value also suggests the
triplet may not fit the mode surface well. Therefore, a reasonable
criterion for a triplet being close to the mode surface should be a
function of LF(A, R, T ) and Diag, but with an emphasis on LF(A,
R, T ). An overall measure of good fitting is the score function in
Xu et al. (2002), where

Score (A, R, T ) = LF (A, R, T )
(
1 + Diag (A, R, T )

)
. (5)

This score is adopted in the DDSOM algorithm which outputs
all triplets that satisfy Score < C, where C is a constant specified
by users. Based on these triplets, a predicted gene network can be
reconstructed.

RESULTS
APPLICATION 1: GENETIC NETWORKS OF THE 51 YEAST GENES
INVOLVED IN DNA SYNTHESIS AND DNA REPAIR
In this section, we apply DDSOM and the RS algorithm to infer
GIs of 51 yeast genes involved in DNA synthesis and DNA repair
(in Figure 3 of Tong et al., 2001). TC/TD interactions of these
genes which are SSL to SGS1 or RAD27 are of interest, and the
predicted interactions may shed light on the buffering mechanism
of these genes in yeast cells at molecular level. SGS1 (RAD27)
has homologs in human cells including WRN, BLM, and RECQ4
(FEN 1 and ERCC5) genes. Mutations in these genes lead to
cancer-predisposition syndromes, premature aging, and Cockayne
syndrome (Tong et al., 2001, 2004; NCBI OMIM database).
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FIGURE 3 |The estimated regression coefficients β̂1, β̂2, β̂3 of models fitted well to Eq. 2 and the three surfaces of Xu’s model, denoted by + and o,

respectively. This graph depicts that the surfaces of Xu’s model are far away from the center of the + cluster.

Data in one cell cycle (the 4th to the 12th time points) of
the alpha set (Spellman et al., 1998) of all 51 genes were fitted
to DDSOM. Specifically, the model in Eq. 2 was fitted, and 544
quadruplets (β̂0, β̂1, β̂2, β̂3) satisfied the criterion

R2 > 0.7 and all four p − values < 0.2. (6)

These 544 quadruplets were partitioned by Silverman’s rule
(Scott, 1992), 11 × 16 × 25 × 18, which led to the following mode
surface

Ti (t + 1) = 0.38 + 0.51Ai (t ) − 0.85Ri (t ) + 0.80Ai (t ) Ri (t ) .

To infer novel TC/TD interactions, we set the Score in Eq. 5
to 0.30, which yielded 83 triplets. Of these 83 triplets, 21 pairs
overlapped with the qRT-PCR experiments conducted by our
collaborator; see qRT-PCT in Appendix for a description of the
experiment. Let A → B denote that the expression of B decreases
when A is mutant comparing to that of B when A is wild type in
our collaborator’s qRT-PCR experiment (implying A and B have
TD), and A � B denotes that the expression of B increases when
A is mutant (implying A and B have TC). Note that the predic-
tion A → C resulting from A → B and B → C as well as from

A � B and B � C were also considered. Likewise, both A � B and
B → C, and A → B and B � C led to A � C. We call these predic-
tions A → B and A → C the first and second layer predictions,
respectively. Counting the predictions of both layers together, 15
from 21 pairs were correctly predicted. Namely, the modified true
positive rate (mTPR), the ratio of the correctly predicted inter-
actions over the intersection of the predicted and the qRT-PCR
results, equaled 15 out of 21 pairs (71%). A network of these 15
pairs of interactions is plotted in Figure 4. Note that if we only
consider the first layer predictions, the mTPR is 77% (10 out of 13
pairs). Most p-values of these predicted TC and TD gene pairs are
significant, among which seven (10) pairs are smaller than 0.05
(0.20). For a group of 70 genes, the CPU time of the DDSOM
algorithm is about 38 min, using a PC with Pentium 3.0 GHz and
RAM 1.0 GB.

Data-driven second order model successfully predicted TC/TD
interactions of SGS1 and RAD27 with genes involved in check-
point arrest (e.g., RAD9), DNA repair (e.g., RAD9, RAD54), DNA
replication (e.g., TOP1), and chromosome structure (e.g., ESC2).
Among the 15 correctly predicted interactions, the following are
consistent with existing pathways in literature queried from data-
bases such as iHOP (Hoffman and Valencia, 2004). Rad9 and
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FIGURE 4 | A genetic network inferred by the DDSOM algorithm using one cell cycle data from the alpha set. In particular, triplets with Score < 0.30
which were also intersected with qRT-PCR results are showed, where � (→) denotes TC (TD) interaction, respectively. Solid (dashed) lines are predicted
correctly (incorrectly).

Sgs1 are found to interact genetically and possibly physically
(Ooi et al., 2003). Cells lacking Sgs1 frequently arrest as large-
budded cells with a single nucleus in the mother cell, or “stuck”
between mother and daughter cells, which result in missegrega-
tion during mitosis (McVey et al., 2001; Lo et al., 2006). Esc2
and Sgs1 act in functionally distinct branches of the homolo-
gous recombination repair pathway in S. cerevisiae (Mankouri
et al., 2009). SOD1 is a superoxide dismutase that prevents free-
radical mediated DNA or protein damage while TOP1 relaxes
negatively supercoiled DNA and releases torsion stress created by
DNA transcription. RAD27 and RAD54 are SSL, and this pair
is conserved in humans. Importantly, it was reported recently
that RAD54B-deficient human colorectal cancer cells were killed
by FEN1 (the human homolog of RAD27) silencing (McManus
et al., 2009). In particular, SOD1 is involved in the removal of
superoxide radical pathway, and SIS2 participates in pantothen-
ate and coenzyme A biosynthesis pathway. The correctly pre-
dicted 15 pairs are as follows. ESC2 � RAD27, ESC2 → SGS1,
ESC2 � SOD1, HPR5 → SOD1, HST1 � SOD1, HST1 � TOP1,
POL32 � HST3, RAD9 � SGS1, RAD54 � RAD27, SOD1 � SGS1,
SIS2 � SOD1, SOD1 → TOP1, SIS2 � TOP1, XRS2 � HST3, and
YDJ1 � RAD27.

As a comparison, we also applied the RS algorithm in Xu et al.
(2002) to these 51 genes, and the mTPR was about 53% (23 out
of 43 pairs). These 23 predicted pairs were centered on RAD27,

HST3, and TOP1. Note that we also fitted triplets of 51 genes to Eq.
2 with no time lag, which resulted in more predicted triplets than
using Eq. 2 with a time lag. However, the TCs and TDs verified by
RT-PCR experiments do require a time lag.

APPLICATION 2: TRANSCRIPTIONAL REGULATORY NETWORK OF 63
YEAST GENES
We further applied the DDSOM and the RS algorithm to 63 yeast
genes, to infer their transcriptional regulatory network, which
were checked by the TIs of these genes queried from TRANS-
FAC (Matys et al., 2003). Again, one cell cycle (the 4th to the 12th)
gene expression data of the alpha set in Spellman et al. (1998)
was used.

Similar to Section “Application 1: Genetic Networks of the
51 Yeast Genes Involved in DNA Synthesis and DNA Repair,”
Silverman’s partition was applied in DDSOM; among the gene
pairs which had Score < 0.3, 16 pairs overlapped with the known
TIs from TRANSFAC, and seven pairs were predicted correctly.
On the other hand, the RS algorithm predicted eight pairs with
Score < 0.3, but none of them was overlapped with the known
TIs. The transcriptional network reconstructed by all correctly
predicted gene pairs is in Figure 5. The list of 63 genes and the pre-
dicted triplets (by DDSOM) which were intersected with known
TIs are in Section “Application 2: The list of 63 Gene Names” in
Appendix.
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FIGURE 5 | A transcriptional regulatory network predicted by the

DDSOM algorithm using one cell cycle data from the alpha set. The
network is reconstructed by all correctly predicted gene pairs checked
against known transcriptional interactions from TRANSFAC. The sign → (�)
denotes AT (RT ) interaction.

DISCUSSION
As shown in the two applications, the proposed DDSOM algo-
rithm infers both genetic and transcriptional regulatory networks
from time course gene expression data better than the RS algo-
rithm. The resulting mode surface of DDSOM is identified by the
majority of models fitted well by gene expression data, thus it can
be applied to any data set. Importantly, some predicted TC/TD
interactions are experimentally validated, and they are shown to
coincide with certain components in existing pathways in the liter-
ature, which suggest that DDSOM can predict meaningful GIs, and
has potential to infer partial components in biochemical pathways.

A RULE OF THUMB FOR APPLYING DDSOM
When choosing the constants in the criterion R2 > C1 and p-values
of four β̂i ’s < C2, our experience suggests that users start with
moderate values of C1 and C2 to include sufficient numbers of
triplets, so Silverman’s partition can yield a mode surface with sev-
eral A-R-T triplets nearby. Similarly, the constant for Score can be
specified by users such that a few dozen to 100 or more triplets

are predicted. For instance, criterion R2 > 0.8 and p-values of
β̂1, β̂2, and β̂3 < 0.15 resulted in 1284 triplets, among which
85 triplets had Score < 0.3, and 6 out of 10 predicted TC/TDs
were consistent with the qRT-PCR results; these GIs were centered
on SGS1.

The CPU time of DDSOM is proportional to n3, thus recon-
structing a network of 200 genes will take about 15 h using a PC
with Pentium 3.0 GHz and RAM 1.0 GB. For a large network, e.g.,
the 4000 yeast GIs in Tong et al. (2004), one can use SSL inter-
actions (e.g., links in Figure 3 of Tong et al., 2001) to partition
them into a few smaller subgroups, which can be inferred sepa-
rately but linked together via genes having SSL interactions in the
final step. Although DDSOM can infer gene networks of inter-
est with reasonable accuracy, there is still room for improvement.
In molecular biology, multiple transcription factors and cofac-
tors do regulate their targets cooperatively or synergistically. For
instance, both Gcn4 and Gln3 are required to activate ARG4 (Har-
bison et al., 2004). The proposed approach is ready to capture
regulations of A1 and A2 on T or A1, A2, and R2 on T. This
may be applied to trigenic SSLs when more experimentally ver-
ified trigenic interactions are available. Furthermore, the model
in Eq. 2 can be extended easily to capture co-regulations of tran-
scription factors and microRNAs on their target genes. Recently,
incorporating motif information, ChIP-chip, and microarray data,
to predict transcriptional regulatory networks has been explored
(Li and Zhan, 2008; Chuang et al., 2009). Nevertheless, integrating
multiple types of data to predict GIs remains challenging. We leave
this for future work.
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APPENDIX
Quantitative RT-polymerase chain reaction (qRT-PCR) experi-
ments qRT-PCR is a major development of PCR technology that
enables reliable detection and measurement of products generated
during each cycle of PCR process.

To check whether a gene pair has TC (or TD) interactions, we
measured the qRT-PCR expression level of gene B when its partner
gene A was mutated, and compared this to that when gene A was
wild type (WT). By the definition of TC (TD), the expression level
of gene B should increase (decrease) when A is mutant vs when A
is WT.

In order to verify the differences between experimental groups
(knockout) and control group (WT) are significant or not, the
(aforementioned) above experiment was repeated four times for
each group. Then a t -test was performed to check:

{
H0 : μC = μE

H1 : μC > μE for testing TD

(H1 : μC < μE for testing TD)

where μC and μE is the mean of gene expression in control group
and experimental group, respectively, and α = 0.1.

In this study, 112 pairs of TC and TD interactions formed by
17 As and Bs were confirmed by qRT-PCR experiments. The com-
plete list cannot be released until these results are published by our
collaborator in biochemistry.

APPLICATION 2: THE LIST OF 63 GENE NAMES

ORF Gene name

YAL040C CLN3

YAR071W PHO11

YBR066C NRG2

YBR083W TEC1

YBR112C CYC8

YCL030C HIS4

YCR041W YCR041W

YDL106C PHO2

YDL127W PCL2

YDL179W PCL9

YDL227C HO

YDR033W MRH1

YDR044W HEM13

YDR146C SWI5

YDR207C UME6

YDR310C SUM1

YDR451C YHP1

ORF Gene name

YDR480W DIG2

YDR507C GIN4

YEL009C GCN4

YEL032W MCM3

YEL039C CYC7

YER111C SWI4

YER130C YER130C

YFL014W HSP12

YGL028C SCW11

YGL089C MF(ALPHA)2

YGR044C RME1

YGR088W CTT1

YGR189C CRH1

YGR209C TRX2

YHR007C ERG11

YHR008C SOD2

YHR124W NDT80

YIL072W HOP1

YIL111W COX5B

YIL162W SUC2

YJR047C ANB1

YJR048W CYC1

YJR094C IME1

YKL062W MSN4

YKL096W CWP1

YKL185W ASH1

YKR042W UTH1

YKR099W BAS1

YLR079W SIC1

YLR084C RAX2

YLR254C NDL1

YLR256W HAP1

YLR274W CDC46

YLR342W FKS1

YML027W YOX1

YML075C HMG1

YMR031C YMR031C

YMR303C ADH2

YNL068C FKH2

YNL160W YGP1

YNL289W PCL1

YOR083W WHI5

YOR290C SNF2

YPL256C CLN2

YPR065W ROX1

YPR191W QCR2
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APPLICATION 2, THE PREDICTED TRIPLETS OF 63 YEAST GENES WHICH
OVERLAPPED WITH TRANSFAC.
Use DDSOM and alpha dataset.

“Score < 0.3”= 16 pairs, “Score < 0.3 and 132 AT/RTs from
TRANSFAC”= 7 (in boldface). The predict triplets:

A R T

ASH1 YGP1 HO

FKH2 CRH1 RAX2

MRH1 GCN4 HIS4

PCL9 HAP1 CTT1

CRH1 HAP1 CYC7

MRH1 HAP1 HMG1

CDC46 HAP1 SOD2

PCL9 MSN4 CTT1

ROX1 MRH1 COX5B

ROX1 PHO11 CYC7

PHO11 ROX1 HEM13

MRH1 ROX1 HMG1

SWI4 MRH1 FKS1

SWI5 WHI5 PCL1

SWI5 YOX1 NDL1

MRH1 YOX1 YMR031C

Xu’s Model and alpha dataset.
“Score < 0.3”= 8 pairs, “Score < 0.3 and 132 AT/RTs from

TRANSFAC”= 0 pairs.
The predict triplets:

A R T

FAR1 PRY1 YRO2

CHS1 PRY1 FAR1

CHS1 PRY1 GPA1

FAR1 TUP1 YRO2

BUD9 PRY1 GPA1

FAR1 ADH1 YRO2

FAR1 CYT1 YRO2

FAR1 FLO8 YRO2
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