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Maternal care is critical to offspring growth and survival, which is greatly improved by
building an effective nest. Some suggest that genetic variation and underlying genetic
effects differ between fitness-related traits and other phenotypes. We investigated the
genetic architecture of a fitness-related trait, nest building, in F2 female mice intercrossed
from inbred strains SM/J and LG/J using a QTL analysis for six related nest phenotypes
(Presence and Structure pre- and postpartum, prepartum Material Used and postpartum
Temperature). We found 15 direct-effect QTLs explaining from 4 to 13% of the phenotypic
variation in nest building, mostly with non-additive effect. Epistatic analyses revealed 71
significant epistatic interactions which together explain from 28.4 to 75.5% of the variation,
indicating an important role for epistasis in the adaptive process of nest building behavior
in mice. Our results suggest a genetic architecture with small direct effects and a larger
number of epistatic interactions as expected for fitness-related phenotypes.
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INTRODUCTION
Maternal care is a complex and flexible phenotype with critical
importance to fitness (Mousseau and Fox, 1998). The environ-
ment created by the mother modifies several phenotypes such
as survival, growth, body size, and the emotional development
of their offspring (Francis and Meaney, 1999; Caspi and Moffitt,
2006; Räsänen and Kruuk, 2007), and is more important than any
other single factor during the first days of life (Lee et al., 1991).
The performance of a mother is related to specific maternal care
characteristics such as milk production and ejection (Horseman
et al., 1997), aggression against intruders (Bateson, 1994), and nest
building (Lynch, 1981, 1994; Bult and Lynch, 1997).

Nest building has an essential role in offspring viability (Wal-
lace, 1981), being important for protection against predators
(Boake, 1994), for temperature maintenance (Lynch, 1994; Gaskill
et al., 2011), for fostering pup’s development by an increase of
growth hormone (Marple et al., 1972; Zimmerberg and Shartrand,
2004), for reduction of water loss (Friedman and Bruno, 1976),
and for keeping pups in closer contact with their mother (Fleming
et al., 1999). Nest building is also common in adult mice (males
and non-pregnant females) for thermoregulation (Weber and Ols-
son, 2008), and the behavior for maternal and non-maternal nests
probably shares some genetic basis (Lynch, 1981). Mice selected
for adaptations to cold temperatures build better adult nests (Bar-
nett and Dickson, 2008) which lead to more successful offspring
(Bult and Lynch, 1997). General nest building behavior also has, in
male and female mice, a high to moderate broad-sense heritability
(H2 from 0.4 to 0.6) and low narrow-sense heritability (h2 around
0.2; Lee, 1973; Lynch, 1994), suggesting that natural selection is
removing disadvantageous additive genetic variation.

Although there is abundant information on nest building, lit-
tle is known about the evolution of this behavior and its genetic
architecture (Boake, 1994; Weber and Olsson, 2008). By genetic

architecture of a phenotype, we refer to the total number of genetic
regions involved, their direct effects (additivity), inter-allelic inter-
actions at the same locus (dominance), interactions between dif-
ferent loci (epistasis), and the extension of effects across other
phenotypes (pleiotropy) (Falconer and Mackay, 1996; Erickson,
2005). Taking into account multiple genetic components simul-
taneously allows the understanding of phenotypes with complex
genetic architectures that would be unpredictable if we consider
only one component at a time (Rockman, 2008). Knowledge of
the underlying genetic architecture leads to inferences about the
causal physiological networks involved and aids in the discovery
of genes responsible for phenotypic differences. Also, genes’ inter-
actions and effects contain important information about past and
future phenotypic evolution (Templeton, 2006; Levy and Siegal,
2008; Parter et al., 2008).

The genetic architecture for phenotypes critical to survival and
reproduction (fitness-related traits) may be dramatically different
from that of phenotypes not directly related to fitness (Peripato
et al., 2004). Fitness-related traits usually have a larger number of
underlying genes, and, consequently, higher levels of additive and
interaction variance because there are more targets for mutational
events (Houle et al., 1996). However, due to natural selection act-
ing on the direct effects through generations, fitness-related traits
are expected to have less relative (per gene) additive genetic vari-
ation and, because of the high number of possible interactions,
more dominance, and epistatic genetic variation than other com-
plex traits (Lynch and Walsh, 1998; Merilä and Sheldon, 1999).
Moreover, traits related to fitness may have proportionally more
genes with intermediate effects in comparison with other pheno-
types due to the balance between natural selection and genetic
drift (Ohta, 1973; Merilä and Sheldon, 1999).

We have been studying the genetic architecture of maternal
care features in LG/J × SM/J mice females (Peripato and Cheverud,
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2002; Peripato et al., 2002, 2004; Góes, C. P., Sauce, B., and Peripato,
A. C., unpublished data). Females grouped by maternal perfor-
mance for offspring survival from SM/J and LG/J strains and their
intercross differ in pre- and postpartum nest building (Peripato
and Cheverud, 2002; Peripato et al., 2002; Chiavegatto et al., 2012).
Here, we used QTL (Quantitative Trait Loci) analysis to investigate
the genetic architecture of nest building behavior in mice. Further-
more, because nest building is a complex maternal behavior critical
to offspring’s survival and development, its study can add to the
question of expected genetic architecture for fitness-related traits.

MATERIALS AND METHODS
ANIMALS
We used inbred mouse strains Small (SM/J) and Large (LG/J),
and their F2 intercross. The parental strains were acquired from
The Jackson Laboratories (Bar Harbor, ME, USA). The LG/J strain
originated from an albino population selected for large body size
at 60 days and SM/J from a separate selection for small body size at
60 days (for history and details, see Hrbek et al., 2006). Many phe-
notypes have been genetically studied in this intercross, including
maternal performance (Peripato et al., 2002), prepulse inhibition
(Samocha et al., 2010),growth (Cheverud et al., 1996; Kramer et al.,
1998; Vaughn et al., 1999), bone length (Norgard et al., 2008), obe-
sity (Cheverud et al., 2001, 2004; Ehrich et al., 2005), and litter size
(Peripato et al., 2004).

We mated 10 SM/J males with LG/J females and 10 LG/J males
with SM/J females, resulting in 68 F1 animals. We performed 29
crosses among F1 mice in all combinations of sex and origin to
attain an F2 progeny with chromosome X derived from both
strains. We then randomly mated F2 mice among families (258
crosses) to generate the pre- and postpartum data of this study.
We analyzed all mothers during the first week after delivery for a
set of behavioral tests. At the third week after delivery, we weaned
all pups and placed them in single-sex cages with at most five ani-
mals. We weighed these mice weekly until their seventh week, when
they were separated by couples to mate. Whenever pregnancy was
detected, we removed the male and started monitoring maternal
behaviors.

Animals were fed ad libitum with Nuvilab CR1/Nuvital
(Colombo, PR, Brazil) and maintained at a constant tempera-
ture of 21 ± 1˚C with 12 h light/dark cycles (lights on at 6 a.m.)
at Federal University of São Carlos. To improve environment’s
homogeneity, we performed all tests and observations during the
same period (8:00 to 12:00) inside a laminar flow cabinet in the
animal room. Experiments were carried out in accordance to the
Ethics Committee of the Federal University of São Carlos (Brazil).

NEST BUILDING
As soon as pregnancy was detected, females were each maintained
in a single cage and provided with pieces of cotton of similar
sizes (average 3.67 ± 0.48 g) at the cage’s food/water level to be
used for nest building. To compare possible differences in mater-
ial usage described in some studies (Sherwin, 1997; van de Weerd
et al., 1998), we also added paper (average 1.08 ± 0.03 g) under
the cotton for most animals. During the prepartum period, we
daily removed all nests, cotton, and paper to increase the con-
fidence that the scores for a nest reflect a consistent building

behavior (Schneider and Chenoweth, 1970; Lee, 1973; Lynch and
Roberts, 1984). We evaluated prepartum nest building daily by
classifying it as open or closed, by the presence of material (cot-
ton or paper) above the nest, and by the nests’ height. To measure
the amount of material used for nest building, we daily weighed
the added cotton and paper and subtracted the value remaining
at the cage’s food/water level. The quantification of postpartum
nest building followed the same categories and procedures as the
prepartum period, but, to guarantee maternal closeness with pups
for other tests, we avoided daily disturbances such as destroying the
nest and weighting the material used. In the postpartum period,
we measured the difference between the nest’s inner and outer
temperatures during 1 min at the second and fourth days after
birth.

In sum, we investigated the following nest building phe-
notypes in F2 females in maternal phase: Nest Presence
(0 = absent; 1 = present) prepartum and postpartum; Nest Clo-
sure (0 = opened; 1 = closed) prepartum and postpartum; Nest
Height (centimeters) prepartum and postpartum; Cotton Used
(grams) prepartum; Paper Used (grams) prepartum; Temperature
Difference (degrees Celsius) postpartum.

We weighed all nest building variables according to the rela-
tive importance of each day. Females, in general, spend more time
building nests during pregnancy and birth, decreasing this behav-
ior afterward (Lisk et al., 1969), so we gave more weight to days
closer to birth because they probably have higher importance to
fitness by reflecting the conditions pups would normally meet.
For the prepartum period, being X the highest number of prepar-
tum days analyzed, we multiplied each value by: X /X in the day
before birth, (X − 1)/X in the second day before birth, (X − 2)/X
in the third day before birth, and progressively. For the postpar-
tum period, the highest number of days was 7, so we multiplied
each value by: 7/7 in the first day after birth, 6/7 in the second
day after birth, 5/7 in the third day after birth, and progressively.
The final phenotype of each female was the sum of those weighed
values divided by the sum of days phenotypes were measured for
that female. In order to bring this back to the correct scale, we then
multiply each value by the number of days each phenotype was
measured (multiplied by the maximum number of days measured,
in our case, seven) divided by the sum of indices considering all
days in which measurements were taken. By doing this, we also
reduced biases due to different number of days being scored for
different animals, like the ones caused by differences in pregnancy
detection during the prepartum period.

PRINCIPAL COMPONENT ANALYSIS IN NEST BUILDING DATA
We assessed the correlations among all measured phenotypes to
understand the similarity of their information. A Principal Com-
ponent Analysis (PCA) of correlations performed in SYSTAT 13
(Systat Software Inc., USA) of the already described weighted
means across all the days for each animal and phenotype revealed
that Nest Presence, Nest Closure, and Nest Height have corre-
lations that range from 0.237 to 0.496 prepartum and 0.213 to
0.478 postpartum. The correlation between Paper Used and Cot-
ton Used is 0.892 whereas some other correlations range from
0.037 to 0.094. To compare the same information between pre- and
postpartum phenotypes, we combined the common variables Nest
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Presence, Nest Closure, and Nest Height in a PCA for each period.
We performed a separate PCA for Cotton Used and Paper Used
and maintained the original values of Temperature Difference.
The analysis, then, allowed us to reduce the number of meaning-
ful phenotypes for the subsequent QTL analysis by using, for each
female, factor scores (values of the best planes explaining all vari-
ance) instead of the original values. With this, we increased the
phenotypes’ repeatability, since the new variables aggregate simi-
lar measures with minimal error, while also increasing the degrees
of freedom for the epistatic QTL analysis. We used six pheno-
typic variables for the QTL analysis: Prepartum Nest Structure
(1) and Nest Presence (2) resulting from standardized vectors of
the PCA between original prepartum phenotypes Nest Presence,
Nest Closure, and Nest Height; Material Used (3) from the result-
ing standardized vector of the PCA between original phenotypes
of Cotton Used and Paper Used; Postpartum Nest Presence (4)
and Nest Structure (5) from the standardized vectors of the PCA
between original postpartum phenotypes Nest Presence, Nest Clo-
sure, and Nest Height; and finally Temperature Difference (6),
unchanged from original.

GENOTYPING
We genotyped 234 F2 females for 101 microsatellites markers
previously shown to be polymorphic for SM/J and LG/J strains
that uniformly cover all 19 autosomal chromosomes and the sex
chromosome X (Figure 1).

We used a Guanidine Thiocyanate protocol (Nelson and
Krawetz, 1992) to extract total DNA from the liver of 234 F2

females previously sacrificed and necropsied. We then used a PCR
amplification protocol for microsatellites (Dietrich et al., 1992)
modified by Routman and Cheverud (1994) to efficiently geno-
type a high number of samples. PCR products were visualized and
genotyped using 5% agarose gels and ethidium bromide staining.

STATISTICAL ANALYSIS
Nest building
We used the parametric Multivariate analysis of variance
(MANOVA), with the Wilks lambda (λ) test in SYSTAT 13 (Sys-
tat Software Inc., USA) to investigate the differences between nest
building phenotypes during pre- and postpartum periods of the F2

females. A significance threshold of 0.05 was used in all phenotypic
tests.

Quantitative trait loci analysis
We performed QTL analysis of the F2 females in maternal phase
to correlate the segregating phenotypes and polymorphic genetic
markers covering a genome (Liu, 1997). First, the linkage map of
the 101 markers for the F2 females was created using the Kosambi
function, with the program Map Manager QTX (Manly et al.,
2001). We, then, used interval mapping (2 cM intervals) and multi-
ple regression analysis (Haley and Knott, 1992) to estimate additive
(a) and dominance (d) genotypic values for each interval (Falconer
and Mackay, 1996). We calculated these values using the MIXED
procedure in SAS 9 (SAS Institute Inc., USA).

The statistical significance of the tests was measured by LOD
scores in each analysis against two different significance thresholds,
chromosome-wide, and genome-wide, based on the multilocus

model of Li and Ji (2005). The 5% genome-wide specific thresh-
old value for the F2 mice is 3.27, while the 5% chromosome-wide
threshold values ranged from 1.77 to 2.13, depending on the
chromosome, with a mean of 1.97. LOD scores higher than the
chromosome-wide significance threshold only suggest an associa-
tion of the genomic region with the phenotype (Weller et al., 1998).
LOD scores higher than the genome-wide significance threshold
are a strong evidence of such association (Lander and Kruglyak,
1995). Confidence intervals for each QTL were specified by the
one-LOD-drop-rule (Lynch and Walsh, 1998).

The epistatic QTL analysis was performed by an interchromo-
somal two-way genome-wide scan performed at every two cM
using the F2 Model (Cockerham, 1954) extended to two loci by
Cockerham and Zeng (1996) in SAS 9 (SAS Institute Inc., USA).
We did not evaluate epistasis among genotypes within chromo-
somes because of difficulties in interpretation caused by linkage
disequilibrium. For each pair of chromosomes,we plotted all F val-
ues generated from these analyses which had probabilities below
0.05. We considered as potential epistatic QTLs only those posi-
tions exhibiting the highest F values in a plot. Distant F peaks
separated by low F values were taken as distinct epistatic signals
(Leamy et al., 2005) and epistatic QTLs found within 10 cM were
treated as the same locus. Due to the problem of false positives
arising through multiple comparisons, we estimated a significance
threshold based in the Bonferroni criteria for gene–gene interac-
tions using the Li and Ji (2005). The total number of independent
epistasis tests per phenotype, calculated by the cross products’ sum
of markers for all pairs of chromosomes, was 3,137. This suggests
that we might expect about 157 tests to be significant at the 5%
level, 31 at the 1% level, and 3 at the 0.1% level due of chance
alone. In our study, the 0.05 significance threshold for interac-
tions was 0.05/3137 = 1.63 × 10−5 which corresponds to a LOD
score of 4.79. We considered epistatic tests with probability below
this P value as significant evidence for epistasis (Peripato et al.,
2002; Leamy et al., 2009). We also considered epistasis significant
if one of the four types of epistasis (additive by additive, additive
by dominant, dominant by additive, and dominant by dominant)
was below 4.09 × 10−6 (1.63 × 10−5/4) which corresponds to a
LOD score of 5.33, even if the overall epistasis model was not
significant.

We used a GLM model in SYSTAT 13 (Systat Software Inc.,
USA) to estimate the percentage of variation in each nest build-
ing phenotype explained by direct-effect QTLs. We also esti-
mated the contribution of all direct-effect and epistatic QTLs
together in models with and without interactions to evaluate
the effect of all regions and the importance of epistasis to nest
building.

RESULTS
NEST BUILDING
Pre- and postpartum nest building data for the F2 females are
listed in Table 1. We found significant differences between the
pre- and postpartum sets of phenotypes Nest Presence, Nest Clo-
sure, and Nest Height (Wilks λ3.36 = 0.87, P = 10−10). Nest Pres-
ence is greater in the postpartum period (F1 = 13.66, P = 10−3),
but prepartum values are greater for Nest Closure (F1 = 29.18,
P = 10−6) and Nest Height (F1 = 29.18, P = 10−6).

www.frontiersin.org May 2012 | Volume 3 | Article 90 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Genetic_Architecture/archive


Sauce et al. Genetic architecture of nest building

FIGURE 1 | Microsatellite marker’s location used in all 20 chromosomes of mice genome.

Table 1 | Nest building for pre- and postpartum periods, in F2 females

in maternal phase.

Phenotype n Mean

Prepartum Nest presence (0–1) 231 0.873 ± 0.015a

Nest closure (0–1) 224 0.145 ± 0.015b

Nest height (cm) 224 3.752 ± 0.055c

Cotton used (g) 116 1.862 ± 0.081

Paper used (g) 106 0.761 ± 0.042

Postpartum Nest presence (0–1) 241 0.958 ± 0.010a

Nest closure (0–1) 238 0.072 ± 0.010b

Nest height (cm) 139 3.217 ± 0.089c

Temperature difference (˚C) 232 2.613 ± 0.075

Means are expressed as mean ± SEM. Upper script letters indicate that there

is significant difference (P < 10−6) between pre- and postpartum equivalent

phenotypes.

PRINCIPAL COMPONENT ANALYSIS IN NEST BUILDING DATA
Using the PCA, we reduced the number of nest building pheno-
types for the QTL analyses. Prepartum variables Nest Closure, Nest
Height, and Nest Presence were represented by the resulting first

two vectors, Nest Structure and Nest Presence, which explain 54.6
and 28.7% of the original variation, respectively. The vector Mate-
rial Used, resulting from the prepartum variables Cotton Used
and Paper Used explains 94.6% of their variation. Likewise, post-
partum variables Nest Closure, Nest Height, and Nest Presence
were represented by the resulting two vectors, Nest Structure and
Nest Presence, explaining 51 and 32.9% of the original variation,
respectively.

DIRECT-EFFECT AND EPISTATIC QTL ANALYSIS
We searched for direct-effect QTLs in F2 females in maternal phase
using regressions of genotypic values imputed for every 2 cM with
the nest building phenotypes Nest Presence pre- and postpartum,
Nest Structure pre- and postpartum, Material Used prepartum,
and Temperature Difference postpartum. In total, we obtained
15 regions that, individually, are significantly associated with the
variation in the six pre- and postpartum phenotypes analyzed
(Figure 2), after correcting for multiple tests. Of these, five QTLs
are above the genome-wide threshold and the other 10 regions are
above the chromosome-wide threshold.

Out of the 10 prepartum direct-effect QTLs (Table 2), four
regions have mainly direct (additive) effects: preNP8, preNS7,
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FIGURE 2 | Location of all direct-effect QTLs that we found in F2 females in 12 chromosomes of 20 total from mice genome for the nest building

phenotypes pre- and postpartum with respective confidence intervals, in cM.

preNS17, and preNSX, whereas the other six QTLs showed mostly
dominance effects, with four showing overdominance (preNS15,
preMU1, preMU10, and preMU16) and two under-dominance
(preNP6 and preMU12). Considering the additive and dominance
effects, QTLs explain, together, 7% of the variation for Nest Pres-
ence, with QTL effects of 3.4 and 4.3%. QTLs explain, together,
16.1% of variation for Nest Structure, with QTL effects ranging
from 4.4 to 6.4%, whereas QTLs explain 26.6% of the variation for
Material Used, with QTL effects varying from 9.1 to 11.2%.

The five postpartum direct-effect QTLs we found (Table 2)
have only significant dominance effects. Heterozygous females
have a higher score structured nest than parental ones based on
overdominance effect for postNS15. Nonetheless, poor nest per-
formance in heterozygous females (under-dominance) is found at
the QTLs postNP1, postNS7, postTD2, and postTD14. The postNP1
QTL explains 9.8% of the variation of this phenotype. QTLs for
Nest Structure explain, together, 20.3% of its variation, with QTL
effects of 8.7 and 12.9%, whereas QTLs explain 7% of the variation
for Temperature Difference, with QTL effects of 3.1 and 4.6%.

We found several interactions in the analysis of epistatic QTL
for nest building phenotypes in the F2 females in maternal
phase. We detected close to 1,900 significant tests for epista-
sis at the 5% level considering all the phenotypes here investi-
gated, which is about twice as many as we would have expected
by chance. Furthermore, 500 were significant at the 0.1% level
though we would expect 19 by chance and 71 that were sig-
nificant at the corrected 5% level (P < 1.63 × 10−5), though we
expected less than one by chance. The analyses on prepartum
variables revealed 10 significant epistatic interactions at the cor-
rected 5% level affecting Nest Presence involving 17 regions
(Figure 3A; Table A1 in Appendix), seven interactions for Nest
Structure involving seven regions (Figure 3C; Table A2 in Appen-
dix) and 10 for Material Used involving 15 regions (Figure 3E;
Table A3 in Appendix). The comparison of epistatic QTLs for
prepartum nest building phenotypes revealed a region at medial
chromosome 7 which is common for Nest Presence and Nest
Structure and another at proximal chromosome 11 which is com-
mon for Nest Presence and Material Used. We found direct-effect
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Table 2 | Direct-effect QTLs of pre- and postpartum nest building phenotypes in F2 females in maternal phase.

Nest building QTL name Chr Location (CI) Additive effect Dominance effect Variance explained (%) LOD score

Prepartum nest presence preNP6 6 10 (0–20) −0.531* −0.423* 4.3 2.10

preNP8 8 14 (0–34) −0.750* 0.007 3.4 2.57

Prepartum nest structure preNS7 7 82 (74–90) −0.747* −0.282 6.4 3.58

preNS15 15 56 (50–56) −0.046 0.521* 4.4 2.92

preNS17 17 12 (0–30) 0.945* −0.062 5.3 3.34

preNSX X 42 (36–52) −0.659* −0.037 5.0 3.25

Prepartum material used preMU1 1 10 (0–24) 0.787* 0.562* 11.2 2.77

preMU10 10 26 (10–36) 0.142 0.838* 9.1 2.74

preMU12 12 38 (32–44) −0.082 −0.682* 9.2 2.82

preMU16 16 12 (0–34) 0.908* 0.506* 11.0 2.65

Postpartum nest presence postNP1 1 36 (22–48) 0.281 −0.762* 3.6 9.80

Postpartum nest structure postNS7 7 74 (60–82) −0.793* −0.917* 3.9 12.90

postNS15 15 56 (46–56) 0.749* 0.522* 2.6 8.70

Postpartum temperature difference postTD2 2 80 (66–98) −0.409* −0.442* 2.5 4.60

postTD14 14 10 (0–24) 0.117 −0.497* 2.4 3.10

Direct-effect QTLs are listed by phenotype affected, name, chromosome, location from centromere in centiMorgans and Confidence Interval of 1 LOD (CI), Stan-

dardized additive effect, 2a/σp, and Standardized dominant effect, d/σp (with asterisks indicating significance), and percentage of variation explained. Genome-wide

threshold is 3.27.

FIGURE 3 | Location of epistatic QTLs for nest presence and nest

structure pre- and postpartum, material used prepartum, and

temperature difference postpartum across the total 20 chromosomes.

(A) Nest presence prepartum; (B) Nest Presence postpartum; (C) Nest
Structure prepartum; (D) Nest Structure postpartum; (E) Material Used
prepartum; (F) Temperature Difference postpartum.
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QTLs located inside the confidence interval of some of the
epistatic QTLs detected, at chromosome 6 for prepartum Nest
Presence (0–20 cM) and at chromosomes 1, 12, and 16 for
Material Used.

In the postpartum period, we found 26 epistatic interactions
for Nest Presence involving 29 regions (Figure 3B; Table A4
in Appendix), 13 interactions for Nest Structure involving 22
regions (Figure 3D; Table A5 in Appendix), and five for Tem-
perature Difference involving 10 regions (Figure 3F; Table A6 in
Appendix). Among epistatic QTLs of postpartum nest building
phenotypes, we found regions in common in proximal chromo-
some 3, distal chromosomes 5, 7, and 11, and medial chromo-
somes13 and 16 for Nest Presence and Nest Structure. There
were direct-effect and epistatic QTLs in common at chromosome
1 for postpartum Nest Presence, at chromosome 7 for post-
partum Nest Structure and at chromosome 2 for Temperature
Difference.

When we contrasted pre- and postpartum phenotypes, we
found several regions in common for Nest Presence, at chromo-
somes 4, 10, 13, 15, and X, whereas for Nest Structure we found
common regions at chromosomes 4, 9, and 19.

All direct-effect and epistatic QTLs and their interactions
together explain 28.4% of Nest Presence prepartum, 45.1% of Nest
Structure prepartum, 62.3% of Material Used, 75.7% of Nest Pres-
ence postpartum, 34.9% and of Nest Structure postpartum, 40%
for Temperature Difference.

DISCUSSION
Nest building is a common behavior for thermoregulation in adult
rodents (Weber and Olsson, 2008) which is typical during the
maternal phase for mother/offspring aspects beyond thermoregu-
lation (Marple et al., 1972; Boake, 1994; Lynch, 1994; Zimmerberg
and Shartrand, 2004; Gaskill et al., 2011). LG/J and SM/J dams
exhibit similar maternal performance of prepartum nest build-
ing (Chiavegatto et al., 2012). Additionally, when we contrast the
Nest Presence in F2 females in prepartum stage and in adult F2

males and females that were not in maternal phase we found
similar values (data not shown), suggesting that they may share
some genetic basis (Lynch, 1981). However, F2 females in mater-
nal phase have significantly higher values for Nest Height (on
average, 1.28 times higher than F2 males) and Nest Closure (on
average, 7.17 times more frequently closed than females that were
not in maternal phase; data not shown). These results are sim-
ilar to studies in rodents showing that maternal nests are more
structured than non-maternal nests, two times higher and usu-
ally closed (Denenberg et al., 1969; Weber and Olsson, 2008).
Maternal nests may also be structurally different depending on
maternal stage. Generally, mothers show some programmed hor-
monal stimulus response during pregnancy and sensorial stimuli
after birth coming from pups (Rosenblatt, 1975). Consequently,
we would expect differences in nest building behavior in these two
phases. Indeed, here we observed significant differences between
pre- and postpartum phenotypes of nest building in F2 females.
Even though LG/J and SM/J females build a pre- and postpar-
tum nest, the postpartum nest differ in quality between the strains
(Chiavegatto et al., 2012) with SM/J females building higher score
nests than LG/J females. The LG/J × SM/J genetic background

for females from this intercross generates a poor quality post-
partum nest, as seen in F2 females. This may suggest interactions
among genes modulating maternal performance of nest building.
Nonetheless, even if mothers built similar nests before and after
giving birth, the pups alone could alter the postpartum pheno-
types measured. The decrease of postpartum Nest Closure and
Nest Height quality in F2 could come from difficulties faced by
mothers to keep nests structured with pups interfering. LG/J and
SM/J females have smaller litter size (6.59 and 4.05, respectively)
when compared to F2 females (8.73) (Góes, C. P., Sauce, B., and
Peripato, A. C., unpublished data) and the interference of pups
in the nest may be less pronounced in the parental strains. Since
litter size has a positive correlation with Nest Presence (r = 0.21)
and negative correlations with Nest Closure (r = −0.25) and Nest
Height (r = −0.04) in the F2 females (Sauce, 2010), the num-
ber of pups may be impacting the quality of postpartum nest
building.

The direct-effect QTL analysis of prepartum nest building
detected 10 significant regions that explain, individually, between
3.4 and 11.2% of the variation, which indicates effects of moder-
ate intensity compared to other genetic regions and phenotypes
(Ramos et al., 1999; Turri et al., 2001). Six of the 10 direct-effect
QTLs detected showed significant non-additive effects of over-
and under-dominance. We also found direct-effect QTLs overlap-
ping in pre- (preNS7 and preNS15) and postpartum (postNS7 and
postNS15) nest building phenotypes. Considering that pre- and
postpartum nest building may be distinct phenotypes, as indi-
cated by our results on nest quality (closure and height) and
considering that quality is also the difference between maternal
and non-maternal nests in mice, the presence of common QTLs
for pre- and postpartum Nest Structure suggests common genetic
components in mothers shared with thermoregulatory nest build-
ing behavior in non-pregnant adults (Lynch, 1981; Weber and
Olsson, 2008).

The analysis of epistasis revealed a vast number of interactions
modulating prepartum nest building variation (Figures 3A,C) that
ratify the participation of non-additive effects for this phenotype.
We detected half as many direct-effect QTLs for postpartum nest
building when compared to the prepartum period. This may not
be surprising considering the smaller sample size of the former
compared to the later. Interestingly, though, all postpartum QTLs
showed over or under-dominance instead of only additive effects,
which is not expected if you consider the higher degrees of free-
dom (sample size) required to detect interactions. It is possible that
several of the loci with additive effects have small direct effects that
would not show up as significant in our analysis, perhaps because
alleles with larger direct effects might have been eliminated by nat-
ural selection. Hence, additive effects in the F2 females could be
hidden from selection by epistatic interactions or be dependent
on changes in environment and genetic architecture (Templeton,
2006). It is expected that, due to the Beavis effect (Beavis, 1998),
the number of QTLs detected in analyses performed with less than
1000 individuals may be biased downward whereas their average
effects will be biased upward. These effects are more pronounced
with dominance, because there is higher variance associated with
its detection, since in general there is more power to detect addi-
tive than dominance effects. We only detected dominance effects
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for postpartum nest building and a combination of additive and
dominance for prepartum nest building. Because pre- and post-
partum data have roughly the same sample size, this difference
might not be due to the Beavis effect, but, instead, might sug-
gest the existence of more interaction effects in the postpartum,
possibly due to increased levels of complexity brought by the
offspring. The mother-offspring interaction may be a source of
epistasis because genes expressed in the offspring may interact with
genes expressed in the mother (Wolf et al., 2002). Furthermore,
the care of a mother affects many behaviors in the offspring (Varki
et al., 2008), which may create a network of more complex behav-
ioral interactions. This is exactly what we found, with even more
complexity for the interactions in postpartum nest phenotypes
(Figures 3B,D) that may reflect that pups foster more interactions
among hormones than in pregnancy in which pups show only
indirect effects. Moreover, because the postpartum period may
have greater importance for pup survival (Wallace, 1981; Weber
and Olsson, 2008), it is possible that these differences support the
hypothesis that phenotypes more closely related to fitness have
proportionally less additive genetic variance (Merilä and Sheldon,
1999).

Even though this study was performed in a cross between LG/J
and SM/J, two strains which have been selected for size and have
been maintained in the lab for more than 50 years, we may still
consider broad evolutionary considerations to explain our results.
Because the phenotypes here studied may be important to fitness,
it is possible that the strains were exposed to direct selection favor-
ing their survival in the lab during their formation. Nonetheless,
the phenotypes here investigated failed to show significant cor-
relations with size (data not shown), indicating that the alleles
here studied were not subject to the same selection pressure as
those at loci underlying variation in body size. As discussed pre-
viously (Peripato et al., 2004), we are investigating the effects of
these alleles in an F2 intercross, a situation in which the alleles
provide the largest genetic variance and are most easily detected,
but this should not limit our ability to generalize these conclu-
sions to natural populations because these alleles should have been
randomly drawn from natural populations. The fact that even in
this F2 cross, in which we might expect more additive variation
distinguishing different lineages, a large portion of the variation
segregating comes from dominance and epistasis, suggests that
non-additivity may be just as relevant, or even more relevant, in
natural populations.

There are several genomic regions associated with nest build-
ing in these mice that also interact with other locations across the
genome. Even the regions with direct effects also have indirect
effects due to interactions with other regions, such as preMU16
that has an additive effect but is involved in an epistatic interac-
tion with the distal region of chromosome 1. We found a similar
number of dominance and additive effects for the prepartum
period and only dominance effects in the postpartum period.
More importantly, we found a large number of epistatic inter-
actions for all phenotypes. The presence of many dominance and
epistatic effects supports a genetic architecture compatible with a
pattern where natural selection has biased direct and interaction
variation on nest building behavior (Merilä and Sheldon, 1999;

Templeton, 2006). Even if natural selection has not reduced addi-
tive genetic variation, phenotypes related with fitness might have
higher epistatic and dominance variation due to more underly-
ing genes being targets of mutational events and, consequently,
more interactions per gene (Houle et al., 1996; Lynch and Walsh,
1998).

The results of the direct-effect and epistatic QTL analyses in
the pre- and postpartum periods highlight the complexity in
nest building’s genetic architecture. We expect that this pheno-
type, being a complex maternal behavior and a fitness-related
trait, may have intermediate genetic effects and several regions
with dominance and epistatic interactions. Using the same inter-
cross, we found the same pattern in other maternal aspects
related to fitness such as maternal performance for offspring sur-
vival (Peripato et al., 2002), litter size (Peripato et al., 2004),
and milk provision (Góes, C. P., Sauce, B., and Peripato, A. C.,
unpublished data). On the other hand, studying non-fitness-
related traits, such as morphology and body composition, in
the same intercross, we found more direct-effect locus QTL of
small additive effect and fewer epistatic QTLs than compared
to those fitness-related traits (Norgard et al., 2008; Leamy et al.,
2009). Considering the higher degrees of freedom in direct-effect
QTLs tests, we should expect more direct effects than epistatic
effects, particularly considering the reduced sample sizes here
investigated. Therefore, the greater number of epistatic QTLs
when compared to direct-effect QTLs in our study suggests that
genetic interactions are modulating maternal behavior of nest
building.

Nest building in mammals is set by an important array of
maternal behaviors that ensures pups survival and it is directly
associated with fitness, as well as milk provision (Falconer and
Mackay, 1996), suggesting that genetic interactions could play
a major role in the adaptive process as stocks of new additive
variation (Phillips, 2008). The QTL effects found in pre- and
postpartum nest building behaviors show low to moderate val-
ues. This is expected in a genetic architecture of fitness-related
traits because, according to some models, mutations with inter-
mediate effects are more favored during evolution of traits closely
related to fitness (Merilä and Sheldon, 1999). In conclusion, our
results provide important information about the genetic archi-
tecture of the maternal behavior of nest building in mice. We
found 15 individual QTLs with effects ranging from 4 to 13% of
the phenotypic variation in nest building, but when all signifi-
cant epistatic interactions (71 overall) are considered, they explain
on average 47.7% of the variation per nest building phenotype
(ranging from 28.4 to 75.5%), indicative of the important role
played by epistasis in the adaptive process of nest building behavior
in mice.
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APPENDIX

Table A1 | Epistatic QTLs of prepartum nest presence in F2 females.

Locus 1 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Locus 2 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Prob.

epistasis

Type Genotypic

value

Prob.

genotypic

value

D4Mit16 8 68 D7Mit227 10 32 4.48 × 10−8 AD 0.645 1.53 × 10−3

DD −0.952 9.51 × 10−8

D5Mit6 4 46 D6Mit1 16 16 1.6 × 10−5 AD −0.534 1.31 × 10−3

DA 0.615 5.12 × 10−5

D6Mit9 0 22 DXMit172 16 58 7.26 × 10−6 AD 0.351 1.30 × 10−2

DD 0.556 2.23 × 10−6

D7Mit227 22 44 D11Mit62 26 26 5.1 × 10−6 AA 0.669 6.45 × 10−4

DA 0.680 9.05 × 10−5

D7Mit71 8 92 D15Mit143 2 18 3.52 × 10−7 AA −0.650 2.31 × 10−3

DA −0.588 2.03 × 10−3

DD 0.693 4.75 × 10−5

D8Mit89 8 76 D10Mit10 14 62 2.53 × 10−7 AA −0.741 1.32 × 10−4

AD 0.442 3.89 × 10−3

DD 0.524 1.75 × 10−4

D9Mit90 22 22 D11Mit15 0 48 5.13 × 10−8 DA 0.862 9.30 × 10−6

DD −0.709 7.21 × 10−6

D13Mit115 40 52 D15Mit143 8 24 1.45 × 10−5 AA −0.732 2.82 × 10−4

AD 0.487 9.11 × 10−3

DA −0.545 4.25 × 10−3

D15Mit143 10 26 DXMit144 14 34 6.48 × 10−7 AA −0.534 5.23 × 10−3

DA 0.979 5.35 × 10−7

D17Mit46 0 0 D18Mit17 18 38 1.44 × 10−6 DA −0.308 2.36 × 10−2

DD −0.612 2.03 × 10−7

Epistasis type: AA, additive by additive; AD, additive by dominance; DA, dominance by additive; DD, dominance by dominance. Markers in bold were considered the

same region in that respective chromosome.

Table A2 | Epistatic QTLs of prepartum nest structure in F2 females.

Locus 1 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Locus 2 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Prob.

epistasis

Type Genotypic

value

Prob.

genotypic

value

D1Mit212 8 26 D4Mit235 6 6 3.79 × 10−5 DD 0.687 9.63 × 10−7

D5Mit233 6 26 D6Mit1 0 0 1.38 × 10−4 DD −0.675 3.19 × 10−6

D5Mit233 4 24 DXMit55 10 10 5.44 × 10−5 AD 0.805 8.12 × 10−7

D6Mit58 10 62 D9Mit8 14 68 2.26 × 10−7 DD 0.681 5.82 × 10−9

D7Nds1 2 52 D14Mit225 8 48 7.05 × 10−5 AD 0.827 1.54 × 10−6

D9Mit4 10 46 D11Mit14 0 66 6.56 × 10−6 AD 0.461 5.51 × 10−4

DA −0.561 1.40 × 10−4

D19Mit35 8 66 DXMit55 18 18 9.28 × 10−6 AA 0.351 3.38 × 10−2

AD 0.629 2.74 × 10−5

DD 0.356 9.70 × 10−3

Epistasis type: AA, additive by additive; AD, additive by dominance; DA, dominance by additive; DD, dominance by dominance. Markers in bold were considered the

same region in that respective chromosome.
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Table A3 | Epistatic QTLs of prepartum Material Used in F2 females.

Locus 1 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Locus 2 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Prob.

epistasis

Type Genotypic

value

Prob.

genotypic

value

D1Mit14 2 80 D3Mit22 6 28 1.97 × 10−5 DD 1.038 2.60 × 10−6

D1Mit3 6 10 D5Mit59 6 70 1.72 × 10−4 AA −1.071 2.80 × 10−6

D1Mit11 2 60 D7Mit21 0 0 5.63 × 10−6 AD 0.789 1.89 × 10−4

DD 0.781 3.85 × 10−5

D1Mit14 2 80 D16Mit5 8 30 9.71 × 10−8 AA 0.802 7.06 × 10−4

AD 0.766 9.63 × 10−4

DA 0.916 6.19 × 10−6

D5Mit338 10 60 D12Mit2 10 28 8.17 × 10−6 AD 0.869 7.51 × 10−5

DD 0.732 3.29 × 10−4

D5Mit59 2 66 D19Mit43 10 10 1.19 × 10−5 AA −0.734 3.11 × 10−2

AD −1.075 7.33 × 10−4

DA −0.774 6.03 × 10−3

DD −0.796 6.67 × 10−3

D8Mit58 6 6 D17Mit10 18 60 6.98 × 10−7 DA 2.402 2.27 × 10−8

D11Mit349 0 36 D17Mit46 18 18 2.74 × 10−6 AD −2.401 1.49 × 10−7

D11Mit62 0 0 D18Mit17 0 20 4.62 × 10−5 DD 0.950 2.46 × 10−6

D17Mit46 22 22 D18Mit110 14 14 5.28 × 10−6 AA 0.945 4.98 × 10−2

DA 1.529 1.09 × 10−2

DD 2.897 1.81 × 10−6

Epistasis type: AA, additive by additive; AD, additive by dominance; DA, dominance by additive; DD, dominance by dominance. Markers in bold were considered the

same region in that respective chromosome.
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Table A4 | Epistatic QTLs of postpartum nest presence in F2.

Locus 1 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Locus 2 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Prob.

epistasis

Type Genotypic

value

Prob.

genotypic

value

D1Mit3 6 10 D9Mit355 14 88 1.04 × 10−7 AA 1.395 1.23 × 10−7

DA −0.631 5.61 × 10−3

D1Mit3 4 8 D9Mit4* 12 48 1.24 × 10−5 AA 1.181 1.27 × 10−6

D1Mit7 6 48 D11Mit325 0 58 6.67 × 10−6 AA 0.944 2.88 × 10−4

AD 0.624 1.42 × 10−3

DD 0.495 1.12 × 10−2

D1Mit3 8 12 DXMit172 12 54 1.94 × 10−5 DD 0.899 2.83 × 10−6

D2Mit22 20 128 D4Mit235 10 10 1.57 × 10−5 AA 0.609 1.17 × 10−2

AD 0.761 2.09 × 10−4

DD 0.618 2.32 × 10−3

D2Mit22 12 120 D9Mit355 18 92 9.13 × 10−7 AA 0.838 6.54 × 10−4

DD 1.095 2.1 × 10−6

D2Mit22 10 118 D12Mit5 6 44 1.21 × 10−8 AA −0.943 6.92 × 10−5

DD 1.122 4.51 × 10−8

D2Mit22 12 120 DXMit55 2 2 3.28 × 10−6 AA 0.762 1.87 × 10−3

AD −0.653 1.28 × 10−3

DA −0.719 1.67 × 10−3

D3Mit22 4 26 D6Nds5 0 36 2.64 × 10−7 AA −1.831 5.22 × 10−5

AD 1.052 1.15 × 10−3

DA −0.750 3.21 × 10−2

DD 0.915 2.64 × 10−3

D4Mit235 10 10 D5Mit59 18 82 1.7 × 10−10 AA −0.748 7.23 × 10−3

AD 1.073 9.98 × 10−7

DA −0.817 2.16 × 10−4

DD 0.735 8.58 × 10−5

D4Mit16* 8 68 D11Mit14 14 80 1.61 × 10−6 DA −0.745 1.74 × 10−4

DD 0.781 8.72 × 10−6

D4Mit235 4 4 D15Mit143 8 24 7.52 × 10−5 AD −1.372 3.74 × 10−6

D4Mit2 4 18 D16Mit2 2 2 1.39 × 10−6 DA −1.379 5.16 × 10−7

DD 0.525 3.78 × 10−2

D4Mit16* 16 76 D17Mit10 26 68 2.63 × 10−6 AA −1.051 7.50 × 10−4

DA −1.038 1.93 × 10−5

D7Mit17 12 78 D13Mit115 34 46 3.28 × 10−6 DA 1.513 8.79 × 10−8

D9Mit355 12 86 D12Mit5 10 48 8.25 × 10−13 AA −1.097 2.92 × 10−6

DD 1.200 2.28 × 10−11

D9Mit4* 2 38 D13Mit115 40 52 2.54 × 10−8 AA −1.035 3.31 × 10−4

AD 0.654 6.66 × 10−3

DA −0.970 3.30 × 10−5

DD 0.663 3.60 × 10−3

D10Mit15 22 44 D15Mit143 18 34 2.62 × 10−11 AA −1.518 1.76 × 10−4

AD 1.369 2.65 × 10−5

DA −1.174 2.66 × 10−4

DD 1.327 2.91 × 10−6

D10Mit14 2 66 D18Mit17 0 20 5.76 × 10−10 AA 1.738 3.36 × 10−4

AD −1.770 3.77 × 10−6

DA −1.320 1.93 × 10−4

DD 1.035 1.32 × 10−3

(Continued)
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Table A4 | Continued

Locus 1 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Locus 2 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Prob.

epistasis

Type Genotypic

value

Prob.

genotypic

value

D11Mit14 14 80 D13Mit115 28 40 6.07 × 10−10 AA 1.753 3.67 × 10−8

AD −1.233 1.09 × 10−4

DA −0.515 3.13 × 10−2

DD 0.631 3.36 × 10−2

D11Mit349 6 42 D16Mit2 0 0 5.11 × 10−7 AA −1.147 4.18 × 10−5

AD 0.621 5.39 × 10−3

DD 0.671 5.62 × 10−4

D13Mit115 34 46 D15Mit2* 20 56 3.44 × 10−7 AA −1.097 2.56 × 10−4

AD −0.952 1.06 × 10−4

DA 0.871 3.01 × 10−3

D13Mit115 8 20 D17Mit10 24 66 2.02 × 10−7 AA 4.388 2.94 × 10−4

AD −3.092 8.69 × 10−4

DA −3.191 5.02 × 10−4

DD 1.819 2.52 × 10−2

D13Mit147 26 98 DXMit172 10 52 4.83 × 10−6 AA −0.939 3.10 × 10−4

DD 0.822 1.78 × 10−5

D14Mit5 10 38 DXMit55 0 0 3.5 × 10−7 AA 0.712 7.06 × 10−4

AD −0.754 1.99 × 10−5

DA −0.439 1.45 × 10−2

D15Mit2* 20 56 D16Mit5 14 36 1.31 × 10−6 AA −0.953 5.11 × 10−5

Epistasis type: AA, additive by additive; AD, additive by dominance; DA, dominance by additive; DD, dominance by dominance. Markers in bold were considered the

same region in that respective chromosome. *After marker means a different set that is considered as same region in the same chromosome.
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Table A5 | Epistatic QTLs of postpartum nest structure in F2 females.

Locus 1 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Locus 2 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Prob.

epistasis

Type Genotypic

value

Prob.

genotypic

value

D1Mit14 14 92 D9Mit8 6 60 7.73 × 10−6 AA 0.672 5.02 × 10−3

DA −0.764 1.30 × 10−4

DD 0.505 7.24 × 10−3

D1Mit541 2 96 D11Mit14 14 80 1.95 × 10−9 AA 0.844 5.04 × 10−4

AD −0.676 4.72 × 10−4

DA −0.839 2.43 × 10−5

DD 0.579 8.92 × 10−4

D2Mit307 0 88 D4Mit235 12 12 1.12 × 10−5 AA −0.767 2.55 × 10−4

DA 0.620 3.63 × 10−4

D2Mit380 18 68 D16Mit5 4 26 6.36 × 10−8 DA 0.412 3.22 × 10−2

DD −1.025 1.15 × 10−8

D2Mit307 0 88 D19Mit39 14 42 7.67 × 10−6 AD −0.606 1.63 × 10−2

DD 1.019 2.82 × 10−6

D3Mit54 20 20 D7Mit71 6 90 8.12 × 10−7 AA 1.358 3.51 × 10−3

AD 1.000 6.03 × 10−3

DA 0.903 6.52 × 10−3

DD 1.152 1.81 × 10−4

D5Mit59 12 76 D7Mit71 0 84 6.26 × 10−9 AA −1.037 2.61 × 10−4

AD −0.774 3.67 × 10−4

DA 0.505 3.50 × 10−2

DD 0.905 1.16 × 10−5

D5Mit338 8 58 D12Mit6 14 64 7.34 × 10−6 AA 1.074 8.66 × 10−4

AD 0.792 1.32 × 10−3

DA 0.637 9.6 × 10−3

D7Mit17 12 78 D13Mit115 18 30 1.25 × 10−6 DD 1.706 5.79 × 10−8

D7Mit46 8 116 D17Mit46 20 20 1.26 × 10−5 AD 0.752 3.50 × 10−2

DA 1.155 8.93 × 10−5

DD −0.928 7.99 × 10−3

D10Mit10 8 56 D15Mit143 10 26 3.9 × 10−6 AA 1.220 1.66 × 10−4

AD −1.097 2.49 × 10−4

D10Mit213 10 10 D19Mit39 28 56 8.18 × 10−6 AD 0.626 4.57 × 10−3

DA −0.714 8.44 × 10−3

DD 0.912 1.12 × 10−4

D12Mit6 14 64 D19Mit43 22 22 5.29 × 10−7 AA −0.752 2.82 × 10−3

AD 0.800 3.44 × 10−4

DA −0.767 1.95 × 10−4

Epistasis type: AA, additive by additive; AD, additive by dominance; DA, dominance by additive; DD, dominance by dominance. Markers in bold were considered the

same region in that respective chromosome.
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Table A6 | Epistatic QTLs of postpartum temperature difference in F2 females.

Locus 1 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Locus 2 Locus

distance

to marker

(cm)

Locus

distance

(cm)

Prob.

epistasis

Type Genotypic

value

Prob.

genotypic

value

D2Mit380 18 68 D19Mit35 6 64 1.95 × 10−6 AA −0.569 5.06 × 10−3

DA 0.666 3.71 × 10−4

DD 0.552 9.76 × 10−4

D6Nds5 14 50 D10Mit15 0 22 1.19 × 10−5 AD −0.638 3.21 × 10−3

DA −0.496 1.1 × 10−2

DD 0.630 9.00 × 10−4

D9Mit355 24 98 D14Mit225 16 56 3.08 × 10−10 DD 1.314 8.70 × 10−12

D10Mit14 6 70 D13Mit1 0 0 1.54 × 10−5 AD 0.352 2.39 × 10−2

DA 0.702 6.59 × 10−6

D13Mit147 20 92 D18Mit17 18 38 3.69 × 10−6 AD −0.882 3.87 × 10−7

Epistasis type: AA, additive by additive; AD, additive by dominance; DA, dominance by additive; DD, dominance by dominance.
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