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INTRODUCTION

Rationale: Left ventricular hypertrophy (LVH) is a heritable predictor of cardiovascular dis-
ease, particularly in blacks. Objective: Determine the feasibility of combining evidence from
two distinct but complementary experimental approaches to identify novel genetic predic-
tors of increased LV mass. Methods: \Whole-exome sequencing (WES) was conducted in
seven African-American sibling trios ascertained on high average familial LV mass indexed
to height (LVMHT) using lllumina HiSeq technology. Identified missense or nonsense
(MS/NS) mutations were examined for association with LVMHT using linear mixed models
adjusted for age, sex, body weight, and familial relationship. To functionally assess WES
findings, human induced pluripotent stem cell-derived cardiomyocytes (induced pluripotent
stem cell-CM) were stimulated to induce hypertrophy; mRNA sequencing (RNA-seq) was
used to determine gene expression differences associated with hypertrophy onset. Sta-
tistically significant findings under both experimental approaches identified LVH candidate
genes. Candidate genes were further prioritized by seven supportive criteria that included
additional association tests (two criteria), regional linkage evidence in the larger HyperGEN
cohort (one criterion), and publically available gene and variant based annotations (four
criteria). Results: WES reads covered 91% of the target capture region (of size 372 MB)
with an average coverage of 65x. WES identified 31,426 MS/NS mutations among the
21 individuals. A total of 295 MS/NS variants in 265 genes were associated with LVMHT
with g-value <0.25. Of the 265 WES genes, 44 were differentially expressed (P < 0.05) in
hypertrophied cells. Among the 44 candidate genes identified, 5, including HLA-B, HTT,
MTSS1, SLC5A12, and THBS1, met 3 of 7 supporting criteria. THBS7 encodes an adhe-
sive glycoprotein that promotes matrix preservation in pressure-overload LVH. THBS 7 gene
expression was 34% higher in hypertrophied cells (P =0.0003) and a predicted conserved
and damaging NS variant in exon 13 (A2099G) was significantly associated with LVHMT
(P =4 x 10-5). Conclusion: Combining evidence from cutting-edge genetic and cellular
experiments can enable identification of novel LVH risk loci.
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2011; Wineinger et al., 2011) in carefully ascertained and well

Echocardiographic measurement of increased left ventricular (LV)
mass predicts cardiovascular morbidity and mortality across
demographic groups (Benjamin and Levy, 1999). Beyond the
established risk factors for LV hypertrophy (LVH; race, age, hyper-
tension, obesity), research convincingly suggests there is a genetic
basis of disease (Harshfield et al., 1990). African-American popu-
lations may be enriched for risk variants as LVH burden is about
twofold greater in African Americans compared to Caucasians and
LV mass is strongly correlated in hypertensive African-American
siblings (Arnett et al., 2001). Previous linkage (Arnett et al., 2009a;
Tang et al., 2009), candidate gene (Rasmussen-Torvik et al., 2005),
and genome-wide association studies (GWAS; Arnett et al., 2009b,

characterized African-American cohorts have uncovered signifi-
cant LVH risk loci; however, these loci explain only a fraction of
the phenotypic variation attributable to familial inheritance.
Advances in targeted capture and high throughput sequencing
have recently made whole-exome sequencing (WES) affordable
for clinical studies and offer advantages over array-based geno-
typing for the identification of novel disease-associated loci. The
approach has proved powerful for the study of Mendelian dis-
ease where the identification of rare, mostly coding mutations
clustering in patients is achieved through strict, discrete bioin-
formatics filters (Robinson et al., 2011). Indeed, this approach
has been applied to identify genes underlying familial dilated
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cardiomyopathy (Norton et al., 2011) and others (Ng et al,
2010a,b; Majewski et al., 2011). Recently, this approach has been
extended to non-Mendelian disease (O’Roak et al., 2011; Ram-
agopalan et al., 2011; Kim et al., 2012). It has been suggested that
rare variation within pedigrees can contribute substantially to the
heritability of common traits, offering advantages to family based
designs (Manolio et al., 2009; Shi and Rao, 2011) such as the non-
random ascertainment of extreme phenotype families (Shi and
Rao, 2011). The application of WES to uncover genes associated
with cardiovascular disease-related quantitative traits such as those
that measure LVH has not yet been reported.

A major challenge of genomic studies is the functional assess-
ment of a statistically significant finding in the relevant tissue,
which, in the case of LVH, is cardiomyocytes. Until the recent
development of stem cell technology, human adult cardiomyocytes
were generally not available for functional analyses. Although
human adult ventricular myocytes can be cultured, they are not
optimal for biochemical and molecular biologic investigations
(Berryetal.,2007). Recently, the use of human induced pluripotent
stem cell (iPSC)-derived cardiomyocytes allows direct interroga-
tion of the molecular mechanisms occurring in these cells under
differing experimental conditions. Further, this model system aims
to provide the ability to identify disease pathways and therapeu-
tic targets, which could ultimately lead to more specific, tailored
LVH treatment. Therefore, an approach using WES in combina-
tion with functional studies in iPSC-derived cardiomyocytes can
provide a powerful platform for disease gene discovery.

In the current study we conducted WES to isolate novel loci
for LVH in seven hypertensive African-American sibling trios
from the Hypertension Genetic Epidemiology Network (Hyper-
GEN) that were enriched for increased LV mass. Concurrently, we
implemented an experimental protocol using a novel LVH model
system based on human iPSC-derived cardiomyocytes. These car-
diomyocytes were subjected to conditions to produce hypertrophy,
and mRNA expression was measured in comparison to control
cardiomyocytes generated from the same iPSC line. We show com-
bining results from WES and differential gene expression in the
LVH model system, may identify novel candidate genes supported
by statistical and annotation-based criteria.

MATERIALS AND METHODS

STUDY POPULATION

The HyperGEN study has been previously described (Williams
et al., 2000). Briefly, HyperGEN is part of the Family Blood Pres-
sure Program funded by the National Heart Lung and Blood Insti-
tute and was designed to study the genetics of hypertension and
related conditions. Families were drawn from population-based
cohorts or the community-at-large if sibships had >2 siblings
who had been diagnosed with hypertension before age 60. The
study was later extended to include siblings and offspring of the
original sibpairs. Hypertension was defined as current antihyper-
tensive medication use or having an average systolic blood pressure
>140 mm Hg and/or diastolic blood pressure >90 mm Hg mea-
sured at two clinic visits. Two of four centers (AL, NC) recruited
1,264 African Americans making up 470 families. This study was
approved by all local institutional review boards (University of
Minnesota’s Human Research Protection Program Institutional

Review Board, University of Alabama at Birmingham’s Institu-
tional Review Board for Human Use, University of Utah’s Insti-
tutional Review Board, University of North Carolina at Chapel
Hill’s Office of Human Research Ethics Biomedical Institutional
Review Board, Boston University’s Medical Campus Institutional
Review Board, Medical College of Wisconsin’s Institutional Review
Board); all subjects gave informed consent. In the current study,
seven African-American sibling trios with history of hyperten-
sion and average age <55 years ascertained on the highest average
familial LVMHT were selected for exome sequencing.

BLOOD PRESSURE MEASUREMENT AND ANTIHYPERTENSIVE
MEDICATIONS

Systolic and diastolic blood pressure is reported as the average
of the second and third measures of a series of six sitting blood
pressure measurements. Antihypertensive medication treatment
was defined as use of drug(s) belonging to one of the follow-
ing six classes at the time of the study including diuretics, ace
inhibitors, beta blockers, alpha blockers, calcium channel blockers,
and angiotensin 2 receptor antagonists.

ECHOCARDIOGRAPHY

Doppler, two-dimensional (2D), and M-mode (2D-guided)
echocardiograms were performed following a standardized proto-
col previously described (Devereux and Roman, 1995). Certified
sonographers from each center were trained at the echocardiogra-
phy reading center (New York Hospital-Cornell Medical Center).
Measurements were made at the echocardiography reading center
using a computerized review station equipped with a digitizing
tablet and monitor overlay used for calibration and quantification
(Digisonics, Inc., Houston, TX, USA). LVM was calculated using
end-diastolic dimensions by an anatomically validated formula
and indexed to height (m?7; Devereux et al., 1984).

WHOLE-EXOME SEQUENCING

Exome capture

Using Agilent SureSelect All Exome Capture 21, index-tagged,
paired-end libraries were prepared. As recommended, 3 g of
genomic DNA diluted in 1x Low TE was sheared using a Covaris
instrument with a subsequent end repair step. Prior to end repair,
1 uL of DNA was analyzed on an Agilent 2100 Bioanalyzer DNA
1000 chip. All samples recovered at least 2 g of DNA post-
shearing and had an electropherogram distribution peak between
150 and 200 nucleotides on the DNA 1000 chip.

After end repair, the samples were purified using Agencourt
AMPure XP beads, and the purified DNA then had “A” Bases added
to the 3’ end of the DNA fragments. After “A” base addition, the
DNA was again purified with AMPure XP beads. Ligation of the
indexing-specific, paired-end adapter was done, and the product
was AMPure XP bead purified, then PCR amplified using the Illu-
mina InPE1.0 (forward) PCR primer and the SureSelect Indexing
Pre-Capture PCR primer. For PCR, five cycles of amplification
were used.

After PCR amplification, amplified product was AMPure XP
bead purified and 1 pL was analyzed on an Agilent 2100 Bioan-
alyzer DNA 1000 chip. All samples showed an electropherogram
distribution peak between 250 and 275 nucleotides on the DNA
1000 chip and had a concentration of at least 147 ng/p.L.
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For hybridization, all samples needed to be at a concentration
of 147 ng/uL. To achieve this, an Eppendorf Vacufuge Plus con-
centrator was used to completely lyophilize the samples. Using
the concentrations calculated from results obtained with the
DNA 1000 chip, an appropriate amount of nuclease-free water
was added to each sample post-complete lyophilization to bring
the concentration to 147 ng/pL. Hybridization using the Agilent
Hybridization protocol and the Agilent SureSelect All Exome Cap-
ture Library was performed. Hybridization was stopped at 24 h. All
samples contained at least 20 L, indicating an optimal capture,
and samples were then bead selected using the SureSelect selec-
tion protocol utilizing Dynal MyOne Streptavidin T1 (Invitrogen)
magnetic beads.

Once selected, the captured libraries were then AMPure XP
bead purified and Index barcode tags were added. As recom-
mended for pooling two samples of our capture size, Agilent
Index’s #6 (GCCAAT) and #12 (CTTGTA) were used. Each sam-
ple received one tag, with half of the samples receiving #6 and
the other half #12, one bar-coded with #6 and one with #12, and
pooled together on one sequencing flow cell lane. During addition
of the index tag, the libraries were amplified with SureSelect Index-
ing Post-Capture PCR (Forward) Primer and Index PCR (Reverse)
Primer, with the Index PCR Primer being the sample-specific index
barcode tag. For PCR, 16 cycles of amplification were used.

The prepared libraries were AMPure XP bead purified and 1 pL
of library was run out on an Agilent 2100 Bioanalyzer DNA High
Sensitivity chip. All samples had an electropherogram distribution
peak between 300 and 325 nucleotides on the DNA High Sensi-
tivity chip. To more accurately quantify the libraries for pooling,
samples were quantified using the Agilent QPCR NGS Library
Quantification Kit.

After quantification samples were pooled to a volume of
20 wL with an equimolar amount of 10 nM, following Agilent’s
multiplexing pooling protocol. Each pool was spiked with 1%
phiX control to improve base calling while sequencing, as was
recommended by Illumina for pooling of two libraries.

lllumina sequencing

Following Illumina HiSeq sequencing and cBot protocols, each
of the pooled, multiplexed, index-tagged, paired-end libraries was
denatured, underwent cluster generation onto a HiSeq v1.5 flow
cell and was sequenced.

Each of the 10nM libraries was denatured using the 4-8 pM
procedure to generate a final concentration of 5 or 7 pM to load
per lane for cluster generation. Once cluster generation onto flow
cells was complete, samples were sequenced using the Illumina
HiSeq Sequencing Kit (200 cycles) and multiplexing sequencing
chemistry.

Exome read mapping and variant calling method
Basecalling, demultiplexing, read mapping, and initial SNP calling
were done using Illumina’s CASAVA v1.7 software. Read map-
ping was to the whole autosomal sequence from UCSC hg19 (also
known as GRCh37), using the default parameters to the ELAND2
program.

Autosomal SNPs were called using the CASAVA v1.7 vari-
ant caller with default parameters, except that the chromosomal

coverage variation filter was turned off to account for exome cap-
ture. SNPs were called where the CASAVA v1.7 score was greater
than the default threshold of 10. Genotypes calling at the SNP
sites (variant calling) were done by the SAMTools program v0.1.7-
6 (r530; Li et al.,, 2009; Li, 2011). Multi-sampling joint variant
calling for all SNP sites discovered by CASAVA was carried out by
the mpileup command line with the default parameters. Geno-
type calls in the target capture region with PHRED-like genotype
quality score GQ > 30, totaling 102,089 variants sites, were anno-
tated by the ANNOVAR program (version 2010-12-02; Wang et al.,
2010) against the UCSC hg19 refGene annotation.

STATISTICAL AND BIOINFORMATICS METHODS FOR WHOLE-EXOME
SEQUENCING

In order to identify missense or nonsense (MS/NS) single-
nucleotide variants (SNVs) associated with LVMHT we conducted
a mixed model regression with LVMHT as the dependent variable
controlling for kinship structures as well as age, sex, and weight
as covariates using the kinship R package program LMEKIN
(Lourenco etal., 2011). We used a false discovery rate (FDR) crite-
rion of g-value <0.25 (P-value <0.00258) for significance; this is
more flexible than the usual Bonferroni criterion given our small
sample size (N =21).

INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTE
EXPERIMENTS

Cell culture

For the cardiomyocyte studies, we utilized human iCell™Car-
diomyocytes derived from iPSCs (Cellular Dynamics Interna-
tional, Madison, WI, USA). iCells were recovered from frozen
culture as recommended by the manufacturer and allowed to
recover at least 12 days in iCell Maintenance Medium (iCMM)
before experimentation. For experiments, cells were plated at
1.5 x 10° cells/well in iCMM, as recommended by the manufac-
turer for cell-based assays, and grown in pre-coated (0.1% gelatin
solution), 12-well dishes at 37°C in a 95% air: 7% CO; humidified
atmosphere. After 14 days of recovery, iCells were washed twice
with warmed PBS and starved in iCell serum-free Maintenance
Medium (iCSM) for 48 h, then stimulated in iCMM, as described
below.

Cellular model of LVH

Human iCell Cardiomyocytes were plated to confluence, allowed
to recover before starving for 48 h, and stimulated with an estab-
lished stimulant for the beta-adrenergic system, isopreterenol
(ISO), for up to 72 h. As a correlate of developing LV hypertrophy,
cell culture changes in cell surface area were measured. At least
200 randomly selected stimulated cells were measured as well as
unstimulated controls. As shown in Figure 1, our data demon-
strate that iCell Cardiomyocytes respond to hypertrophic stimuli
byaclear and significant increase in relative cell size (ISO treatment
versus control P =0.0043). We also observed an up-regulation of
hypertrophy markers such as intermediate-early genes C-FOS and
C-JUN measured by immunochemistry (Lijnen and Petrov, 1999).
Together, these data demonstrate successful establishment of a
myocyte hypertrophy model in iPS cell-derived cardiomyocytes
representative of the hypertrophy phenotype.

www.frontiersin.org

May 2012 | Volume 3 | Article 92 | 3


http://www.frontiersin.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive

Zhi et al.

Exome sequence, cell model, LVH

A 250
1 —P=0.0043—
200 -
) 1
N
® 150
E u
o .
3 f
E 100 1
]
1 i
50 -
1 ISO Control
0
Stimulant
B

FIGURE 1| (A) Relative cell size of iCell cardiomyocytes under isoproterenol
(ISO) hypertrophic stimulation versus control cells. (B) Photographs of iCell
cardiomyocytes after hypertrophic stimulation versus controls.

Stimulation, cell harvest, and RNA extraction

iCells were stimulated for 72 h with ISO (10~° M; Sigma Aldrich),
replenishing every 24 h. After stimulation, cells were harvested
with Trizol reagent and the Purlink™RNA Mini Kit (Invitrogen).
Total RNA was extracted per manufacturer’s recommendations,
resuspended in nuclease-free water, and quantified/checked for
integrity by UV spectrophotometry (NanoDrop™2000, Thermo
Scientific).

RNA sequencing

Six paired-end cDNA libraries (three biological replicates of con-
trol iPSC cardiomyocytes, three biological replicates of isopro-
terenol stimulated cardiomyocytes) were prepared and sequenced
using Illumina TruSeq RNA Sample Preparation Kit.

Total RNA was extracted and quantified. Following the TruSeq
RNA sample preparation low-throughput protocol, 500 ng of
total RNA was used to generate index-tagged paired-end cDNA
libraries. During library preparation samples were each tagged
with Agilent Index #2 (CGATGT), #4 (TGACCA), #5 (ACAGTG),
or #6 (GCCAAT). After cDNA libraries were generated using the
sample preparation kit, quality of the libraries was checked using
1 L of sample run on an Agilent 2100 Bioanalyzer DNA 1000
chip. All samples showed an electropherogram peak at ~260 base

pair. Samples were then quantified using the Agilent QPCR NGS
Library Quantification Kit.

After quantification, samples were pooled for multiplexing to
a volume of 20 wL with an equimolar amount of 10 nM, follow-
ing Agilent’s multiplexing pooling protocol. Each pool was spiked
with 1% phiX control to improve base calling while sequencing,
as was recommended by Illumina for pooling of two libraries.

Hllumina sequencing

Following Illumina HiSeq sequencing and cBot protocols, each
of the pooled, multiplexed, index-tagged, paired-end libraries was
denatured, underwent cluster generation onto a HiSeq v1.5 flow
cell and was sequenced.

Each of the 10 nM libraries was denatured using the 4-8 pM
procedure to generate a final concentration of 6 pM to load per
lane for cluster generation. Once cluster generation onto flow
cells was complete, samples were sequenced using the Illumina
HiSeq Sequencing Kit (200 cycles) and multiplexing sequencing
chemistry.

RNA-seq assembly

Six paired-end cDNA libraries were sequenced (three biological
replicates of control iPSC cardiomyocytes, three biological repli-
cates of isoproterenol stimulated cardiomyocytes). Basecalling and
demultiplexing were performed using CASAVA v1.8 from Ilu-
mina. Paired-end fastq sequence reads from each sample were
assembled against hg19 using the splicing aligner Tophat v1.3.1
(Trapnell etal.,2009) with the llumina-supplied hg19 gene-model
annotation file (gtf annotation).

RNA-seq differential expression

Splice-aligned reads were assigned to gene models using the soft-
ware package HTSeq v0.5.3p3 (http://www-huber.embl.de/users/
anders/HTSeq) and the hgl9 gtf annotation. Fold-change and
differential expression significance values were calculated from
gene-level read counts using the DESeq Bioconductor R package
v1.2.1 (Anders and Huber, 2010).

BIOINFORMATIC AND STATISTICAL METHODS FOR PRIORITIZATION OF
CANDIDATE GENES

Variants with an association with LVMHT of g-value <0.25
are designated as candidate variants. For each candidate
variant, its minor allele frequency (MAF) among African
Americans in the NHLBI Exome Sequencing Project (ESP)
was obtained from the ESP exome variant server v.0.0.6
http://snp.gs.washington.edu/EVS/ (released September 9, 2011);
its GERP score and PolyPhen score were obtained from the
SeattleSeqAnnotation131.

Candidate gene prioritization strategy

Information from different statistical analyses and bioinformatic
functional annotations were used to generate a composite measure
similar to that described by Gu et al. (2007) about the relevance
of candidate genes for their potential roles in LVH. We prioritized
candidate genes (identified through the intersection of WES find-
ings and differential RNA expression in the cellular model of LVH)
by the following seven criteria.
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Variant association after exclusion of outlying case (P20). Many
candidate variants significantly associated with LVMHT after cor-
rection for multiple testing described above are influenced by an
extreme case with LVMHT of 114 g/m?7 whom we considered may
harbor important LVH variants. However, this individual will also
harbor false positive findings so we additionally considered the
association of candidate variants after exclusion of the extreme
case using the regression models described above (N =20). Add
1 to the composite prioritization score if any candidate variant
P < 0.05, otherwise 0. Rationale: More weight is given to variants
that are associated with LVMHT both with and without the most
extreme case considered.

Gene-based association (GB). We calculated gene-based P-
values for the association of a genetic score with LVMHT for
21 individuals. Gene-based genetic score was calculated as the

weighted sum of variants, similar to Madsen and Browning (2009).
I;;

K

where K is the number MS/NS variants in the gene, I;; is the minor
allele counts at variant i, n; is the number of individuals among 21
having a high quality genotype calling, and p; is the MAF of African
Americans in ESP. For alleles with frequency 0 in ESP, we used an
allele frequency of 0.0002, corresponding to the lowest allele fre-
quency in the ESP exome collection, 1 heterozygous among ~2,500
individuals. If only one missense or non-synonymous variant was
present in a gene, the gene-based P-value was set to 1. Associa-
tion of the gene-based score with LVMHT was tested using mixed
linear regression similarly to the single-variant analysis described.
Add 1 to the composite prioritization score if P < 0.05, otherwise
0. Rationale: Allelic heterogeneity may be a probable scenario for
common disease where multiple rare variation considered together
may explain alarger portion of the genetic basis of disease (Madsen
and Browning, 2009).

Genetic score for gene j was defined as g;

Conservation (GERP). We considered the highest Genomic Evo-
lutionary Rate Profiling (GERP) score (Davydov et al., 2010)
among all candidate variants. We added 1 to the composite priori-
tization score if GERP score >5, otherwise 0. Rationale: GERP can
be used to characterize genomic regions that have been subjected

to purifying selection and are enriched for functional elements
that may be predisposing to human disease (Cooper et al., 2005).

Functional annotation (PH). We used the Polymorphism Phe-
notyping (PolyPhen) annotation of candidate variants. We added 1
to the composite prioritization score if any of candidate gene vari-
ant was annotated as “probably damaging,” otherwise 0. Rationale:
PolyPhen is predictive of the possible impact of an amino acid sub-
stitution on the structure and function of a human protein using
physical and comparative considerations (Ramensky et al., 2002).

Minor allele frequency. We considered the minimal MAF of all
candidate variants among African Americans from the NHLBI
exome sequencing project (ESP). Add 1 to the composite prioriti-
zation score if MAF <0.01, otherwise 0. Rationale: Rare frequency
of an SNV in a general reference population suggests enrichment
of the SNV in an extreme phenotype population may be related to
disease (Madsen and Browning, 2009).

Gene expression in cardiomyocyte (GNF). GNF GeneAtlas2 (Su
etal., 2004) gene expression was obtained from the UCSC genome
browser database. Add 1 to the composite prioritization score
if expression score >1, otherwise 0. Rationale: This confirms
expression in the relevant disease tissue.

Information from existing linkage studies (Linkage). Existing
linkage analysis results for LV mass of the HyperGEN cohort was
obtained from the results of a previous work in HyperGEN (Arnett
et al., 2009a). Linkage peaks of LOD >1.75 were considered a hit
(Rao and Province, 2000). We added 1 to the composite prioritiza-
tion score if gene was within 50 kb region centered at a linkage hit,
otherwise 0. Rationale: Linkage constitutes an independent statis-
tical genetic approach for identifying rare and functional variants
within multiply affected families.

RESULTS

Table 1 presents demographic and phenotypic data measured
for each of the seven sibling trios. Hypertension was well con-
trolled in this population by medication. The average num-
ber of antihypertensive medications reported at the time of

Table 1 | Phenotypic values for seven hypertensive African-American sibling trios.

Family

1 2 3 4 5 6 7
Age, years 46.6 (6) 46.6 (3) 43.6 (2) 43.3 (4) 45.3 (4) 42.6 (7) 52.6 (4)
Sex, number of females 2 3 3 2 1 3 1
Weight, kg 91.3 (12) 75.6 (3) 118.9 (18) 61.8 (14) 121.8 (21) 93.6 (6) 97.0 (9)
Height, m 1.7 (0.2) 1.6 (0.02) 1.7 (0.04) 1.6 (0.08) 1.7 (0.1) 1.6 (0.04) 1.7 (0.1)
Systolic blood pressure, mm Hg 87 (7) 142 (37) 140 (32) 137 (20) 162 (7) 113 (18) 142 (21)
Diastolic blood pressure, mm Hg 53 (8) 82 (20) 83 (22) 85 (9) 89 (9) 70 (2) 80 (9)
LV mass (indexed to height), g/m?”’ 48.5(7) 72.0 (36) 61.3 (16) 49.7 (6) 63.9 (9) 52.9 (7) 64.4 (10)
LV hypertrophy* 1 2 2 1 3 2 3

Data are mean (SD) or counts.
*LV mass (indexed to height), g/m?’ >51.
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blood pressure measurement was 1.7 + 1. In comparison to the
entire HyperGEN African-American stratum (N = 1264, average
LVMHT 424 12g/m?’ and 25% LVH) this subset is enriched
for LVH (LVMHT 59 + 16 g/m?*7 and 66% LVH; Arnett et al.,
2011). Additionally, intra-family IVH case counts ranging from
1 to 3 provided phenotypic variability necessary for gene-to-trait
association analyses.

Whole-exome sequencing reads covered 91% of the 37.2 MB
target capture region with an average coverage of 65x (Table 2).
After applying variant calling and quality control filters described
we identified 102,089 SNVs among the 21 individuals (Table 3).
Of those variants, 31,426 are MS/NS mutations (Table 4) which
were examined for association with LVMHT. For tallies of variant
type and total per individual, see Table 3.

Regression analyses yielded 295 MS/NS candidate variants in
265 genes (“WES genes”) that passed significance criteria for
multiple testing (see Supplementary Material). DEseq RNA dif-
ferential expression results revealed a total of 44 of the 265 WES
genes were also differentially expressed with P < 0.05 in the iPSC
model of LVH (see Supplementary Material). Those 44 “candi-
date genes” were further prioritized based on 7 supportive cri-
teria (Table 5). We focus here on five genes that satisfy at least
three of the seven criteria in Table 5. Among these five genes
are major histocompatibility complex, class I, B (HLA-B), hunt-
ingtin (HTT), metastasis suppressor 1 (MTSSI), solute carrier
family 5 (sodium/glucose cotransporter), member 12 (SLC5A12),
and thrombospondin 1 (THBSI). Adjustment of DEseq P-values

Table 2 | Basic statistics of exome sequencing per sample.

Sample Percent of captured Average coverage of
region with read depth captured region, x
>8x >10x >20x
A2055 93 92 84 90
A2057 88 85 69 39
A2058 92 90 81 73
A2140 93 91 83 85
A2153 88 85 69 38
A2154 89 86 72 43
A2614 89 87 72 43
A2639 89 86 71 42
A2640 90 87 74 48
A2803 91 88 76 51
A2804 88 85 70 41
A2855 91 89 77 54
A3167 88 85 71 43
A3168 93 91 83 81
A3169 92 92 79 60
A3170 94 92 85 94
A3174 92 89 79 57
A3177 93 91 84 88
A3234 93 92 85 109
A3235 93 91 84 98
A3254 92 91 83 90
Average 91 89 78 65

(Pagj) for the genome-wide list of tested genes (N = 11,746 genes
expressed in at least one experimental condition) yielded 11 of 44
of candidate genes significantly differently expressed (P,g; < 0.05)
including THBSI (P,g; = 0.009), but not any of the remaining
prioritized candidates.

DISCUSSION

Whole-exome sequencing provides new genetic information by
identifying rare and potentially novel protein-coding variants
not available on existing genotyping microarrays. Like previous
genomic studies, the functional assessment of novel gene vari-
ants associated with LVH pathology identified through WES poses
significant challenges. Here we present the first WES analysis of
any common, quantitative trait in an African-American sample.
We identified 295 variants in 265 genes associated with LV mass
indexed to height through WES in 7 hypertensive sibling trios. To
functionally assess our findings, we combined evidence obtained
using RNA sequencing in a molecular model of LVH using human
iPSC-derived cardiomyocytes. Using this approach we discovered
44 genes with evidence of a role in disease pathology and statistical
association with LVMHT. We refined the list to five genes applying
a prioritization strategy incorporating statistical and annotation-
based bioinformatic filters. Among the five genes, THBSI has
previously been shown to promote matrix preservation and pre-
vent chamber dilation in an animal model of LVH (Vanhoutte and
Heymans, 2011; Xia et al., 2011) while the other genes are novel
LVH candidates. Due to several limitations the findings presented
in this manuscript are suggestive. Still we provide proof of concept
that a novel cellular model of LVH is a promising platform for the
functional assessment of genes highlighted via genomic discovery
efforts.

THBSI1 is an adhesive glycoprotein that mediates cell-to-cell
and cell-to-matrix interactions. It inhibits angiogenesis and acti-
vates latent transforming growth factor beta, a protein related to
cellular differentiation in many tissues. In a recent report, THBSI-
null mice had accentuated cardiac hypertrophy (Xia et al., 2011).
In the RNA-seq experiment we observed a 1.34-fold increase in
THBS1 expression (P = 0.003) after ISO stimulation (see Supple-
mentary Material) consistent with the up-regulation of the protein
in disease. These points make genetic disruption of the protein in
humans an interesting topic for follow-up research.

Among the remaining genes we report on, MTSSI functions
in cell proliferation. It is a suspected scaffold protein that inter-
acts with multiple partners to regulate actin dynamics; its down-
regulation has been observed in multiple cancer types (Xie et al.,
2011). HLA-B is part of a family of genes making up the immune
system’s HLA complex which aids in the body’s reaction to a wide
range of pathogens. A SNP near HLA-B (rs2523586) was recently
shown to be associated (P =1 x 10~°) with diastolic blood pres-
sure (DBP) in African Americans as part of the Candidate Gene
Association Resource (CARe) consortium (N = 8,592) although
this effect did not replicate in an independent African-American
population (Fox et al., 2011). Trinucleotide repeats in HTT are
known to cause Huntington’s disease, although a biological link
to LVH is unlikely. Finally, SLC5A12 is a sodium-coupled mono-
carboxylate transporter indicated in the renal handling of lactate
and urate (Thangaraju et al., 2006; Ganapathy et al., 2008). Uric
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Table 3 | Number of variants within individual by category.

Family Sample # Intronic Intergenic Utr Ncrna Up_down_ Exonic Synonymous Non- Splicing Stop All
stream synonymous
4698 A2055 8,724 743 1,007 861 124 19,760 10,695 8,976 310 86 31,497
4698 A2057 7,988 700 928 788 106 18,449 9,864 8,490 281 92 29,235
4698 A2058 8,493 748 976 841 110 18,849 10,126 8,647 269 74 30,289
4136 A2140 8,652 778 995 896 115 19,400 10,324 8,982 298 90 31,112
4136 A2153 7,999 667 894 812 102 18,625 10,002 8,636 252 84 29,374
4136 A2154 8,185 713 928 811 19 18,871 10,046 8,735 287 88 29,900
4284 A2614 8,184 687 944 833 109 19,124 10,317 8,712 302 92 30,156
4284 A2639 8,139 719 973 816 107 18,929 10,233 8,603 295 89 29,956
4284 A2640 8,311 720 971 838 115 19,123 10,285 8,744 282 91 30,352
4864 A2803 8,274 689 951 835 109 19,185 10,305 8,791 293 86 30,315
4864 A2804 7992 687 929 791 17 18,535 9,985 8,461 277 87 29,327
4864 A2855 8,320 682 975 850 106 19,408 10,452 8,853 316 100 30,621
5062 A3167 8,127 660 901 815 98 18,491 9,894 8,600 281 94 29,374
5062 A3168 8,662 765 962 904 127 19,449 10,450 8,906 310 90 31,163
5062 A3174 8,606 735 981 803 125 19,472 10,457 8,927 303 85 31,000
5067 A3169 8,376 661 1,023 854 133 19,140 10,435 8,626 304 76 30,466
5067 A3170 8,636 744 1,018 904 133 19,473 10,540 8,855 319 74 31,191
5067 A3177 8,604 723 1,019 886 132 19,367 10,408 8,867 297 88 31,008
85 A3234 8,771 743 1,008 917 M 19,423 10,402 8,936 31 84 31,243
85 A3235 8,709 722 1,017 904 112 19,353 10,357 8,907 291 87 31,085
85 A3254 8,657 712 990 887 118 19,075 10,224 8,769 303 79 30,708
Total 27849 2,309 3,307 2,999 389 64,868 33,433 31,057 1,070 369 102,089

Table 4 | Genetic variants found by WES and annotated by ANNOVAR.

Variant type No. variants Genes represented
Intronic 27849 9,374
Intergenic 2,309 NA
UTR 3,272 2,751
ncRNA 2,999 1,001
Up_down_stream 389 308
Splicing:intronic 151 150
Unknown 252 NA
Exonic 64,868 13,796
Synonymous 33,433 11,722
Non-synonymous 31,057 10,268
Stop 369 339
Unknown 9 5
All 102,089 18,127

UTR, untranslated region; ncRNA, non-coding RNA. See Table 3 for tally of variants
per individual.

acid has a strong link to CVD and hyperuricemia has been linked
to ventricular remodeling in an animal model (Chen et al., 2011;
Isik et al., 2012).

We note several limitations to our study. Specifically, our sam-
ple size was small and not sufficiently powered to identify single
genes and variants associated with LV mass solely through sta-
tistical modeling approaches. Additionally, we did not directly
test the functional effect of the identified variants using the
human iPSC-derived cardiomyocyte model of LVH, rather we

relied on differential RNA expression of the corresponding gene
to suggest variant functional association to the observed pathol-
ogy. Many questions remain whether the expression pattern in
a cell culture model fully resembles the molecular changes of
cardiomyocytes in a complex organ such as the heart (Kong
et al., 2010). However, we and others (Carvajal-Vergara et al,,
2010) have observed well established changes previously described
as characteristic for LVH. Plus, iPSC cardiomyocytes have been
used extensively for the study of other cardiovascular disease
phenotypes, for example human cardiac cellular electrophysiol-
ogy (Yokoo et al., 2009; Moretti et al., 2010; Germanguz et al.,
20115 Itzhaki et al., 2011). Finally, we employed several cut-
off criteria throughout our procedures which, if altered, could
influence our findings. This includes FDR criteria for variant
association with LVMHT and an un-weighted candidate gene
prioritization strategy. Therefore, some false positive and alter-
natively, false negative findings, may have resulted and further
replication is required. Still, we present a procedure designed to
limit such false findings by combining evidence from genetic and
cellular experiments and further prioritizing our results based
on rich evidence from existing studies and publically available
databases.

In conclusion, we employed an innovative, iterative approach to
identify protein-coding variants associated with LVH in African-
American hypertensives. The identified genes with significant
variants are linked to cell proliferation, cell adhesion, solute hand-
ing, and injury repair. One candidate, THBSI1, is involved in
injury response in multiple tissues, has been linked to cardiac
hypertrophy in an animal model, and is upregulated in our
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Table 5 | Candidate gene (/N = 44) prioritization given a composite score of seven supportive functional and/or statistical categories.

Gene Variant count P20 GB GERP PH MAF GNF Linkage Total

HLA-B 34
HTT 6
MTSS1 4
SLC5A12 2
THBS1 3
ATP11B 4
COL6A3 16
DICER1

GLTPD1

MCMe6

MDGA2 2
MLL3 16
NIN 6
PAPPA 4
RSAD2 3
ST8SIAS 2
TXLNB 8
UGGT1 3
DCHS2 27
DDX11
EMCN
IL33
IPO8
IQGAP3
KDM4C
KDM5A
KRCC1
METTL3
POLRTA
SLC24A5
SLC45A2
SMC2
SPPL2A
SYNE1
TTBK2
ASTNZ
CHD6
MAP3K6
MAP9
NASP
PCNX
PER3
TMEM52
uspPs
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w
N
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P20, variant is associated with the phenotype with P-value <0.05 after exclusion of the phenotypic outlier. GB, gene-based score is associated with the phenotype,
P < 0.05; GERF, Genomic Evolutionary Rate Profiling score >5, PH, PolyPhen functional prediction is “probably damaging”; MAF, minor allele frequency of candidate
variants < 1%, GNF, gene expressed in cardiomyocytes according to GNF GeneAtlas2; Linkage, linkage signal with LOD > 1.75 within £50 kb.

novel cellular model of disease. Results necessitate replication describe how progress in the discovery of genetic risk factors
and questions remain about the mechanistic relevance of the for LVH may benefit from a tiered approach that integrates evi-
specific variants in the detected genes, however the results pre- dence from new and existing data including a novel cellular model
sented support the expansion of this research. Ultimately, we of LVH.
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