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Epigenetic regulation modulates gene expression without altering the DNA sequence
to facilitate rapid adjustments to dynamically changing environmental conditions. The
formation of an epigenetic memory allows passing on this information to subsequent gen-
erations. Here we propose that epigenetic memories formed by adverse environmental
conditions and stress represent a critical determinant of health and disease in the F3 gener-
ation and beyond.Transgenerational programming of epigenetic regulation may represent a
key to understand adult-onset complex disease pathogenesis and cumulative effects of life
span and familial disease etiology. Ultimately, the mechanisms of generating an epigenetic
memory may become of potentially promising diagnostic and therapeutic relevance due to
their reversible nature. Exploring the role of environmental factors, such as stress, in caus-
ing variations in epigenetic profiles may lead to new avenues of personalized, preventive
medicine based on epigenetic signatures and interventions.
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INTRODUCTION AND SCOPE
It is well established that the risk of many human complex dis-
eases is determined by a heritable component. Recent evidence
suggests that non-genomic and epigenetic processes participate in
the heritable origins of disease with effects that extend beyond a
single generation. The evolutionary conservation of these mech-
anisms is central to produce viable and apt offspring. Since the
dynamic formation of a heritable memory may persist through
multiple generations it may also poorly prepare the offspring to
a dynamically changing environment, thus contributing to dis-
ease and compromising longevity. Therefore, programming by
transgenerational inheritance represents a central mechanism by
which environmental conditions may influence disease risk across
multiple generations.

The concept of transgenerational inheritance refers to three
main mechanisms. Aside from altered maternal endocrine
responses and postnatal parental behavior, transmission of mod-
ifications in the epigenome appears to be a major component of
transgenerational programming of disease (Jablonka and Lamb,
1989; Gluckman et al., 2007). Epigenetic transgenerational inher-
itance refers to the passage of epigenetic marks to the next
generation without being altered or erased (Reik and Walter,
2001). Epigenetic processes readily respond to environmental
conditions and so allow rapid modifications to an adverse environ-
ment, such as stress. Here we argue that human complex diseases,
including psychiatric and metabolic disorders, are related to trans-
generational epigenetic inheritance of maladaptive responses to
environmental stress (Figure 1).

The main hypothesis of this review is that an adverse environ-
ment affects disease predisposition and outcome beyond a single
life span to create a heritable or familial contribution to disease.

According to Skinner (2008), we propose that epimutations need
to propagate to at least three generations in order to represent
genuine epigenetic inheritance. Very few studies have in fact
investigated transgenerational inheritance of parental experience
through three subsequent generations. We will first review the
basic concepts of epigenetic regulation of gene expression and
transgenerational programming. We will then discuss the role
of environmental adversity, such as stress, in shaping the pre-
disposition to future disease within a single lifespan and across
generations. We will provide evidence supporting the conclu-
sion that health and disease are programmed across multiple
generations via epigenetic mechanisms.

UNRAVELING THE SECRET LANGUAGE OF DESTINY: BASIC
CONCEPTS OF EPIGENETIC PROGRAMMING
Epigenetic regulation can “program” the genetic information and
cell fate and thus largely determine the functionality of an organ
including the brain. These mechanisms may facilitate an adaptive
response to a changing environment to optimize the chances of
survival and reproductive success. Epigenetic programming, or
re-programming by changing experience, permits reversible and
heritable modulation of gene expression without altering the DNA
sequence to rapidly adjust cellular processes to constantly changing
environmental conditions (Champagne and Meaney, 2006, 2007;
Champagne et al., 2008; Migicovsky and Kovalchuk,2011; Skinner,
2011; Skinner et al., 2011; Babenko et al., 2012a,b).

Epigenetic changes are mitotically stable mechanisms respon-
sible for gene expression modulation and/or their inheri-
tance by molecular adjustments. The major epigenetic events
include DNA cytosine methylation, histone modifications, tran-
scriptional, and posttranscriptional control of gene expression
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FIGURE 1 | Inheritance of an epigenetic memory caused by an

adverse environment, such as stressful experiences, produce

phenotypes in next generations that may influence disease risk.

Solid red arrow indicates direct exposure to stress in an animal; thin red
arrows indicate direct stress exposure leading to intergenerational stress

influence in F1 and F2 generations; dashed thin green arrow indicates
possible transgenerational inheritance of a multigenerational stress
phenotype in the F3 generation. To prove genuine epigenetic programming,
it is necessary to determine phenotype transmission to the third
generation (F3).

through PIWI-interacting RNA (piRNA), microRNA (miRNA),
and heterochromatin gene silencing (Figure 2; Ilnytskyy et al.,
2008; Yauk et al., 2008; Filkowski et al., 2010; Migicovsky and
Kovalchuk, 2011). Recent studies have recognized the impor-
tance of differential expression of miRNA-regulated pathways in
complex epigenetic selfregulation (Bartel, 2004). For instance,
miR-184, a brain-specific miRNA suspected in the etiology of
autism spectrum disorder, is upregulated by the release of the
methyl-CpG-binding protein 2 (MeCP2) from paternal allele-
specific expression (Nomura et al., 2008). While MeCP2 is integral
to the function of mature neurons, the presence of a methyl-CpG-
binding domain and interaction with miR-184 provides a link
between epigenetic pathways involving small regulatory RNAs and

DNA methylation. These pathways may synergistically affect trans-
generational programming of disease via genomic imprinting.

Genomic imprinting refers to a process that involves chromatin
modifications to achieve monoallelic gene expression (Reik and
Walter, 2001). One of the first evidences of genomic imprinting
was derived from an observation linking Angelman syndrome, a
brain developmental disorder including speech and motor deficits
(Angelman, 1965), to Prader–Willi syndrome, a congenital con-
dition that is characterized by insatiable appetite and delayed
motor maturation (Curfs and Fryns, 1992). These two very dis-
tinct human phenotypes are both linked to loss of function of the
ubiquitin UBE3A pathway, encoded by a nucleotide sequence on
chromosome 15 (Magenis et al., 1987; Adams, 2008). Usually the
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FIGURE 2 | Overview of epigenetic influences shaping health and

disease from gametogenesis to differentiated organ. (A) DNA
methylation (DNA containing methyl groups, which is packed in a
nucleosome core histone complex). (B) microRNAs (microRNA–mRNA
complex). (C) Histone modifications (histone tail acetylation, methylation,
ubiquitination, sumoylation, or phosphorylation). (D) Heterochromatin
(containing hypoacetylated, methylated H3K9 histone tail). (E),
PIWI-associated interfering RNAs (PIWI protein and piRNA guide forming a
complex with transposon transcript). (F) Oogenesis (ovulum). (G)

Spermatogenesis (spermatozoid). (H) Mature brain.

sequence derived from the mother encodes function of this path-
way while the paternal contribution is silenced. Thus, the paternal
gene is unable to compensate for the loss of the maternal gene
in Angelman syndrome, leading to this characteristic phenotype
(Jiang et al., 1998; Rougeulle et al., 1998). In Prader–Willi syn-
drome, however, the neighboring region SNRPN on chromosome
15, encoding a pathway for mRNA splicing, shows the opposite
pattern of gene imprinting. Here, the paternal contribution of
the gene is normally being transcribed and the maternal contri-
bution is silenced. If function of the paternal gene becomes lost,
the methylated maternal gene is unable to correct for this loss
and the phenotype of Prader–Willi syndrome may occur (Cassidy
et al., 2012). While this kind of inherent genomic imprinting is

a potent influence on future health and disease, the epigenome,
in particular methylation patterns, readily respond to changes in
life style.

Methylation has been the most widely investigated mecha-
nism of genomic imprinting in health and disease. Based on
the observation that alleles may be expressed from only one of
the two parental chromosomes (Reik and Walter, 2001; Wilkins
and Haig, 2003), recent studies suggested that DNA methylation
may represent a central mechanism to facilitate phenotypic vari-
ation of complex traits (Itier et al., 1998; Wilkinson et al., 2007;
Wang et al., 2010). Methylation patterns are highly responsive
to parental life style and environment. For instance, prenatal
exposure to maternal tobacco smoking may elevate DNA methy-
lation of the gene encoding brain-derived neurotrophic factor
(BDNF; Toledo-Rodriguez et al., 2010), a vital growth factor in
brain development, plasticity, and psychiatric disease (Balarat-
nasingam and Janca, 2012). Methylation of the BDNF-6 exon
causes reduction in BDNF expression and possibly facilitates vari-
ations in brain development in the fetus exposed to maternal
smoking (Toledo-Rodriguez et al., 2010). Thus, one may argue
that transgenerational variation in BDNF expression may con-
tribute to the programming of psychiatric diseases. Aside from
substance use, the maternal psychological state may also deter-
mine the psychiatric health of the offspring through altered DNA
methylation status. For example, maternal depressed mood during
pregnancy was found to be related to methylation of the SLC6A
promoter, which encodes a transmembrane serotonin transporter,
in both mother and infant (Devlin et al., 2010). The authors of
this study showed that maternal depressed mood in the second
trimester was associated with reduced maternal and newborn
SLC6A4 methylation status (Devlin et al., 2010), which represents
a risk factor for greater vulnerability to post-traumatic stress dis-
order (Koenen et al., 2011). These findings suggest that maternal
mood and wellbeing can have profound consequences on offspring
health.

EPIGENETIC MECHANISMS AS AN INTERFACE BETWEEN
STRESS AND DISEASE ACROSS ALL AGES
Epigenetic mechanisms represent a critical interface between a
stressful environment and the genome. The term stress refers to
perturbation of homeostasis by an adverse experience or environ-
mental threats that activate the hypothalamic–pituitary–adrenal
(HPA) axis and associated neuroendocrine changes (Seckl, 2008).
The onset of the stress response results in the release of primary
stress hormones, such as cortisol in primates, which bind to glu-
cocorticoid receptors in the cytoplasm. As a hormone–receptor
complex, cortisol then translocates to the nucleus to regulate
gene expression and protein synthesis (Zucchi et al., 2010). The
genomic response to stress mediates a set of complex neural,
metabolic, and endocrine adaptations that may have long-term
consequences (Drake et al., 2005). Above and beyond these reg-
ulatory activities, stress may also leave an epigenomic imprint to
affect health and disease (Babenko et al., 2012a,b). A particularly
sensitive time window to programming of long-term physiology
and health through epigenetic marks is the perinatal period.

Perinatal programming refers to the priming of long-term
physical and psychological health outcomes during critical periods
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in early development. Excessive glucocorticoid levels caused by
severe maternal stress during pregnancy may saturate the protec-
tive placental enzyme barrier, 11-beta-hydroxysteroid dehydroge-
nase (11beta-HSD), to reach the fetus (Miller and Chernoff, 1995;
Welberg et al., 2000; Brummelte et al., 2010) and permanently
modulate fetal HPA axis activity (Drake et al., 2005) and behavior.
For example, perinatal stress influences anxiety- and depression-
like behaviors and cognitive abilities (Champagne et al., 2003,
2008; Richards and Sacker, 2003; Gatt et al., 2009; Kinsella and
Monk, 2009; Rokyta et al., 2008) as well as central dopaminer-
gic system function to modulate rewarding behavior in later life
(McArthur et al., 2007; Mueller and Bale, 2008). Many of the
behavioral effects of stress likely include an epigenetic compo-
nent (Colvis et al., 2005; Champagne et al., 2006) that facilitates
robust perinatal programming. A striking example of this link
was proposed by studies of maternal care. Variations in maternal
care may program individual differences in stress reactivity across
generations by epigenetic mechanisms, including DNA methyla-
tion (Francis et al., 1999; Champagne et al., 2003; Weaver et al.,
2004). This early life experience has long-lasting effects on the
progeny and is transmitted to the next generation (Francis et al.,
1999; Caldji et al., 2003).

Prenatal glucocorticoid exposure and postnatal care by a
stressed mother not only program the response to recurrent stress
in later life, but may also affect the predisposition to disease in
adulthood. The concept that vulnerability to disease is acquired
in the perinatal period was developed more than 30 years ago
(e.g., Dörner et al., 1984). Studies by David Barker’s group in the
1990s have first associated adverse perinatal environment with
higher incidence of obesity and cardiovascular disease in the aged
offspring (Law et al., 1992; Barker, 2007). Experience during ges-
tation and/or early postnatal life may prime the susceptibility for
disease in later life, including metabolic (e.g., type 2 diabetes mel-
litus, obesity), neurological (Mabandla et al., 2009; Mabandla and
Russell, 2010; Babenko et al., 2012b), and cardiovascular disease
(Newnham, 2001; Zambrano et al., 2005; Cottrell and Seckl, 2009;
Zambrano, 2009; Singhal, 2010; Thompson and Einstein, 2010).
Thus, while the information given to the developing fetus may
support immediate adaptation to the postnatal environment, it
may not support successful aging because these endocrine adjust-
ments to an adverse environment come at a high metabolic expense
(Figure 3).

Later in life, stress-induced changes in epigenetic regulation are
suspected to contribute to the enhanced susceptibility to neuro-
logical and psychiatric disease through regulation of components
of the HPA axis activation, such as corticotrophin-releasing fac-
tor (Sterrenburg et al., 2011). Moreover, prenatal stress causes
region-specific changes in miRNA expression resulting in dysmas-
culinization of the male brain (Morgan and Bale, 2011). During
critical periods of sexual differentiation, methylation patterns
change regardless to neonatal hormone exposure and are dynam-
ically regulated throughout the life span (Schwarz et al., 2010).
Accordingly, evidence suggests that risk factors for cardiovascular
disease, including stress and an unbalanced diet, are associated
with modified epigenetic markers (Ordovás and Smith, 2010).
Possible epigenetic correlates of elevated cardiovascular risk were
reported to include global DNA hypermethylation (Stenvinkel

et al., 2007) and miRNA-29b (miR-29b)-induced regulation of
genes that influence atherosclerosis risk (Chen et al., 2011). The
latter study showed that miR-29b upregulation results in DNMT3b
down-regulation in human aortic smooth muscle cells and altered
MMP-2/MMP-9 gene expression involved in cell migration (Chen
et al., 2011). Moreover, central genomic and epigenomic responses
to psychological stress or associated endocrine changes involve
DNA methylation (Mychasiuk et al., 2011; Sterrenburg et al., 2011)
and miRNA regulation (Babenko et al., 2012a). Interestingly, age-
related epigenetic re-programming may also be responsible for
a positive relationship between advanced maternal or grand-
maternal age at the time of birth and an increased risk of
psychiatric conditions, such as autism spectrum disorder (Gold-
ing et al., 2010) or memory impairments (Burns and Mery, 2010)
in the offspring. These studies concur that epigenetic activity
closely influences brain development and neurological functions
(Figure 2).

Aside from perinatal programming, the cumulative effects
of life-long adverse stimuli may also modify the risk of func-
tional decline and disease in adulthood and old age (Mora
et al., 2007; Miller and O’Callaghan, 2008; Merrett et al., 2010;
Schreier et al., 2011). Epigenetic signatures are central to adult-
onset complex diseases including psychiatric and neurological
(Glaser et al., 2010; Ronald et al., 2010; Babenko et al., 2012b),
cardiovascular (Stenvinkel et al., 2007; Kaneda et al., 2009; Chen
et al., 2011; Stein et al., 2011), and metabolic conditions (Ling
et al., 2008; Begum et al., 2012; Volkmar et al., 2012). It may be
the cumulative experience to stress throughout life that, through
epigenetic regulation, precipitates or accelerates pathological pro-
cesses that promote neurodegenerative events (Babenko et al.,
2012b). Accordingly, methylation patterns in the brain are cor-
related with chronological age (Hernandez et al., 2011) and with
life style (Kaliman et al., 2011). Notably, the aging of the brain
and age-related decline in motor and cognitive functions corre-
sponds to a global reduction in gene expression (Lu et al., 2004)
and a diminished capacity for epigenetic memory in chromatin
of oligodendrocytes (Shen et al., 2008). The age-associated loss
of the epigenetic memory may significantly alter cellular function
over time.

Central targets of epigenetic programming in the brain at
any age are neurotrophic molecules, which are highly sensitive
to the effects of stress and other environmental factors (Kobilo
et al., 2011; Taliaz et al., 2011; Johansen et al., 2012). Neurotrophic
and growth factors that are modulated by epigenetic regulation
include glial cell line-derived neurotrophic factor (GDNF; Uchida
et al., 2011), BDNF (Fuchikami et al., 2010; Zeng et al., 2011),
and nerve growth factor (NGF; Sen and Snyder, 2011). Epige-
netic regulation of histones mediates neurotrophin actions with
histone acetylation enhancing cAMP response element-binding
(CREB)-associated transcription elicited by BDNF and NGF (Sen
and Snyder, 2011). BDNF activates neuronal nitric oxide syn-
thase with the nitrosylated GAPDH/seven in absentia homolog
(Siah) complex translocating to the nucleus. Degradation of the
histone–lysine N-methyltransferase SUV39H1 by Siah facilitates
histone H3K9 acetylation, CREB binding to DNA, and enhances
expression of CREB-regulated genes and neurite outgrowth (Sen
and Snyder, 2011). Histone deacetylases are the first identified
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FIGURE 3 | Adverse perinatal experiences may influence the risk

of cardiovascular and metabolic diseases in adulthood. Low birth
weight and low infancy weight (first year) has been correlated with a

predisposition of adult onset diseases, such as high blood pressure and
risk of cardiovascular disease, insulin resistance and risk of diabetes, and
adulthood obesity.

intranuclear targets of nitric oxide, but, due to its highly diffusible
nature, it is likely that many other nuclear factors are directly
regulated by nitric oxide (Nott and Riccio, 2009).

Dysregulation of neurotrophic molecules is a central com-
ponent in the pathogenesis of major psychiatric and neurologic
disorders, such as schizophrenia, obsessive-compulsive disorder,
Alzheimer’s and Huntington diseases (Mattson, 2008). The cumu-
lative adverse effects of stressful experiences throughout life may
accelerate age-related decline through loss of neurotrophic factors
and neuroplasticity (Pham et al., 2002; Gatt et al., 2009), reduced
gene expression (Bishop et al., 2010), and altered epigenetic status
(Siegmund et al., 2007). Interestingly, susceptibility and adapta-
tion to adverse environments during a lifetime may be closely
linked to the epigenetic status of the GDNF gene (Uchida et al.,
2011). Importantly, epigenetic signatures of neurotrophic factors
may be passed on to the fetus (Toledo-Rodriguez et al., 2010) and
propagate to subsequent generations.

FORMING AN EPIGENETIC MEMORY ACROSS GENERATIONS
Epigenetic memory refers to transgenerationally stable, yet
dynamic re-programming of the germline epigenome that will
transfer epigenetic information from one generation to the next
in the absence of DNA sequence mutations (Zambrano, 2009;
Migicovsky and Kovalchuk,2011). A pioneering example of an epi-
genetic memory was generated by studies focusing on the agouti
locus in mice that controls coat color (Morgan et al., 1999). In
mice expressing the viable yellow (Avy) allele the coat color is
determined by the epigenetic status of intra-cisternal A particle
(IAP) retrotransposons. Without methylation, the transcription
of an IAP retrotransposon inserted upstream of the agouti gene
will initiate the expression of agouti protein, resulting in yellow
fur along with abnormal metabolic responses and predisposition
to tumors (Morgan et al., 1999). In the hypermethylated state,

however, silencing of the promoter in the IAP I will result in
a black coat and mice become indistinguishable from wild-type
(A/A) mice (Morgan et al., 1999). Such profiles may persist to sub-
sequent generations to form an epigenetic memory. Epigenetic
modifications may propagate to the offspring by means of two
different processes and at different stages in a mammal’s lifecycle:
programming of somatic cells and the germline, as illustrated in
Figure 1.

Programming of somatic cells, including the brain, may medi-
ate transgenerational inheritance. Environmental conditions may
impact the organization of brain organogenesis and pheno-
type through epigenetic reprogramming rendering the individual
susceptible to adult-onset neurological disease. These acquired
memories may lead to organ- or tissue-specific metabolic imbal-
ance or disease predisposition. The mechanisms also include
behavioral and physiological modifications in response to the
environment that shape intergenerational transmission (Cham-
pagne and Meaney, 2006). Thus, a behavioral phenotype may
perpetuate across generations via changes in chromatin. For exam-
ple, a behavioral trait such as a certain type of maternal care
may be passed on to the subsequent generation. Rats raised by
a mother displaying poor maternal care, such as low levels of
licking and grooming toward her pups, also are more likely to
exhibit poor maternal care toward their own offspring (Weaver
et al., 2004, 2007; Cameron, 2011). This behavioral phenotype
is linked to hypermethylation of the BDNF gene and conse-
quently low expression of BDNF in the prefrontal cortex of
offspring (Roth et al., 2009). Transgenerational behavioral traits
of maternal care may also determine survival in other ways. In
the biparental burying beetle Nicrophorus vespilloides, grandpar-
ents and parents of both sexes cumulatively influence offspring
development (Lock, 2012). In the biparental condition, females
spend most of their time caring for the larvae, while males
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spend most time with indirect care by maintaining the carcass
in which the larvae lives. The existence of an intergenerational
influence from F0 to F2 generations provide a selection pressure
for the division of parental investment in biparental species across
different taxa, which seems to enhance survival of this species
(Lock, 2012).

The second mechanism of transgenerational programming by
stress may be mediated through the germline. These modifi-
cations may be passed on to future generations without direct
exposure (Chong and Whitelaw, 2004). The germline-mediated
epigenetic transgenerational inheritance is based on marks in the
chromatin that influence the gonadal development and reproduc-
tive success of the affected individual (Whitelaw and Whitelaw,
2008). Usually, DNA methylation sites are selectively erased dur-
ing gonadal sex determination in embryogenesis. Some DNA
marks will survive this critical time window, however, and per-
sist throughout development and maturation (Migicovsky and
Kovalchuk, 2011). The methylated DNA then may integrate in
the gametes and be passed on to the embryo of the next genera-
tion. These genes “imprinted” with a pattern of DNA methylation
may propagate stress-induced modifications to the subsequent
generations (Skinner et al., 2008). An example of germline trans-
mission is represented by the effects of environmental toxins, such
as the endocrine disruptor bisphenol-A (BPA), which resembles
the actions of reproductive hormones and thus influences the
reproductive success of females in the next generation (Dolinoy
et al., 2007). The hypothesis that diseases might be programmed
by transgenerational influences, such as stress through epigenetic
mechanisms seems reasonable in this framework, considering that
the environment shapes current (somatic cells) and future (germ
cells) generations.

Transgenerational epigenetic inheritance may be defined as a
phenotype that is transmitted to more than one generation by
means other than Mendelian genetics (Whitelaw and Whitelaw,
2008; Migicovsky and Kovalchuk, 2011; Daxinger and Whitelaw,
2012). Thus, physiological and/or environmental factors affecting
the parent (F0 generation) can have consequences for the next,
unexposed generation (F1 generation) and possibly for further
subsequent generations (F2, F3) as well. A recent concept argues
that only epigenetic alterations persisting to the F3 generation may
be considered truly heritable when pregnant females are concerned
(Skinner, 2008). Skinner (2008) defined transgenerational epige-
netic inheritance as changes in unexposed generations (F3 and
beyond). This concept excludes F0 generation exposure to a given
environmental factor during pregnancy that directly also affects
the phenotype of the F1 embryo and F2 primordial germ cells.
Therefore, as illustrated in Figure 1, the interpretation of genuine
transgenerational effects requires analysis of the F3 phenotype.
In this context, transgenerational phenotypes are defined as traits
acquired from an initial exposure, persistently transmitted to the
next generation in the absence of continued exposure in any of the
successive generations (Skinner, 2011). An intergenerational phe-
notype refers to transmission to the F1 and F2 generations that are
not (yet) known to persistently alter the F3 phenotype. By contrast,
multigenerational phenotypes are characterized by direct expo-
sure of multiple generations to an environmental factor or toxin
(Skinner, 2011). For instance, endocrine disrupting agents and

pesticides induce gene imprinting (F1–F4; Anway et al., 2005; Jirtle
and Skinner, 2007; Manikkam et al., 2012), anxiety-like behavior
(Skinner et al., 2008), and adult-onset disease (Anway et al., 2006)
in a genuine transgenerational pattern. According to these studies,
the present review will consider the definition of transgenerational
inheritance to the F3 generation, and our hypothesis is that disease
is programmed by epigenetic inheritance across three successive
generations.

An epigenetic transgenerational phenotype will ultimately
affect gene expression, molecular adjustments, cellular function,
physiological parameters, and behavioral profiles. These processes
may perturb the integrity of somatic and/or germ cells in the off-
spring later in life, leading to compromised health. The short-term
adaptation that results from epigenetic modifications may facili-
tate rapid adaptation to adverse environmental conditions and
immediate survival of an individual. In the long-term, however,
acquired physiological and epigenetic profiles, such as those in
response to stress, may produce a mismatch to later-life challenges
and enhance the vulnerability to disease.

LIFE-TIME VERSUS TRANSGENERATIONAL EPIGENETIC
PROGRAMMING
Epigenetic programming represents a major mechanism to allow
passing on the effects of experience to subsequent generations.
This process generates an epigenetic memory that is now recog-
nized as a central component in the transmission of information
about early experience, environmental conditions, and life style
factors to the progeny (Boyko et al., 2010; Boyko and Kovalchuk,
2010; Migicovsky and Kovalchuk, 2011). For example, in the
womb epigenetic re-programming seems to occur rapidly to facil-
itate adaptation of the fetus to current environmental conditions
(Breton et al., 2009; Guerrero-Preston et al., 2010; Toledo-
Rodriguez et al., 2010). While initially a beneficial response to
prime developmental plasticity (Mousseau and Fox, 1998; Cropley
et al., 2012), transgenerational transmission of epigenetic alter-
ations in the long-term may have maladaptive consequences that
compromise overall health and successful aging. Thus, epigenetic
programming may represent a key to understand diseases pro-
cesses, propagation through generations, and cumulative effects
of life span and familial disease etiology.

Epigenetic programming might direct evolution through inher-
itance of certain epimutations across generations. Experience
throughout life, however, can modify the imprints of perinatal
programming and disease risk. Accordingly, positive experiences
such as education, physical activity, and social environment
can ameliorate maladaptive programming and disease vulnera-
bility (Wirdefeldt et al., 2005; Carlson et al., 2008; James et al.,
2011). Moreover, positive experience in rats, including expo-
sure to an enriched environment, can diminish consequences of
neurodegenerative influences and age-related functional decline
(Escorihuela et al., 1994; Mattson et al., 2001; Laviola et al., 2004;
Jadavji et al., 2006; Paban et al., 2009; Segovia et al., 2009). Accord-
ingly, the sum of cumulative favorable and adverse experiences
creates age-associated epigenetic drift, which was shown in ani-
mals (Bennett-Baker et al., 2003) and in monozygotic twins (Fraga
et al., 2005; Martin, 2005; Poulsen et al., 2007). Fraga et al. (2005)
demonstrated that advancing age leads to greater global and
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locus-specific differences in DNA methylation and histone H3 and
H4 acetylation in peripheral blood lymphocytes, buccal mucosal
epithelial cells, skeletal muscle biopsies, and adipose tissue of iden-
tical twins. Different epigenetic patterns were found in almost all
telomeres and certain gene-rich regions of chromosomes (Fraga
et al., 2005). These findings illustrate that epigenetic modifica-
tions in somatic cells may perpetuate throughout the life span
(Siegmund et al., 2007; Hernandez et al., 2011; Uchida et al.,
2011) likely by stable mitosis (in cell lines, tissues, or organs)
to facilitate adaptation to ongoing environmental conditions
(Skinner, 2011).

The effects of parental exposure to environmental factors may
persist to the F2 generation and enhance vulnerability to adult-
onset disease across multiple generations (Gluckman et al., 2007;
Zambrano, 2009; Nolan et al., 2011; Feil and Fraga, 2012). For
example, a recent collaboration between Swedish and British scien-
tists provided evidence of sex-specific programming of longevity
in humans. A transgenerational correlation was found between the
nutritional status during early life of the paternal grandparents and
the grandchild’s chances of longevity, including associations with
cardiovascular and diabetic disease (Pembrey, 2010). A promi-
nent case of intergenerational programming of disease stems from
a systematic study of the Dutch Famine Birth Cohort. Exposure
to poor nutrition during pregnancy in the Dutch winter 1944/45
led to smaller babies (Stein and Lumey, 2000), who developed
an increased risk of insulin resistance in adulthood (Painter et al.,
2005). Furthermore, granddaughters of women pregnant during
the famine were smaller, more prone to neonatal adipositas and
poor health in later life (Painter et al., 2008). These findings con-
firm that consequences of prenatal adverse experience may reach
down across several generations.

Another link to intergenerational HPA axis programming is
illustrated by lower cortisol levels in offspring of Holocaust sur-
vivors with post-traumatic stress disorder (Yehuda et al., 2007).
HPA axis changes may also be involved in the observation that
grandchildren of Holocaust survivors present with higher rates
of psychiatric illness (Sigal et al., 1988), elevated levels of fear,
neurotic behavior, and aggression (Scharf, 2007) and depression
(Felsen and Erlich, 1990). On the other hand, adaptive changes
may reflect in improved coping skills (Sigal and Weinfeld, 2001).
Thus, ancestral programming may result in both beneficial and
detrimental physiological and behavioral outcomes.

In rat and guinea pig models, intergenerational stress-induced
changes lasting to the F2 generation have been shown for caloric
restriction (Benyshek et al., 2006; Bertram et al., 2008; Pinheiro
et al., 2008) or overfeeding (Pentinat et al., 2010). A protein-
restricted diet in the parental generation led to reduced birth
and brain weight and altered glucose metabolism in the unex-
posed F2 generation (Zamenhof et al., 1971; Benyshek et al.,
2006). Altered glucose metabolism in these studies is usually
characterized by high blood sugar, increased blood insulin,
and insulin resistance, which may be indicative of diabetes
(Figure 3; Pinheiro et al., 2008). Various mechanisms may par-
ticipate in the perinatal programming of these phenotypes,
including altered gestational endocrine milieu and maternal
behavior, as well as gene imprinting by epigenetic factors
(Migicovsky and Kovalchuk, 2011; Matthews and Phillips, 2012).

An epigenetic component to intergenerational programming was
demonstrated for depressive-like behaviors induced by maternal
separation stress in mice (Franklin et al., 2010). These behavioral
changes were accompanied by altered DNA methylation profiles
in the germline and brains of the offspring of stressed males
(Franklin et al., 2010).

Support for the notion that stress-induced intergenerational
long-term adaptations are epigenetically programmed originates
from a recent longitudinal study in children. Essex et al. (2011)
showed that maternal stress in infancy and paternal stress in
preschool years are predictive of permanent differences in DNA
methylation patterns in adolescent school children. The associa-
tion between adversity in early childhood and the DNA methyla-
tion profiles in adolescents suggests that early experience creates a
lasting imprint on the epigenomic status. The neonatal environ-
ment may be a particularly important determinant of the onset
of age-related complications. Although life-long experience may
change these patterns, the stability of DNA methylation patterns
through development and adolescence suggests that parentally
programmed or inherited epigenetic profiles create an epige-
netic blueprint that persists into adulthood and potentially into
old age.

Although the importance of transgenerational programming
of disease has been recognized, a limited number of reports have
investigated the F3 generation and beyond. Transgenerational
inheritance refers to the ability of environmental factors to pro-
mote an intergenerational phenotype or disease state beyond the
exposed mother, her female offspring and grandoffspring (Skin-
ner et al., 2008). Truly transgenerational effects were shown for
factors such as nutrition (Benyshek et al., 2006; Dunn and Bale,
2011), physiological disturbance (Aerts and van Assche, 1979),
and endocrine disruptors (Blatt et al., 2003; Anway et al., 2005;
Brouwers et al., 2006; Nilsson et al., 2008; Skinner et al., 2008;
Guerrero-Bosagna et al., 2010). By contrast, if a phenotype was
caused by a direct effect of experience on the germline and
somatic cells without lasting heritable genomic imprints, these
effects are expected to disappear by the F3 generation. For exam-
ple, Drake et al. (2005) observed that prenatal treatment with
the synthetic steroid dexamethasone in rats resulted in low birth
weight and metabolic markers for elevated diabetes risk, such as
hyperglycemia, hyperinsulinemia, and increased activity of glu-
coneogenic enzyme phosphoenolpyruvate carboxykinase, in the
progeny. These changes, however, were resolved by the third
generation (Drake et al., 2005). This observation indicates that
perinatal programming by steroid hormones may be caused by
direct effects on the primordial germ line rather than stable epi-
genetic imprinting. Similarly, Avy hypermethylation induced by
maternal methyl supplementation to induce the agouti pheno-
type in mice is also not inherited transgenerationally from F0 to
F3 generations (Waterland et al., 2007). However, transgenera-
tional inheritance of stress responses and associated epigenetic
correlates are well established in plant models (Boyko et al.,
2010; Boyko and Kovalchuk, 2011; Bilichak et al., 2012). Infor-
mation about the causative mechanisms of transgenerational
inheritance in mammals is still extremely limited, however, selec-
tive breeding experiments may offer a welcome venue for such
studies.
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Studies of selective breeding during domestication support the
notion of lasting transgenerational traits, although a possible epi-
genetic component still remains to be determined. For instance,
long-term multigenerational selection for traits of docility and
tolerance toward human company of the silver fox (Vulpes vulpes)
resulted in complex feature changes including attenuated HPA
axis activity (Trut et al., 2009). This selection was accompanied
by a change in 3% of the transcriptome in the fox prefrontal
cortex (Kukekova et al., 2011). Aside from selection for genetic
variants epigenetic regulation may have largely contributed to the
changes in gene expression associated with the domestication of
this species. Another interesting insight provides a multigenera-
tional study of breeding 11 generations of mice selected for anxiety
traits (Filiou et al., 2011). Anxiety-like behaviors were linked to
altered proteomic status and metabolic pathway function, along
with substantial differences in the transcriptome (Czibere et al.,
2011; Filiou et al., 2011).

Although the above criteria of transgenerational programming
do not apply to invertebrates, a recent study showed intrigu-
ing evidence of multigenerational programming of longevity. An
example of epigenetic transmission of an adaptive parental trait
to future generations was recently described in the nematode
Caenorhabditis elegans (Greer et al., 2011). In this study, deficiency
in the chromatin modifying histone H3 lysine 4 trimethylation
complex, which regulates C. elegans lifespan, can be passed on
to three subsequent generations to extend their lifespan (Greer
et al., 2011). Through methylation-induced gene silencing, RNA
or protein inheritance a histone modification involving H3K4me3,
a regulatory complex associated with longevity, was shown to per-
sist to the F4 generation of a C. elegans population (Greer et al.,
2011). In this study, however, epigenetic inheritance of longevity
disappeared in the F5 generation. The mechanisms involved
in developing transgenerational behavioral, physiological, and
metabolic traits remain to be elucidated.

The findings discussed above suggest widespread and dras-
tic phenotypic changes after transgenerational pre- or postnatal
adverse environment with an emphasis on epigenetic regulation. A
growing body of evidence provides examples of transgenerational
stability of epigenetic changes, such as DNA methylation pat-
terns and miRNA expression (Zambrano, 2009; Boyko et al., 2010;
Matthews and Phillips, 2010, 2012) and alterations associated

with aging processes (Fraga et al., 2005; Rodríguez-Rodero et al.,
2010). Transgenerational differences and the effects of age on
miRNA expression are robust (Jukic et al., 2010). The specific
mechanisms of transgenerational transmission are not entirely
known, but DNA methylation and miRNA expression changes
are likely involved (Boyko et al., 2007, 2010; Skinner and Guerrero-
Bosagna, 2009) and these may offer an exciting potential to identify
epigenetic signatures of prognostic significance for disease. Inter-
estingly, recent findings support the potential to obtain predictive
epigenetic markers of disease through blood samples or placenta
(Tsui et al., 2010; Du et al., 2011; Hahn et al., 2011), which bears
important therapeutic potential.

IMPLICATIONS AND CONCLUSION
While life-long experience constantly modulates epigenomic pat-
terns, ancestral programming sets the stage for responses to stress,
disease, and aging across the lifespan. In this review, we pro-
posed that epigenetic imprints of environmental information may
persist through multiple generations. Such epigenetic memories
may represent a unifying component to phenotypic plasticity to
influence development, performance, and disease (Petronis,2010).
Most mechanistic studies of epigenetic inheritance have focused
on F0–F1 transmission. Fewer reports of transgenerational phe-
notypes and epigenotypes including and beyond the F3 generation
exist, however, transgenerational programming of brain and
developmental plasticity, metabolic, neurological and psychiatric
functions is a critical and rewarding field of investigation.

Transgenerational programming of disease risk may explain
the general difficulty to identify the causes of complex adult-onset
diseases. Understanding the possibly substantial contribution of
ancestors to disease risk in an individual may significantly advance
prognostic medicine. The impact of transgenerational program-
ming versus life-long experience on health and disease is a central
issue for personalized medicine and disease prevention.
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