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Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are key regulators of posttran-
scriptional gene silencing, which is referred to as RNA interference (RNAi) or RNA silencing.
In RNAi, siRNA loaded onto the RNA-induced silencing complex (RISC) downreugulates
target gene expression by cleaving mRNA whose sequence is perfectly complementary
to the siRNA guide strand. We previously showed that highly functional siRNAs possessed
the following characteristics: A or U residues at nucleotide position 1 measured from the
5′ terminal, four to seven A/Us in positions 1–7, and G or C residues at position 19. This
finding indicated that an RNA strand with a thermodynamically unstable 5′ terminal is easily
retained in the RISC and functions as a guide strand. In addition, it is clear that unintended
genes with complementarities only in the seed region (positions 2–8) are also downreg-
ulated by off-target effects. siRNA efficiency is mainly determined by the Watson–Crick
base-pairing stability formed between the siRNA seed region and target mRNA. siRNAs
with a low seed-target duplex melting temperature (T m) have little or no seed-dependent
off-target activity. Thus, important parts of the RNA silencing machinery may be regu-
lated by nucleotide base-pairing thermodynamic stability. A mechanistic understanding of
thermodynamic control may enable an efficient target gene-specific RNAi for functional
genomics and safe therapeutic applications.
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INTRODUCTION
Small RNA molecules, including small interfering RNAs (siRNAs)
and microRNAs (miRNAs), are crucial regulators of posttran-
scriptional gene silencing referred to as RNA interference (RNAi)
or RNA silencing. RNAi is an evolutionarily conserved pathway
induced by siRNAs, 21–23-nt double-stranded RNAs (dsRNAs)
with 2-nt 3′ overhangs (Figure 1). siRNAs incorporated into cells
are transferred to an RNAi effector complex called the RNA-
induced silencing complex (RISC; Hutvagner and Simard, 2008;
Jinek and Doudna, 2009). The RISC assembles on one of the two
strands of the siRNA duplex and is activated upon removal of the
passenger strand (Martinez et al., 2002; Schwarz et al., 2002, 2003;
Khvorova et al., 2003; Ui-Tei et al., 2004). We and others reported
that asymmetrical features of both siRNA terminals are common
to functional siRNAs (Amarzguioui and Prydz, 2004; Reynolds
et al., 2004; Ui-Tei et al., 2004). An RNA strand with a thermo-
dynamically unstable 5′ terminal is easily retained in the RISC.
The activated RISC is a ribonucleoprotein complex that minimally
consists of the core protein Argonaute (Ago) and a siRNA guide
strand, which recognizes mRNAs with complementary sequences
(Liu et al., 2004; Meister et al., 2004; Song et al., 2004). In siRNA-
mediated RNAi, the Ago2 protein siRNA guide strand usually
base-pairs with mRNA that is perfectly complementary and cleaves
them (Figure 1). However, this can also lead to silencing of other
genes with incompletely complementary sequences. This phenom-
enon is referred to as an off-target effect (Figure 1). The target
recognition mechanism of the off-target effect is similar to that of

miRNA-mediated gene silencing (Jackson et al., 2003, 2006a; Bar-
tel, 2004; Scacheri et al., 2004; Lewis et al., 2005; Lim et al., 2005;
Lin et al., 2005; Birmingham et al., 2006; Grimson et al., 2007). The
transcripts with sequences complementary to the seed region (i.e.,
nucleotide positions 2–8 from the 5′ end of siRNA guide strand
or miRNA loaded on Ago1–4 proteins) are mainly reduced. This
is likely because seed nucleotides are present on the Ago surface
in a quasi-helical form to serve as the entry or nucleation site
for small RNAs in the RISCs (Ma et al., 2005; Yuan et al., 2005;
Ui-Tei et al., 2008a). Thus, siRNA target recognition might be par-
tially determined by structural features. However, the off-target
effect silencing efficiency is mainly determined by the thermody-
namic properties of nucleotide base-pairing between the siRNA
guide strand seed region and their off-target mRNAs (Ui-Tei et al.,
2008a). Understanding thermodynamic control of the siRNA off-
target effect may make it possible to avoid the off-target effect for
a target gene-specific RNAi.

FUNCTIONAL siRNA SEQUENCES
RNA interference efficiency in mammalian cells varies consid-
erably depending on the siRNA sequence (Holen et al., 2002;
Harborth et al., 2003). We showed that there are three siRNA
classes based on their RNAi gene silencing activity (Ui-Tei et al.,
2004). Class I siRNAs, which are highly functional in mammalian
RNAi, have A or U residues at nucleotide position 1, four to seven
A/Us in nucleotide positions 1–7 (AU ≥ 57%) and G/C at position
19, with the nucleotide position measured from the 5′ end of the
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FIGURE 1 |The mechanism of RNAi and its off-target effect in

mammalian cells. An RNA strand with A or U at position 1, four to seven
A/Us in positions 1–7 and G/C at position 19 (measured from the guide strand
5′ end) are easily unwound from the 5′ end and retained in the RISC. The
passenger strand is dissociated from the Ago1 ∼ 4-containing RISC following
unwinding, but cleaved in the Ago2-containing RISC. The guide strand

recognizes target and off-target transcripts with complementary sequences
to seed region positions 2–8. The target transcript, which has complete
complementarity in positions 9-21, in addition to positions 2–8, is knocked
down by RNAi. Conversely, off-target transcripts are downregulated according
to the thermodynamic stability in the duplex formed between the siRNA seed
region and target mRNA.
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guide strand (Figure 1). In addition, a GC stretch of no more
than nine nucleotides occurs in class I siRNA sequences. Class III
siRNAs have opposite features with respect to the first three con-
ditions and cause the least RNAi-silencing effects. The remaining
siRNAs belong to class II and are a mixture of functional and
non-functional siRNAs.

We and others demonstrated that functional siRNA with an
unstable RNA strand 5′ terminal in the siRNA duplex is func-
tional as a guide strand (Amarzguioui and Prydz, 2004; Reynolds
et al., 2004; Ui-Tei et al., 2004); A or U residues at the 5′ end of the
guide strand are especially important. In RNAi, thermodynamic
asymmetry is not essential for target gene silencing because the
passenger strand of most double-stranded siRNAs loaded onto
RISC are cleaved by catalytic activity of the Ago2 protein and
degraded (Figure 1; Kawamata et al., 2009; Yoda et al., 2010). Thus,
in this case, A/U nucleotide itself at 5′ terminal might be strongly
contributed to the RNAi activity, as nucleotide monophosphates,
AMP, and UMP, bind to Ago2 with up to 30-fold higher affinity
than either CMP or GMP (Frank et al., 2010). However, when the
siRNA duplex is loaded into other Ago proteins without slicer
activity, siRNAs might be unwound into a single-strand from
the thermodynamically unstable 5′ terminal as shown in miRNA-
mediated gene silencing (Figure 1; Matranga et al., 2005; Miyoshi
et al., 2005; Leuschner et al., 2006; Kawamata et al., 2009; Yoda
et al., 2010). As off-target gene silencing is performed using both
mechanisms for eliminating the passenger strand, siRNA ther-
modynamic asymmetry in addition to A/U nucleotide itself at
the 5′ terminal might be involved in seed-dependent off-target
effects.

SEED-DEPENDENT OFF-TARGET EFFECT EFFICIENCY VARIES
DEPENDING ON SEED SEQUENCE
Accumulated evidence from large-scale knockdown experiments
(Jackson et al., 2003, 2006a; Scacheri et al., 2004; Lin et al.,
2005; Birmingham et al., 2006) suggests that siRNA can generate

off-target effects through a mechanism similar to that of miRNA
target silencing (Lewis et al., 2005; Lim et al., 2005; Grimson
et al., 2007). The 3′UTRs of off-target transcripts or miRNA
targets are complementary to the guide strand seed region (i.e.,
nucleotide positions 2–8; Figure 2; Lim et al., 2005; Lin et al.,
2005; Birmingham et al., 2006; Jackson et al., 2006a). We deter-
mined the relationship between class I siRNA seed sequences and
off-target effect using the expression reporter plasmid, psiCHECK,
which encodes the Renilla luciferase gene. Three tandem repeats
of seed-matched target sequences (Figure 3C) complementary to
the entire seed-containing region (positions 1–8), but not to the
remaining non-seed region (positions 9–21), were introduced into
the region corresponding to the 3′UTR of the luciferase mRNA to
generate psiCHECK-sm and used to determine the efficiency of
the seed-dependent unintended off-target effect (see Figure 4A;
Ui-Tei et al., 2008a). Although all siRNAs examined exhibited high
activity for intended gene silencing at 50 nM, the off-target gene
silencing calculated using psiCHECK-sm was much less effective
and more susceptible to changes in siRNA concentration (Ui-
Tei et al., 2008a). These findings indicated that variations in the
efficiency of unintended off-target gene silencing were due to
a difference in the interactions between the guide strand RNA
entrapped in the RISC and mRNA.

SEED-DEPENDENT OFF-TARGET EFFECT EFFICIENCY VARIES
DEPENDING ON SEED REGION GC CONTENT
Class I siRNA seed region GC content used in our previous study
(Ui-Tei et al., 2008a) ranged from 0 to 57%. To further determine
the relationship between seed region GC content exceeding 57%
and off-targeting efficiency of the corresponding siRNA, six func-
tional class II siRNAs with high GC content in the seed region
were arbitrarily selected (Figure 3A), and their capability to exert
off-target effects was examined using luciferase reporter assays
(Figure 4; Ui-Tei et al., 2009). Note that two of the six class II siR-
NAs (siLuc-1063 and siLuc-1430) possessed a 100% GC content

FIGURE 2 | Schematic presentation of downregulation of transcripts

with seed-complementary sequences. In the left panel, transcripts
possessing 3′UTR complementarity to a given 7-nt-long guide strand
sequence were divided into 15 groups based on the position of the
complementary sequence in the siRNA guide strand. Transcripts labeled
with “1” and “7” at both ends possess complementarity to nucleotides

1–7 of the siRNA guide strand and vice versa. The horizontal arrow
indicates a transcript group with seed complementarity. In the right panel,
changes in gene expression levels are shown by log 2 of fold change ratio
to mock transfection. Note that the groups of transcripts labeled with 2–8
are the most sensitive to the off-target effects, suggesting that guide
strand nucleotides 2–8 serve as a “seed.”
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FIGURE 3 | Structures and sequences of siRNAs and chiRNAs used

in this study and their seed-matched target sequences. (A) The
structures of 11 human class I siRNAs and six class II siRNAs.
(B) The structures of 11 human class I chiRNAs and six class II

chiRNAs. (C) The seed-matched target sequences used for
psiCHECK-sm constructs shown in Figures 4 and 7. The red box
indicates the seed region, and blue indicates the DNA-substituted
regions within the chiRNA.

in the seed region (Figure 3A). In contrast to class I siRNAs, which
have little or no off-target effects, class II siRNAs were frequently
associated with a considerable level of off-target gene silencing on
the seed-matched targets (Figure 4). This apparent difference in
the off-target effect may be due to differences in the GC content
in the seed region between functional class I and II siRNAs.

SEED-DEPENDENT OFF-TARGET EFFECT IS DETERMINED BY
THERMODYNAMIC STABILITY IN THE DUPLEX FORMED
BETWEEN THE siRNA GUIDE STRAND SEED REGION AND
TARGET mRNA
The results shown above indicated that siRNAs with high GC con-
tent in the seed sequence have strong seed-dependent off-target
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FIGURE 4 | Concentration-dependent gene silencing effects of

authentic siRNA of seed-matched targets. Both class I siRNAs and
functional class II siRNAs were included. The gene silencing effects were
examined using HeLa cells transfected with psiCHECK-sm plasmids
containing various seed-matched targets. The relative luciferase (luc)
activity in transfected HeLa cells was determined using a dual luciferase
assay. (A) Authentic, non-modified siRNA psiCHECK-sm plasmid
structures and gene silencing mechanism. Three tandem repeats of

seed-matched target sequences were introduced into the region
corresponding to the 3′UTR of the luciferase mRNA. In (B–R), the effects
of non-modified siRNA transfection on seed-matched targets are shown.
(B–L) class I siRNAs, (M–R) class II siRNAs, (B) siLuc-309, (C) VIM-812,
(D) GRK4-934, (E) Oct-821, (F) Luc-774, (G) VIM-1128, (H) Luc2-153, (I)

VIM-596, (J) Oct-797, (K) VIM-270, (L) Luc-36, (M) GRK4-189, (N)

Luc-1120, (O) Luc-49, (P) Luc-1048, (Q) Luc-1063, (R) Luc-1430. siRNA
sequences and structures are shown in Figure 3A.
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FIGURE 5 |The close relationship between the efficiency of

seed-dependent off-target gene silencing and seed-target duplex

thermodynamic stability. Both class I siRNAs and functional class II
siRNAs (A–C) and class I chiRNAs and functional class II chiRNAs (D–F)

were analyzed. Solid red circles and open red circles represent the class I
and II siRNA data, respectively. Solid blue circles and open blue circles
represent the class I and II chiRNA data, respectively. (A,D) The
calculated T m of the seed-target duplex decreased with increasing
standard free energy (ΔG) for seed-target duplex formation (correlation
coefficient: −0.98 and −0.91, respectively). (B,E) Luciferase activity

(seed-dependent off-target gene silencing at a 50 nM siRNA
concentration) was positively correlated with ΔG (correlation coefficient:
0.72 and 0.71, respectively). (C,F) The correlation between the
seed-dependent gene silencing activity (luciferase activity) and the
calculated T m of the seed-target duplex. Luciferase activity based on
seed-dependent gene silencing with 50 nM siRNA was obtained from
Figures 4 and 7, respectively. Seed-target duplex ΔG and T m were
calculated using the nearest neighbor method. The relative luciferase
activity and calculated T m were correlated with each other and had a
coefficient of −0.76 and −0.79, respectively.
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Table 1 | Relative luciferase activities andT ms, ΔGs, and K ds at seed regions of class I and II siRNAs.

Luciferase activity (% at 50 nM) Seed region GC number T m 2–8 (˚C) ΔG 2–8 (kcal/mol) K d (M)

CLASS I

siLuc-309 76 0 −8.1 −7.2 5.3 × 10−6

siVIM-812 95 1 8.8 −9.3 1.5 × 10−7

siGRK4-934 102 1 6.7 −9.6 9.2 × 10−8

siOct-821 64 2 12.2 −10.3 2.8 × 10−8

siLuc-774 75 2 14.6 −10 4.7 × 10−8

siVIM-1128 79 3 21.2 −12.8 4.1 × 10−10

siLuc2-153 52 3 21.0 −11.7 2.6 × 10−9

siVIM-596 49 3 26.4 −11.6 3.1 × 10−9

siOct-797 29 3 25.7 −12.4 8.1 × 10−10

siVIM-270 25 3 26.2 −12.2 1.1 × 10−9

siLuc-36 49 4 28.4 −13 3.0 × 10−10

CLASS II

siGRK4-189 9 4 40.1 −15.5 4.3 × 10−12

siLuc-1120 44 5 42.3 −16.7 5.7 × 10−13

siLuc-49 6 6 46.3 −17.6 1.3 × 10−13

siLuc-1048 30 6 49.7 −17.8 8.9 × 10−14

siLuc-1063 18 7 54.5 −18.6 2.3 × 10−14

siLuc-1430 20 7 54.5 −18.6 2.3 × 10−14

FIGURE 6 | Correlation between seed-dependent gene silencing

activity of siRNA and chiRNA and calculatedT m of the protein-free

seed duplex. Gene silencing activity was measured using relative
luciferase activity in HeLa cells transfected with psiCHECK-sm and
cognate siRNAs or chiRNAs at a 50 nM concentration, as shown in
Figures 4 and 7. T m of the protein-free seed region (positions 2–8) was
determined using the nearest neighbor method. (A,B) All possible 7-nt
seed sequences (47 = 16,384) were ordered as a function of GC content

and T m values of their double-stranded counterparts with RNA (A) and
DNA (B). Note that because of its definition, class I siRNA or chiRNA
cannot possess more than four GCs in the seed region. Open red (A) or
blue (B) circles represent combinations of target and siRNA resulting in
less than 50% relative luciferase activity. Solid red (A) or blue (B) circles
represent combinations of target and siRNA with little or no off-target
effect (luciferase activity >50%). The horizontal line at 21–25˚C (A) or
28–41˚C (B) may correspond to 50% luciferase activity reduction.

effects. Thus, one possible efficiency regulator of the seed-
dependent off-target effect might be the thermodynamic stability
of the nucleotide duplex. The melting temperature (T m) and stan-
dard free energy change (ΔG) of the seed–target duplex formation
are good measures of the thermodynamic stability of the protein-
free seed–target duplex. In a previous experiment using class I

siRNAs (Ui-Tei et al., 2008a), we verified a close linear relationship
between ΔG and T m in seed region positions 2–8; a strong posi-
tive correlation between luciferase activity and ΔG (r = 0.69), and
a strong negative correlation between T m and luciferase activity
(r = −0.72) was found. By replacing class I siRNAs with a mixture
of class I and II siRNAs, the ΔG range expanded from −13 and
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Table 2 |Thermodynamic siRNA modification.

Chemical modification Nucleotide position Modified base-pairing stability Functional modification Reference

LNA The 5′ end of the passenger

strand

Increase the stability at 5′ end of the passenger

strand

Elmén et al.

(2005)

4′-Thioribonucleoside Four residues on both ends of

the passenger strand and 3′

end of the guide strand

Increase the stability at 3′ end of the guide strand

Enhancement of

selective RISC loading of

the guide strand

Hoshika

et al. (2007)

2-Thiouracil The 3′ end of the guide strand Increase the stability at 3′ end of the guide strand Sipa et al.

(2007)

Dihydrouracil The 3′ end of the passenger

strand

Decrease the stability at 3′ end of the passenger

strand

2′-O-methyl Position 2 of the guide strand

and positions 1 + 2 of the

passenger strand

The conformational alteration of RISC by the

guide strand modification reduces the rate of

RISC formation to dissociate off-target transcripts

with weaker binding to the guide strands

Reduction of the

seed-dependent

off-target effect

Jackson

et al.

(2006b)

2′-Deoxy (DNA) Positions 1–8 of the guide

strand and positions 12–21 of

the passenger strand

Decrease the stability in the seed region of the

guide strand

Ui-Tei et al.

(2008b)

Table 3 | Relative luciferase activities andT ms, ΔGs, and K ds at seed regions of class I and II chiRNAs.

Luciferase activity (% at 50 nM) Seed region GC number T m 2–8 (˚C) ΔG 2–8 (kcal/mol) K d (M)

CLASS I

chiLuc-309 103 0 −12.2 −4.9 2.6 × 10−4

chiVIM-812 94 1 −0.5 −5.5 9.3 × 10−5

chiGRK4-934 95 1 0.2 −5.6 7.3 × 10−5

chiOct-821 95 2 4.7 −7.1 6.2 × 10−6

chiLuc-774 65 2 −4.8 −6.8 1.0 × 10−5

chiVIM-1128 79 3 8.8 −7.9 1.6 × 10−6

chiLuc2-153 91 3 5.4 −7.8 1.9 × 10−6

chiVIM-596 63 3 8.8 −7.8 1.9 × 10−6

chiOct-797 84 3 1.3 −7.8 1.9 × 10−6

chiVIM-270 78 3 3.1 −7.6 2.7 × 10−6

chiLuc-36 68 4 19 −8.0 1.4 × 10−6

CLASS II

chiGRK4-189 12 4 28.1 −9.6 9.2 × 10−8

chiLuc-1120 69 5 31.1 −9.8 6.5 × 10−8

chiLuc-49 31 6 30.4 −11.0 8.6 × 10−9

chiLuc-1048 16 6 45.2 −9.7 7.7 × 10−8

chiLuc-1063 58 7 41.4 −12.0 1.6 × 10−9

chiLuc-1430 53 7 35 −12.0 1.6 × 10−9

−7 to between −19 and −7 kcal/mol (Figures 5A,B), while the T m

range expanded from −8 and 28˚C to −8 and 55˚C (Figures 5A,C).
Correlation coefficients between luciferase activity and ΔG or T m

were 0.72 or −0.76, respectively, indicating a close relationship
between the seed-dependent off-target effect and the seed duplex
ΔG and T m. The linear relationships among these parameters
were almost invariant (Figure 5A). The dissociation constant (K d)
of the 17 siRNAs calculated using the formula ΔG = −RTln(1/K d)
indicated that the highest K d was more than 108 times greater
than the lowest one (Table 1). Therefore, it may follow that in
both functional class I and II siRNA-mediated gene silencing, the

degree of off-target effects is governed primarily by the thermo-
dynamic stability of the seed-target duplex formed between the
seed region of the siRNA guide strand and its mRNA counter-
part. In Figure 6A, all possible 7-nt seed sequences (47 = 16,384)
were ordered as a function of GC content and T m values of
their double-stranded counterparts, and the siRNAs were plotted
against the absence or presence of off-target effects. The data sug-
gest that T m values between 21 and 25˚C serve as a T m boundary,
which may discriminate off-target-free seed sequences from off-
target-positive ones. Approximately 22% of 7-nt sequences had
T m values under 21˚C, indicating that limited seed sequences
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FIGURE 7 | Concentration-dependent gene silencing effects of

DNA-seed-containing chiRNA for seed-matched targets. Both class I
chiRNAs and functional class II chiRNAs were included. The gene silencing
effects were examined using HeLa cells transfected with psiCHECK-sm
plasmids containing various seed-matched targets. The relative luciferase (luc)
activity in transfected HeLa cells was determined using a dual luciferase
assay. (A) chiRNA psiCHECK-sm plasmid structures and gene silencing
mechanism. Three tandem repeats of seed-matched target sequences were

introduced into the region corresponding to the 3′UTR of the luciferase
mRNA. In (B–R), the effects of chiRNAs transfection on seed-matched targets
are shown. (B–L) class I chiRNAs, (M–R) class II chiRNAs, (B) chiLuc-309, (C)

chiVIM-812, (D) chiGRK4-934, (E) chiOct-821, (F) chiLuc-774, (G) chiVIM-1128,
(H) chiLuc2-153, (I) chiVIM-596, (J) chiOct-797, (K) chiVIM-270, (L) chiLuc-36,
(M) chiGRK4-189, (N) chiLuc-1120, (O) chiLuc-49, (P) chiLuc-1048, (Q)

chiLuc-1063, (R) chiLuc-1430. chiRNA sequences and structures are shown in
Figure 3B.
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are available for selecting siRNAs with reduced off-target
effects.

THERMODYNAMIC CONTROL OF RNA STRAND
INCORPORATION INTO THE RISC BY CHEMICAL
MODIFICATIONS
RNA strand incorporation into the RISC is determined by siRNA
duplex thermodynamics. The RNA strand with lowest binding sta-
bility in the 5′ end of the guide strand is preferentially incorporated
into the RISC. Thus, rational chemical modifications can be used
to improve selective guide strand loading into the RISC (Table 2).
High-affinity modifications [e.g., locked nucleic acid (LNA)] at
the 5′ end of the passenger strand increase selective loading of
the guide strand (Elmén et al., 2005). In addition, base modifica-
tions of a high-affinity 2-thiouracil base at the 3′ end of the guide
strand and a low-affinity dihydrouracil base at the 3′ end of the
passenger strand can be used to the same effect (Sipa et al., 2007).
Furthermore, a moderately active siRNA duplex is significantly
improved by modifying the high-affinity 4′-thioribonucleoside
(Hoshika et al., 2007). Similarly, other modifications, such as
high-affinity 5-methyluracil and 5-methylcytosine modifications
(Terrazas and Kool, 2009), or low-affinity 2,4-difluorotoluene and
5-nitroindole modifications (Addepalli et al., 2010), may also
control the efficiency of RISC loading.

ELIMINATION OF SEED-DEPENDENT OFF-TARGET EFFECT BY
CHEMICAL MODIFICATIONS
The seed-dependent off-target effect is also eliminated by chemical
modifications (Table 2). 2′-O-methyl modification of the guide
strand seed region alters the RISC conformation and reduces
seed-dependent off-target effects by dissociating off-target tran-
scripts with weak binding to the guide strand (Jackson et al.,
2006b). Low-affinity dihydrouracil base, 2,4-difluorotoluene, or
5-nitroindole modifications in the seed region may also reduce
the seed-dependent off-target effects. Furthermore, we revealed
that 2′-deoxy modification (DNA replacement) of nucleotides 1–
8 in the guide strand and 12–21 in the passenger strand (DNA:RNA
chimeric siRNA, chiRNA; Figure 3B) reduces thermodynamic sta-
bility in the seed-target duplex, and almost completely eliminates
off-target effects with little or no loss of target gene silencing activ-
ity (Ui-Tei et al., 2008b). In contrast, replacing the 3′-proximal
RNA sequence of the guide strand with its DNA counterpart
resulted in almost complete loss of gene silencing activity of the
passenger strand. As shown in Figure 7, most functional class
II siRNAs could not effectively eliminate the off-target effects by
DNA replacement in the seed region (Ui-Tei et al., 2009). We
examined the relationship between the relative luciferase activ-
ity and the ΔG or T m of the DNA:RNA seed duplex in 11
class I and six class II chiRNAs (Figure 5D–F). We verified a
close linear relationship between ΔG and T m in the seed region
(Figure 5D), a strong positive correlation between luciferase activ-
ity and ΔG (r = 0.71) and a strong negative correlation between
T m and luciferase activity (r = −0.79), irrespective of the presence
or absence of DNA replacement in the seed region (Figure 5E,F).
However, DNA replacement increased ΔG and reduced both the
seed-target duplex T m and luciferase activity considerably. T m

was reduced to less than 20˚C in all the class I chiRNAs, while

FIGURE 8 | Microarray profiles of transcripts downregulated by

transfection of siRNA with high or low stability in the seed-target

duplex. (A) siRNA with high seed T m is capable of forming stable seed
duplexes with the 3′ UTR counterpart of target mRNA. (B) siRNA with low
seed T m is capable of forming unstable seed duplexes with the 3′ UTR
counterpart of target mRNA. Microarray-based expression profiles were
examined 24 h after transfection. Gene expression changes are shown by
log 2 of fold change ratio (ordinate) relative to mock transfection. The
abscissa represents transcript signal intensity (log 10). Blue and gray dots
represent transcripts complementary to the seed and those with no seed
complementarity, respectively. Target genes are colored red and indicated
by arrows. Their expression levels were similarly reduced. The number of
genes examined is shown on the upper right edge of each panel.

the relative luciferase activity at 50 nM exceeded 60%, the mini-
mum relative luciferase activity necessary for a practical off-target
effect. In contrast, the relative luciferase activity at 50 nM was
30% or less in three of six cases treated with functional class
II chiRNAs, even though the seed-target T m was reduced; this
demonstrates a strong negative correlation with ΔG for seed-
target duplex formation (Figure 5D). Therefore, it appears that
the reduced off-target effect in chiRNA-dependent gene silencing
is generally attributable to a reduction in the thermodynamic sta-
bility of the DNA:RNA hybrid in the seed–target duplex. Accord-
ing to Tables 1 and 3, DNA replacement throughout the guide
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strand seed region is roughly equivalent to a 13˚C reduction
in T m, a 5 kcal/mol increment in ΔG, and about two to three
G/C → A/U changes in the seed duplex. In Figure 6B, T m values
of all possible 7-nt DNA:RNA hybrids are ordered and plotted
against chiRNAs with or without off-target silencing activity. For
DNA:RNA hybrids, 28–41˚C might be a boundary line that dis-
criminates off-target-free from off-target-positive seed sequences.
However, this boundary had higher T m values, as compared to
those of RNA duplexes shown in Figure 6A. This might be par-
tially due to different parameters used in calculating T m values
of RNA duplexes and DNA:RNA hybrids. The proportion of 7-nt
DNA:RNA hybrids with T m values under 28˚C was about 88%,
indicating that most 7-nt sequences are available for off-target
effect-reduced RNA silencing by replacing RNA with DNA in the
seed region.

GENOME-WIDE ANALYSIS REVEALED THAT siRNA WITH
LOW STABILITY IN THE SEED-TARGET DUPLEX IS CAPABLE
OF INDUCING TARGET GENE-SPECIFIC SILENCING
The hypothesis that off-target gene silencing is determined primar-
ily by seed-target duplex stability was apparent in genome-wide
expression profiling using class I siRNA with high or low seed T m

value (Figure 8). The reporter assay described above predicted that
siRNA with high seed T m value would be good inducer, while that
with low seed T m value would be poor inducer of the off-target
effect.

As anticipated, both siRNAs effectively reduced the amount of
completely matched target mRNA to less than 20% as a result of

intended RNAi (red arrows in Figure 8). In contrast, a high level of
off-target effects was evident in the case of transfection with siRNA
with high seed T m value. Conversely, transfection with siRNA with
low seed T m value exhibited little off-target effects. Thus, it was
concluded that the level of off-target gene silencing is determined
by the thermodynamic stability of the seed duplex formed between
the siRNA guide strand and the target mRNA.

CONCLUSION
In this review, we demonstrated that siRNA seed-dependent off-
target effect efficiency is controlled by thermodynamic properties
of the nucleotide duplex. This conclusion was drawn from the
following: (1) The functional siRNA duplex is asymmetric in its
terminal nucleotide base-pairing. An RNA strand with an unstable
5′ terminal is effective as a guide strand, probably because it is eas-
ily retained in the RISC. (2) The siRNA off-target effect efficacy can
be determined by seed region nucleotide duplex thermodynamic
properties. The seed-dependent off-target effect efficiency is pos-
itively and negatively correlated with ΔG and T m in seed region
positions 2–8. Thus, small RNA-mediated gene silencing is partly
regulated by nucleotide base-pairing thermodynamic stability.
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