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Prolonged drug use causes long-lasting neuroadaptations in reward-related brain areas that
contribute to addiction. Despite significant amount of research dedicated to understanding
the underlying mechanisms of addiction, the molecular underpinnings remain unclear. At
the same time, much of the pervasive transcription that encompasses the human genome
occurs in the nervous system and contributes to its heterogeneity and complexity. Recent
evidence suggests that non-coding RNAs (ncRNAs) play an important and dynamic role
in transcriptional regulation, epigenetic signaling, stress response, and plasticity in the
nervous system. Dysregulation of ncRNAs are thought to contribute to many, and per-
haps all, neurological disorders, including addiction. Here, we review recent insights in the
functional relevance of ncRNAs, including both microRNAs (miRNAs), and long non-coding
RNAs, and then illustrate specific examples of ncRNA regulation in the context of drug
addiction. We conclude that ncRNAs are importantly involved in the persistent neuroadap-
tations associated with addiction-related behaviors, and that therapies that target specific
ncRNAs may represent new avenues for the treatment of drug addiction.
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INTRODUCTION
Evolutionary processes in the human lineage have coupled expand-
ing genome complexity with the acquisition, processing, and dis-
tribution of ever increasing amounts of information (Sempere
et al., 2006; Mattick, 2007; Berezikov, 2011). Non-coding RNAs
(ncRNAs) occupy the center stage of this expanding genome com-
plexity, with the ratio of non-coding genomic sequence to protein
coding sequence growing more than 10-fold as primates evolved
from simple multicellular organisms (Taft et al., 2007). ncRNAs
occupy critical nodes and edges in a majority of physiological net-
works, frequently participating in feedback loops, stability, and
fined-tuned regulatory control. The unique information process-
ing features of ncRNAs permit them to transduce information
through heterogeneous molecular machineries with relatively less
energy cost than protein networks alone, making them particu-
larly useful in the limited and thermally constrained real estate of
the human central nervous system.

In light of these observations, it is not surprising that non-
exonic transcripts (those mapping to regions of the genome
outside annotated protein coding genes) comprise 2/3 of the
total, non-ribosomal, non-mitochondrial RNA in the human
brain (Kapranov et al., 2010). Highly articulated nervous sys-
tem expression of miRNAs (Lagos-Quintana et al., 2002; Schratt
et al., 2006; Makeyev et al., 2007) and long non-coding RNAs
(lncRNAs; Mercer et al., 2008; Ponjavic et al., 2009) point to
the involvement of ncRNAs in key aspects of nervous sys-
tem homeostasis and plasticity. The ability of addictive stim-
uli to perturb and disrupt these functions suggests a broad
based involvement of ncRNAs in the loss of functional coher-
ence associated with chronic drug use (Chandrasekar and Dreyer,
2009; Hollander et al., 2010). In this review, we consider the

participation of ncRNAs in the key nervous system molecu-
lar machineries affected by addiction, and the potential mech-
anisms of their involvement in the dimensions of this complex
disorder.

INVOLVEMENT OF ncRNAs IN NEUROPLASTICITY AND
LEARNING
Emerging evidence suggests that miRNAs and their processing
machinery play a critical role in neuroplasticity by regulating pro-
tein dynamics in the synapse (Edbauer et al., 2010; Lippi et al.,
2011; Siegel et al., 2011; Saba et al., 2012). Given that addiction
is considered a maladaptive form of neuroplasticity, identifying
miRNAs important in such neuroadaptations may lead to novel
insights in addiction research. Demonstrating a role for miR-
NAs in neuroplasticity, Schratt et al. (2006) showed that miR-134
expression in the dendrites of developing hippocampal neurons
is critically involved in dendritic spine formation and plasticity
by inhibiting Lim domain-containing protein kinase 1, an impor-
tant regulator of actin filament dynamics. Following this seminal
report, other studies revealed that miR-138, miR-132, and miR-
125b play an essential role in dendritic spine formation (Siegel
et al., 2009; Edbauer et al., 2010). The role of miRNAs in synapse
are not restricted to the those listed above, as recent reports have
identified numerous dendritic- and synaptic-enriched miRNAs
(Lugli et al., 2008; Eipper-Mains et al., 2011; Saba et al., 2012).
Although most of the research thus far has focused on miRNAs,
there is some evidence that suggests lncRNAs are also involved
in synaptic plasticity. For instance, BC1 and BC200 are lncRNAs
that are localized in post-synaptic dendritic compartments where
they regulate local gene expression by controlling the activity of
specific transcription factors (Lin et al., 2008). Other lncRNAs are
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also localized in the synapse and neurite extensions (French et al.,
2001; Mercer et al., 2008), but their functional role in plasticity
remains poorly understood.

In neurons, activity-dependent regulation of miRNAs also con-
tributes extensively to neuroplasticity. Using the marine snail
Aplysia, Rajasethupathy et al. (2009) demonstrated that serotonin-
induced activation of sensory neurons caused a significant
decrease in miR-124, leading to increased cAMP response element-
binding (CREB) expression and induction of long-term facilita-
tion. Knockdown of miR-124 also robustly increased serotonin-
induced synaptic plasticity and CREB expression, revealing a func-
tional association between miR-124 activity and CREB expression.
Additional in vivo studies have demonstrated activity-dependent
up regulation of miR-132 and miR-212 following induction of
LTP in hippocampal neurons, an increase that was dependent
on metabotropic glutamate receptor activation (Wibrand et al.,
2010). Consistent with the role of miR-132 in neuronal activa-
tion, enhanced expression of miR-132 was observed in a num-
ber of behavioral paradigms, such as contextual fear condition-
ing, odorant exposure, and acute cocaine treatment (Nudelman
et al., 2010). In addition, over expressing miR-132 enhances
neuronal activity in cortical and hippocampal neurons (Cheng
et al., 2007), possibly through miR-132-mediated inhibition of
p250GAP, a protein associated with dendritic plasticity (Wayman
et al., 2008).

The ability of ncRNAs to regulate transcription factors and
chromatin remodeling proteins represent additional mechanisms
to influence long-term neuroadaptations involved in memory for-
mation. For example, miR-324 and miR-369, two miRNAs impli-
cated in cocaine-induced neuroplasticity (Schaefer et al., 2010),
have been shown to modulate transcription factors (MEF2 and
FosB) important in reward-related learning and memory (Hiroi
et al., 1997; Pulipparacharuvil et al., 2008). Additionally, miR-132
regulation of chromatin remodeling factors methyl CpG binding
protein 2 (MeCP2),p300,and Jumonji and ARID domain protein 1
A (JARID1A) in the suprachiasmatic nucleus is important in neu-
roadaptations associated with circadian rhythm (Alvarez-Saavedra
et al., 2011). Although no study to date has examined lncRNAs in
learning and memory paradigms, lncRNAs could potentially be
involved in long-term neuroadaptations, as they have been shown
to regulate transcriptional factors, DNA methylation, and histone
modifications (Rinn et al., 2007; Houseley et al., 2008; Yu et al.,
2008; Khalil et al., 2009).

The studies reviewed above clearly show the importance of
miRNAs (and potentially lncRNAs) in synaptic plasticity and
learning and memory. However, many questions remain for future
studies to better understand the role of ncRNAs in neuroplas-
ticity. For example, the relationship between ncRNA-mediated
plasticity and psychiatric disorders, such as addiction, has raised
a number of intriguing questions: Are the same ncRNAs that
are involved in plasticity also involved in addiction, or are other
addiction-related ncRNAs involved, whose functions have yet to be
determined? What are the specific targets of ncRNAs and how do
these interactions contribute to the neuroadaptations associated
with addiction? These are just a few questions that are currently
being addressed to understand the complex relationship between
ncRNA-mediated plasticity and addiction.

EMERGING ROLE FOR miRNAs IN ADDICTION
Drugs of abuse induce persistent changes in neuroplasticity by
usurping gene regulatory mechanisms, in turn leading to addic-
tion. Given the role of miRNAs in gene regulation and synaptic
plasticity, recent studies have begun to examine the involvement of
miRNAs in response to drugs of abuse (Table 1). Here, we highlight
some of the recent findings that illustrate the importance of miR-
NAs in drug-induced synaptic plasticity, drug-seeking behaviors,
and tolerance to several abused drugs.

COCAINE AND AMPHETAMINE
To investigate the role of miRNAs in cocaine addiction, Chan-
drasekar and Dreyer (2009) utilized in silico prediction models to
identify miRNAs that potentially regulate cocaine-associated genes
and discovered a strong prediction for miR-124, let-7d, and miR-
181a. Further in vivo studies showed that expression of miR-181a is
increased and miR-124 and let-7d are decreased in striatum of rats
with a history of chronic cocaine exposure. Subsequent behavioral
studies revealed that over expression of miR-124 and let-7d in the
nucleus accumbens reduced cocaine conditioned place preference
(CPP), whereas over expression of miR-181a enhanced cocaine
preference (Chandrasekar and Dreyer, 2011). These effects on
cocaine CPP were inversed when expression of the aforementioned
miRNAs were inhibited. Interestingly, it was found that altering
expression of these miRNAs in the nucleus accumbens modulated
the expression of many addiction-related genes (Chandrasekar
and Dreyer, 2009). For example, overexpression of miR-124 and
let-7d increased dopamine transporter, whereas miR-181a over
expression decreased it. Because the dopamine transporter is the
primary target of cocaine and is importantly involved in cocaine
CPP (Tilley et al., 2009), the observed behavioral changes are
likely reflected, in part, by miRNA-regulation of the dopamine
transporter. Notably, the expression of several other addiction-
related genes, such as Brain-derived neurotrophic (BDNF), CREB,
MeCP2, and ΔFosB were also regulated by these miRNAs, thus
illustrating the widespread effects on addiction-related gene
networks in response to changes in miRNA levels.

Using an extended access model of cocaine self-administration,
Hollander et al. (2010) examined the role of miRNAs in regulat-
ing compulsive-like cocaine intake. In this study, dorsal striatal
miR-212 levels were found to be significantly elevated in rats
with a history of extended access to cocaine, but not in rats
with short-access to cocaine or in rats receiving non-contingent
cocaine exposure (yoked control). Further investigation showed
that over expression or knockdown of miR-212 in the dorsal stria-
tum decreased or enhanced cocaine self-administration under
extended access conditions, respectively, suggesting that striatal
miR-212 is involved in an adaptive response to inhibit escalation
of cocaine intake. Reduced motivation to consume cocaine was
attributed in part by miR-212-mediated upregulation of CREB, a
known antagonistic regulator of cocaine reward (Carlezon et al.,
1998). Subsequent studies from the same laboratory revealed that
MeCP2 regulates cocaine intake via a homeostatic interaction with
miR-212 to influence cocaine-mediated effects on striatal BDNF
(Im et al., 2010). By revealing an important miRNA-mediated
epigenetic mechanism involved in drug-seeking behaviors, this
study raises a number of interesting possibilities because epigenetic
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Table 1 | ncRNAs regulated by drugs of abuse (green = upregulation, red = downregulation).

Drug ncRNAs Mechanism(s) involved Reference

miRNAs

Cocaine miR-212 Elevated following extended access to cocaine;

targets CREB; interaction with MeCP2 and

influences BDNF expression

Hollander et al. (2010), Im et al. (2010)

miR-124, let-7d, miR-181a Targets BDNF, DAT, CREB, mGluR5, FosB; involved

in cocaine CPP

Chandrasekar and Dreyer (2009, 2011)

miR-181a Enriched in NAc synapse, regulates GluA2

expression

Saba et al. (2012)

Ago2 Ago2 knockout in striatal D2R neurons reduces

cocaine self-administration.

Schaefer et al. (2010)

miR-8, miR-7, miR-142, and let-7

families

Upregulated in striatal PSD Eipper-Mains et al. (2011)

miR-200c, miR125a-5p, miR-429,

miR-370, miR-183, miR-200b,

miR-770-5p, miR200a

Downregulated in striatal PSD Eipper-Mains et al. (2011)

Nicotine miR-140 Regulates dynamin-1 expression Huang and Li (2009b)

miR-504 Regulates DRD1 expression Huang and Li (2009a)

Upregulated in hippocampus Lippi et al. (2011)

Alcohol miR-9 Downregulates BK channels Pietrzykowski et al. (2008)

miR-497, miR-302b Involved in ethanol-induced neuronal death; targets

BCL2 and cyclin D2

Yadav et al. (2011)

Opioids miR-23b Regulates mOR expression Wu et al. (2009)

let-7 Regulates mOR expression He et al. (2010)

miR-190 Downregulated by mOR activation via ERK

signaling; targets NeuroD

Zheng et al. (2010)

miR-133b Morphine-induced downregulation causes

enhanced Pitx3 expression

Sanchez-Simon et al. (2010)

lncRNAs

Heroin MIAT, MEG3, NEAT1, NEAT2 Upregulated in NAc of heroin abusers Michelhaugh et al. (2011)

Cocaine MIAT, MEG3, NEAT2, EMX2O Upregulated in NAc of cocaine abusers Michelhaugh et al. (2011)

BCL2, B-cell lymphoma 2; BDNF, brain-derived neurotrophic factor; CREB, cAMP response element-binding; CPP, conditioned place preference; DAT, dopamine

transporter; DRD1, Dopamine receptor D1; D2R, dopamine receptor D2; ERK, Extracellular signal-regulated kinase; FosB, FBJ murine osteosarcoma viral oncogene

homolog B; mGluR5, Metabotropic glutamate receptor 5; mOR, mu opioid receptor; NAc, nucleus accumbens; Pitx3, Pituitary homeobox 3; PSD, post-synaptic

density.

factors associated with addiction have recently been the focus of
intense investigation (Robison and Nestler, 2011).

Recent studies have examined synaptic expression of miRNAs
in response to cocaine. By isolating striatal post-synaptic densities
(PSD), Eipper-Mains et al. (2011) identified more than two dozen
miRNAs that were significantly altered following chronic cocaine
treatment. Interestingly, many of the PSD miRNAs affected by
cocaine were found to be members of one of four families (miR-
8, miR-7, miR-142, and let-7 families), suggesting that cocaine
influences the expression of similar miRNAs with shared synaptic
targets. In a similar study, Saba et al. (2012) utilized microarray
screening to identify nine enriched and seven depleted miRNAs
in the synaptodendritic compartment of the nucleus accumbens.
They also revealed that miR-181a, one of the synaptically enriched
miRNAs, is increased in reward-related brain regions follow-
ing cocaine and amphetamine exposure, and miR-181a regulates
synaptic plasticity by altering AMPA receptor subunit (GluA2)

expression (Saba et al., 2012). Additional reports examining the
role of miRNAs in drug-induced synaptic plasticity determined
that miR-29a/b was significantly upregulated in addiction-related
brain regions in mice with a history of cocaine or ampheta-
mine exposure and plays an pivotal role in synaptic structure and
function in vitro (Lippi et al., 2011).

Enzymes that regulate miRNA processing also appear to play a
functional role in cocaine addiction. A study by Schaefer et al.
(2010) revealed that knockout of argonaute 2 (Ago2, a pro-
tein important in miRNA processing) in accumbal dopamine 2
receptor expressing neurons significantly attenuated cocaine self-
administration. Further investigation revealed that Ago2 regulates
expression of numerous miRNAs in the striatum, and many of the
Ago2-dependent miRNAs were predicted to target genes impor-
tant in cocaine addiction. Consistent with the role of Ago2 in
cocaine addiction, Eipper-Mains et al. (2011) showed that chronic
cocaine exposure elevates Ago2 expression in the striatum. Dicer,
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an enzyme responsible for producing mature miRNAs, may also
be necessary in cocaine addiction, as previous studies have shown
that manipulation of this enzyme affects learning and memory
(Konopka et al., 2010) and miRNA expression in striatum (Cuellar
et al., 2008).

NICOTINE
Utilizing miRNA microarray approach, Huang and Li identified 25
miRNAs that were altered in PC12 cells following nicotine expo-
sure. They also found that miR-140 binds and reduces expression
of dynamin-1 (Huang and Li, 2009b), a GTPase that has previ-
ously been shown to be important in nicotine dependence (Hwang
and Li, 2006). The same research group showed that miR-504 tar-
gets a specific dopamine receptor D1 gene containing a single
nucleotide polymorphism that has been associated with nicotine
dependence (Huang and Li, 2009a). Interestingly, by increasing
D1 receptor expression, miR-504 may promote nicotine intake by
enhancing dopamine signaling. Finally, chronic injections of nico-
tine increased several miRNAs in mouse hippocampus, prefrontal
cortex, limbic forebrain, and midbrain (Lippi et al., 2011), indicat-
ing that nicotine has broad effects on miRNA expression in several
addiction-related brain areas, though the implications are not yet
clear.

ALCOHOL
In a seminal set of studies, Pietrzykowski et al. (2008) revealed that
alcohol upregulates miR-9 in rat striatum and supraoptic nucleus,
two regions important in alcohol tolerance. The increase in miR-9
was found to contribute to alcohol tolerance by preferentially tar-
geting BK channel mRNA isoforms that are sensitive to alcohol.
BK channels, large conductance calcium, and voltage-activated
potassium channels, are important in neuronal excitability, firing
frequency, and neurotransmitter release and have been one of the
best described targets for alcohol tolerance (for review see Treist-
man and Martin, 2009). Thus, miR-9-induced destabilization of
alcohol sensitive BK channels likely contributes to alcohol toler-
ance and addiction by promoting the expression of more tolerant
BK channel isoforms. Interestingly, the role of miR-9 in alcohol
dependence may not be limited to tolerance, as miR-9 was also
found to target other genes that have been implicated in addic-
tion, such as dopamine receptor D2 and histone deacetylase 5
(Pietrzykowski et al., 2008).

Other alcohol-related studies have identified miRNAs involved
in ethanol dependence. Guo et al. reported differential miRNA
expression patterns following chronic ethanol exposure and
ethanol removal in primary cortical neuron cultures. These results
may indicate that different stages of alcohol addiction (mainte-
nance, withdrawal, etc.) have distinct miRNA expression profiles
(Guo et al., 2011), information that could be important for the
development of new therapeutics to treat alcohol addiction. In
another study, miR-497 and miR-302b were found to be involved
in ethanol-induced neuronal cell death following chronic ethanol
exposure, thereby providing a possible link between miRNAs and
neuronal loss associated with chronic alcohol abuse (Yadav et al.,
2011). In addition, recent studies using human post-mortem tis-
sue, revealed that 35 miRNAs were significantly upregulated in
the prefrontal cortex in alcoholics (Lewohl et al., 2011), again

suggesting that chronic alcohol has widespread affects on miRNA
expression reward-related brain areas. The development of artifi-
cial miRNAs may be a novel approach to treating alcoholism and
other forms of addiction, as one recent study showed that targeting
neurokinin-1 receptor gene with an artificial miRNA significantly
reduced alcohol consumption in mice (Baek et al., 2010).

OPIOIDS
Similar to alcohol, specific miRNAs have been implicated in opioid
tolerance and addiction. miRNAs, let-7, and miR-23b suppress mu
opioid receptor mRNA expression following long-term morphine
treatment (Wu et al., 2009; He et al., 2010), demonstrating a new
mechanism that might play an important role in morphine tol-
erance. In addition, the mu opioid receptor agonist, fentanyl, but
not morphine,downregulates miR-190 expression via extracellular
signal-regulated kinase (ERK) signaling (Zheng et al., 2010), indi-
cating that specific mu opioid receptor agonists have differential
influence on miRNA expression.

SUMMARY
The studies highlighted in this section illustrate a wide range of
miRNA-mediated mechanisms involved in addiction. With their
ability to regulate addiction-related gene networks, drug-induced
plasticity, drug-seeking behaviors, and drug tolerance, miRNAs
are ideal therapeutic targets for the treatment of addiction. How-
ever, much more research in this nascent field is needed to reveal
miRNA targets and mechanisms that contribute importantly to the
addicted state. Thus, it seems clear that future studies will reveal
ever more complex and intriguing properties of these key ncRNAs
in addiction.

POTENTIAL ROLE FOR LONG NON-CODING RNAs IN
ADDICTION
Recent large-scale genomic studies have revealed that lncRNAs are
one of the most abundant classes of ncRNAs (Jia et al., 2010; Kapra-
nov et al., 2010). Additionally, lncRNAs have been implicated in a
number of important cellular processes including gene transcrip-
tion, RNA processing, and chromatin modifications (Wang and
Chang, 2011). Although lncRNAs are highly expressed in the brain
(Mercer et al., 2008; Belgard et al., 2011), they remain poorly char-
acterized in this context and their role in addiction is unclear. In an
attempt to determine whether lncRNAs are differently expressed
in response to chronic drug use, a recent study by Michelhaugh
et al. (2011) identified lncRNAs that were altered in heroin abusers
by mining existing Affymetrix datasets. Of the 23 lncRNAs iden-
tified, MIAT, MEG3, NEAT1, and NEAT2 were upregulated in
the nucleus accumbens of heroin abusers compared to control
subjects. Preliminary reports from the same research group also
found that NEAT2, MIAT, MEG3, and EMX2OS are elevated in the
nucleus accumbens of cocaine abusers (Michelhaugh et al., 2011),
suggesting similar aberrations in lncRNA expression in response
to different drugs of abuse. The lncRNAs listed above have been
implicated in a range of cellular processes including cAMP signal-
ing (Zhao et al., 2006), GABA neuron neurogenesis (Mercer et al.,
2010), and regulation of genes associated with synaptic plasticity
(Bernard et al., 2010), but the functional role of these lncRNAs in
addiction remains unknown. Although these initial findings are
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intriguing, only a small number of lncRNAs were examined, sug-
gesting the need for more comprehensive analysis of transcriptome
changes during these critical events, with emphasis on specific cell
types and locus specific complexity of lncRNA expression during
these changes.

Natural antisense transcripts (NATs), a subset of lncRNAs, are
transcripts derived from the opposite strand of many protein
coding (sense) genes. NATs bind to sense RNA and/or proteins
to regulate transcription and translation. Recently, we demon-
strated that BDNF, a gene known to be involved in addiction, is
controlled by a conserved long non-coding antisense RNA tran-
script (BDNF-AS; Modarresi et al., 2012). BDNF-AS suppresses
BDNF mRNA expression by altering chromatin structure at the
BDNF gene locus. Inhibiting BDNF-AS by siRNA or other meth-
ods robustly increased BDNF mRNA and protein expression and
enhanced neuronal outgrowth. Given the important role of BDNF
in cocaine addiction (for review see Ghitza et al., 2010), it would be
interesting to determine if BDNF-AS is dysregulated in response
to chronic drug use and contributes to drug-seeking behaviors.
Other addiction-related NATs have also been identified (Zhang
et al., 2007), but their role in addiction-related neuroadaptations
and behaviors merits further research.

Although initial studies have identified a potential involvement
of lncRNAs in addiction, many additional questions remain –
whether specific lncRNAs are necessary for drug-seeking behav-
iors, whether different drugs of abuse affect different lncRNAs,
whether specific lncRNAs are preferentially expressed in reward-
related brain areas, and whether differences across species exist
(mice vs. rats vs. humans). Thus, a major research goal is to address
these important unanswered questions in order to understand the
underlying mechanisms of abused drugs and to identify useful
targets for the treatment of addiction.

EPIGENETIC-ncRNA INTERACTIONS: POTENTIAL
INVOLVEMENT IN DRUG-INDUCED NEUROADAPTATIONS
The epigenome consists of DNA methylation and several mod-
ifications (acetylation, methylation, phosphorylation, etc.) to
specific amino acid residues on histone proteins. Chromatin-
modifying complexes play an important role in transcriptional
regulation by adding or removing covalent modifications to his-
tone proteins. Several key chromatin-modifying proteins have
recently been implicated in neuroadaptations associated with
addiction. For example, specific enzymes responsible for histone
acetylation, methylation, and DNA methylation in reward-related
brain areas are critically involved in cocaine addiction (LaPlant
et al., 2010; Maze et al., 2010; Wang et al., 2010). However, it
has been largely unclear how these proteins target specific regions
of the genome, given that the majority of chromatin-modifying
proteins lack DNA binding capacity.

Increasing evidence now indicates that chromatin-modifying
complexes are directed to their sites of action by lncRNAs. There-
fore, it is possible that lncRNAs play an important role in addic-
tion by regulating epigenetic processes. Although no study has
examined lncRNA-mediated epigenetic mechanisms in the con-
text of addiction, we speculate that such interactions are impor-
tant (Figure 1), given that several addiction-related epigenetic
factors associate with lncRNAs in tissues outside of the brain

FIGURE 1 | Simplified representation of ncRNA–epigenetic interactions

in response to chronic drug use. Long-term use of drugs alters
expression of ncRNAs, epigenetic factors, and the interactions between
these processes, causing persistent perturbations in gene expression.
Chronic aberrations in gene expression are thought to evoke maladaptive
neuroadaptations associated with addiction.

(Khalil et al., 2009). For example, in the placenta, lncRNAs Air,
and Kcnq1ot1 regulate histone methylation by interacting with
the histone methyltransferase G9a (Nagano et al., 2008; Pandey
et al., 2008), an epigenetic enzyme that is downregulated in the
accumbens following chronic cocaine exposure and is impor-
tant in cocaine-related behaviors (Maze et al., 2010). Additionally,
lncRNA-mediated regulation of histone acetylation, methylation,
or DNA methylation, key modifications important in cocaine
addiction (for review see, Maze and Nestler, 2011), have also
been reported (Rinn et al., 2007; Houseley et al., 2008; Yu et al.,
2008; Yap et al., 2010). Interestingly, not only can lncRNAs influ-
ence the activity of chromatin-modifying complexes, but evidence
now indicates that alterations in epigenetic processes can alter the
expression of lncRNAs (Johnson et al., 2009). Whether these spe-
cific interactions are important in the brain during drug-seeking
behaviors, however, remains to be investigated.

MicroRNAs also interact with epigenetic factors important in
addiction. As previously described, Im et al. (2010) found that
miR-212 influences cocaine seeking by inhibiting MeCP2 in the
dorsal striatum. Other epigenetic enzymes that have been impli-
cated in addiction, such as DNA methyltransferase 3A, histone
deacetylases 4, and sirtuin 1, are also regulated by specific miRNAs
(Chen et al., 2006; Fabbri et al., 2007; Gao et al., 2010), but the
significance of these associations in addiction-related behaviors is
unknown.

Although the full spectrum of ncRNA-epigenetic associations
in the CNS has yet to be seen, these interactions appear to play
an essential role in fine-tuning gene expression and proper brain
functioning. In drug addiction, it is possible that chronic drug
use leads to long-lasting aberrations in ncRNA-mediated epige-
netic mechanisms that lead to persistent drug-seeking behaviors.
However, additional research is needed to determine the molec-
ular underpinnings involved in ncRNA-epigenetic interactions in
the brain and if these interactions contribute importantly to the
addicted state.
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FUTURE DIRECTIONS
Although a growing number of reports have implicated miRNAs
in addiction-related neuroadaptations, future studies are needed
to determine if lncRNAs also play a critical role in drug-seeking
behaviors. Given that lncRNAs are the most abundant ncRNA in
the brain and critically involved in an array of cellular processes,
identifying specific lncRNAs that are regulated by drugs of abuse
is likely to be a valuable approach for revealing the underlying
mechanisms of addiction. With the recent development of new
technologies, such as capture hybridization analysis of RNA targets
(CHART) and Chromatin Isolation by RNA Purification (ChIRP;
Chu et al., 2011; Simon et al., 2011), it is now possible to iden-
tify novel lncRNA-DNA or lncRNA-protein interactions involved
in addiction, and future studies using these techniques will deter-
mine if these interactions are altered following prolonged drug
use. In addition, as recent studies indicate that lncRNAs are dif-
ferentially expressed in certain brain regions (Mercer et al., 2008;
Belgard et al., 2011), identifying preferential expression of specific
lncRNAs in reward-related brain areas might lead to new targets
for the treatment of addiction. Finally, new therapeutic strategies
and delivery approaches that target RNAs are now being explored
(Bitko and Barik, 2007; Wood et al., 2007; Hung et al., 2011). Thus,
using these new techniques to target ncRNAs holds great potential
for treating several psychiatric disorders, including addiction.

CONCLUSION
Studies over the last several years have established a broad func-
tional context for ncRNAs in the computational matrix of the
nervous system. At the cellular level, nervous system signaling
networks involve small RNAs at the synapse, where they regu-
late activity-dependent mRNA translation, and in turn, learning
and memory-related plasticity. At the same time, in the nucleus,
long RNAs function to provide temporal and spatial information
to an array of epigenetic signaling systems. Chronic drug use likely
perturbs these networks during the process of addiction in ways

that cause a loss of plasticity and in turn establish barriers to the
return to homeostasis.

Yet, the complexity of the nervous system suggests that addi-
tional layers of ncRNA-mediated events likely occur during the
process of addiction. For example, recent evidence suggests that
lncRNAs can serve as decoys or storage locations for small RNAs
(Tay et al., 2011), in effect competing with targets for the occu-
pancy of effector small RNAs and modulating their downstream
effects (Salmena et al., 2011). In neurons this process could func-
tion together with anterograde and retrograde transport of RNA–
protein vesicles, providing the potential for a link between small
RNA mediated translational control at the synapse, and lncRNA-
mediated chromatin signaling in the nucleus. Stresses such as
repeated increases in intracellular Ca++ levels could reduce the
performance of vesicle trafficking and lead to the progressive
decoupling of such ncRNA-mediated systems relatively early in
the process of addictive maladaptations.

Non-coding RNAs may also play a role in signaling between
cells. Circulating exosomes and microvesicles contain many RNA
species, and have the ability to traffic these RNAs from one cell
type to another (Smalheiser, 2007; Dinger et al., 2008), even sup-
porting the metastatic environment of the soma in some types of
cancer. While not yet documented in the context of the nervous
system, vesicle based transfer of ncRNAs could offer an additional
dimension of intercellular communication in the nervous system.
Such vesicles could mediate signaling between neurons and glia,
for example, in response to impending cytotoxicity or other stress
events. Thus, the versatility of ncRNA-based information process-
ing provides many still unexplored avenues for function in the
nervous system and involvement in the stress responses that lead
to addictive maladaptations.
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