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Neurons modulate gene expression with subcellular precision through excitation-coupled
local protein synthesis, a process that is regulated in part through the involvement of
microRNAs (miRNAs), a class of small non-coding RNAs. The biosynthesis of miRNAs is
reviewed, with special emphasis on miRNA families, the subcellular localization of spe-
cific miRNAs in neurons, and their potential roles in the response to drugs of abuse. For
over a decade, DNA microarrays have dominated genome-wide gene expression studies,
revealing widespread effects of drug exposure on neuronal gene expression. We review
a number of recent studies that explore the emerging role of miRNAs in the biochemi-
cal and behavioral responses to cocaine. The more powerful next-generation sequencing
technology offers certain advantages and is supplanting microarrays for the analysis of
complex transcriptomes. Next-generation sequencing is unparalleled in its ability to iden-
tify and quantify low-abundance transcripts without prior sequence knowledge, facilitating
the accurate detection and quantification of miRNAs expressed in total tissue and miRNAs
localized to postsynaptic densities (PSDs). We previously identified cocaine-responsive
miRNAs, synaptically enriched and depleted miRNA families, and confirmed cocaine-
induced changes in protein expression for several bioinformatically predicted target genes.
The miR-8 family was found to be highly enriched and cocaine-regulated at the PSD, where
its members may modulate expression of cell adhesion molecules. An integrative approach
that combines mRNA, miRNA, and protein expression profiling in combination with focused
single gene studies and innovative behavioral paradigms should facilitate the development
of more effective therapeutic approaches to treat addiction.
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miRNAs – ESSENTIAL BACKGROUND
microRNAs (miRNAs) are a class of endogenous 21–25
nucleotide small RNAs that modulate gene expression through
binding to complementary sequences in the 3′-untranslated
regions (3′-UTRs) of target mRNAs (Kim et al., 2009).
Based on their sequences, the 672 annotated mouse miRNAs
(http://www.mirbase.org) can be grouped into 253 families; there
are over 1000 miRNAs in humans, and several human miRNAs not
yet officially recognized in the mouse genome have been identified
(Henry et al., 2011). Family members share a common seven to
eight nucleotide (nt) seed sequence at their 5′-end and are thought
to interact with the same target genes; the sequences of the five
members of the miR-8 family are shown in Figure 1. Although
miRNAs have only been intensively studied for the last decade,
their role in regulating gene expression is now widely accepted.
One to 3% of the genome is devoted to miRNAs, which are typi-
cally found in clusters in intergenic regions (Mongroo and Rustgi,
2010; Henry et al., 2011; Law and Wong, 2011). About a quarter
of the known miRNAs occur within the introns of genes encod-
ing proteins (hence “mirtrons”), in which case expression of the
miRNAs is controlled by expression of the “host” gene (Mongroo
and Rustgi, 2010; Law and Wong, 2011). Hundreds of miRNAs are

expressed in the mature mammalian brain (Lagos-Quintana et al.,
2002; Krichevsky et al., 2003; Miska et al., 2004; Landgraf et al.,
2007), where they are involved in the control of synapse develop-
ment and neuronal plasticity (Banerjee et al., 2009; Schratt, 2009b;
Siegel et al., 2011). The binding of multiple miRNAs to sites in the
3′-UTR of a target gene can repress translation or cause mRNA
degradation (Figure 1), with only a partial match required to alter
translation. MicroRNAs are thought to target more than half of
mRNAs encoded in the genome, with any one miRNA binding up
to several thousand target mRNAs. Since any given target mRNA
may have binding sites for over a 100 miRNAs, a consortium of
miRNAs work together to regulate the translational rate and stabil-
ity of that target mRNA (Mongroo and Rustgi, 2010; Henry et al.,
2011; Law and Wong, 2011; Li and van der Vaart, 2011; Siegel
et al., 2011). MicroRNAs mediate their effects on protein expres-
sion when packaged into the RNA-induced silencing complex?
(RISC) along with several important proteins (Figure 1).

In the biogenesis of mature miRNAs, long primary miRNA
(pri-miRNA) transcripts encoding a single miRNA or a cluster of
miRNAs are first cleaved into shorter preliminary miRNA (pre-
miRNA) hairpins by a complex of Drosha, an RNase III, and
the cofactor DGCR8 (DiGeorge syndrome critical region gene 8;
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FIGURE 1 | miRNA families. The sequences of the five members
of the miR-8 family are shown; the shared seed sequences are
shown in red. An mRNA with RISC bound to three different loci in
its 3′-UTR is shown; the net effect of these interactions can be

diminished translation or mRNA degradation. m7G,
7-methylguanosine in the 5′-cap; orange ball, cap-binding complex;
ORF, open reading frame; AAAAA, poly A tail. Mismatches are
shown as loops.

Figure 2A). About half of mammalian miRNA loci encode mul-
tiple miRNAs and are transcribed as a polycistronic transcript
(Kim et al., 2009); 65 miRNA clusters encompass 45% (300) of
all miRNA genes scattered throughout the mouse genome. Once
cleaved from the pri-miRNA, the ∼70 nucleotide pre-miRNA is
exported from the nucleus by Exportin-5. The pre-miRNA is then
cleaved by Dicer, another RNase III enzyme, in complex with TRBP
(HIV transactivating response RNA-binding protein or TARBP2)
to make an approximately 22 nt duplex RNA. One strand of the
double stranded intermediate (miRNA/miRNA∗ duplex) is then
loaded into an Argonaute protein to form the RISC complex (Kim
et al., 2009; Ender and Meister, 2010; Esteller, 2011; Figure 2A).
The red sequence represents the mature or “guide” miRNA while
the blue sequence is the “star” or “passenger” strand, which is often
degraded when not loaded into a RISC. The mature miRNA/RISC
targets the 3′-UTR of target mRNAs and regulates protein trans-
lation from or stability of the target mRNAs (Guo et al., 2010;
Mongroo and Rustgi, 2010; Law and Wong, 2011).

Each fully assembled RISC contains an Argonaute protein
(AGO1-4 in human and mouse), an enzyme similar to RNase H
(Song et al., 2004), which cleaves the RNA strand of RNA-DNA
hybrids. RISC also includes TRBP, the RNA helicase MOV10, a
single mature miRNA, and several additional proteins (Höck and
Meister, 2008; Banerjee et al., 2009; Vo et al., 2010; De and MacRae,
2011). The RISC interacts with target mRNAs via complemen-
tary base pairing interactions specified by the miRNA sequence
(Figure 2B). AGO2 is the only catalytically active AGO family
member in humans and mice; it has endonuclease (“slicer”) activ-
ity and the ability to cleave target mRNAs (Kim et al., 2009).
Mutant, catalytically inactive AGO2 silences translation as well
as active AGO2 (Broderick et al., 2011).

miRNAs AND THEIR EMERGING ROLE IN ALCOHOL AND
DRUG ABUSE
miRNAs likely participate in long-lasting forms of synaptic plas-
ticity through the modulation of regulatory pathways that involve
controlled dendritic mRNA trafficking, excitation-coupled mod-
ulation of synaptic mRNA translation, alterations to the actin

cytoskeleton, neurotransmitter metabolism, and peptide hormone
processing (Schratt, 2009a). They play an important role in the
local control of dendritic morphology through fine-tuning trans-
lation of synaptically localized mRNAs (Schratt, 2009b). miRNAs
are implicated in the pathophysiology of a variety of neuropsy-
chiatric disorders and mental retardation syndromes, including
Alzheimer’s disease, Parkinson’s disease (Conn et al., 2005), Hunt-
ington’s disease (Martí et al., 2010), schizophrenia (Beveridge et al.,
2010; Santarelli et al., 2011), bipolar disorder (Moreau et al., 2011),
alcoholism (Lewohl et al., 2011), Fragile X mental retardation (Li
and Jin, 2009), and Rett syndrome (Urdinguio et al., 2010; Wu
et al., 2010).

A particularly intriguing example of the coordinated manner in
which miRNAs alter function comes from an analysis of the effects
of alcohol on expression of miR-9, the most prevalent miRNA in
the nucleus accumbens (NAc; Pietrzykowski et al., 2008; Treistman
and Martin, 2009; Eipper-Mains et al., 2011). Expression of the
BK channel, a large conductance Ca2+ and voltage-activated K+

channel that plays a major role in neuronal excitability, responds
to alcohol in a region-specific manner and is known to play a
key role in alcohol tolerance. Exposure of striatal cultures to alco-
hol results in a rapid (15 min) decrease in BK mRNA levels, with
loss of specific splice variants. This is due to an alcohol-induced
increase in miR-9 expression, which results in degradation of BK
splice variants that contain a miR-9 binding site in their 3′-UTR
(Pietrzykowski et al., 2008; Treistman and Martin, 2009). The
remaining BK variants are those least affected by the presence
of alcohol.

Several recent studies have investigated the role of miRNAs and
AGO2 in biochemical and behavioral responses to cocaine (Chan-
drasekar and Dreyer, 2009, 2011; Hollander et al., 2010; Im et al.,
2010; Schaefer et al., 2010; Saba et al., 2012). Using qPCR and in situ
analysis of bioinformatically determined miRNAs, let-7d,miR-124,
and miR-181a were identified as cocaine-regulated in rats (Chan-
drasekar and Dreyer, 2009, 2011). Brain derived neurotrophic
factor (BDNF) expression declined in response to expression of
miR-124 while expression of let-7d diminished expression of a
dopamine receptor (Drd3). Using lentiviral vectors to over-express
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FIGURE 2 | miRNA biogenesis and gene silencing. (A) Transcription of a
miRNA gene yields a capped, polyadenylated Pri-miRNA shown undergoing
cleavage (red arrowheads) by Drosha (top, left). Transcription of a miRNA
cluster yields a transcript encoding multiple miRNAs (top, right), each of
which must be cleaved into a Pre-miRNA by Drosha. The mature or “guide”
miRNA is shown in red, with the “star” or “passenger” strand shown in blue.
Nuclear export of the Pre-miRNA requires Exportin-5. Cleavage of the
Pre-miRNA by DICER (red arrowheads) generates a mature guide and star
strand duplex; cleavage occurs in a protein complex that includes DICER, an
Argonaute protein (AGO1-4), MOV10, TRBP, and additional proteins such as

FMR1, DDX9, PUM2 (Schratt, 2009b; Czech and Hannon, 2011; De and
MacRae, 2011). The star strand is lost from the final RISC and ultimately
degraded, while the assembled RISC is available to bind to cognate RNAs and
modulate protein expression. (B) Imperfect base complementarity. When the
sequence of the miRNA guide strand does not perfectly match the target
mRNA, translation of that mRNA is inhibited. Bound RISCs may contain any
one of the four Argonaute proteins. The orange ball is the cap-binding
complex; the large and small ribosomal subunits are shown in yellow. Perfect
base complementarity. When the sequence of the miRNA guide strand
matches the target mRNA perfectly, the target mRNA is sliced by AGO2.

or silence these same miRNAs in the NAc, their role in the abil-
ity of rats to exhibit conditioned place preference for cocaine was
demonstrated (Chandrasekar and Dreyer, 2009, 2011). Expression
of the GluA2 subunit of the AMPA receptor is diminished by the
binding of miR-181a to a site in its 3′-UTR (Saba et al., 2012).

Two studies by the Kenny group demonstrated induction of
miR-132 and miR-212 in dorsal striatum after 7 days of cocaine
self-administration in rats and implicate miR-212 in the behav-
ioral and motivational response to cocaine through CREB, MeCP2,

and BDNF signaling (Hollander et al., 2010; Im et al., 2010). In
addition, Schaefer et al. (2010) identified an overlapping subset
of cocaine-induced and AGO2-knockdown-depleted miRNAs in
the NAc neurons that express theDrd2 dopamine receptor. Deple-
tion of AGO2 from Drd2-expressing neurons resulted in reduced
cocaine self-administration. In a different study, array screens were
used to identify 32 miRNAs whose expression increased in a sim-
ilar manner in multiple regions of the mouse brain in response to
repeated injections of nicotine, cocaine, or amphetamine (Lippi
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et al., 2011); when these miRNAs were compared to miRNAs
up-regulated at the time of synaptogenesis, the miR-29a/b and
miR-182/183 clusters were singled out. The ability of miR-29a/b to
reduce mushroom spine formation in primary hippocampal neu-
rons was then associated with its ability to diminish the expression
of Arpc3, a component of the ARP2/3 actin nucleation complex
(Lippi et al., 2011).

In addition to miRNA array analyses of postmortem brains
from human alcoholics and controls (Lewohl et al., 2011), arrays
have been used to identify subsets of miRNAs affected by alco-
hol treatment of primary mouse neuronal cultures and human
neuroblastoma cell lines (Yadav et al., 2011; Guo et al., 2012). Sim-
ilarly, studies targeted at specific miRNAs have been used to study
the actions of morphine and other opiates in model systems such
as primary neuronal cultures, neuronal cell lines, and developing
zebrafish embryos (Wu et al., 2009; He et al., 2010; Sanchez-Simon
et al., 2010; Zheng et al., 2010).

Together, these studies demonstrate that miRNA-mediated
gene regulation plays an important role in the complex effects
that chronic exposure to cocaine or other drugs of abuse have on
the nervous system. However, each of these studies was targeted to
a small number of candidate miRNAs or used microarrays, which
are limited by cross-hybridization, high background signal, low
dynamic range, and the inability to identify unknown miRNAs
(Metzker, 2010). Newly developed next-generation sequencing
approaches provide a more complete picture of drug-induced
changes in both mRNA and miRNA expression.

SYSTEM-WIDE ANALYSIS OF GENE EXPRESSION: THE
ADVANTAGES OF SEQUENCING
DNA microarrays have dominated genome-wide studies of gene
expression for more than a decade, but next-generation sequenc-
ing methods are rapidly becoming the method of choice for the
analysis of complex transcriptomes (Graveley, 2008). Microar-
rays have been instrumental in the interrogation and profiling
of DNA-protein interactions, identification of single-nucleotide
polymorphisms, and comparative analyses of mRNA expression
(Shendure, 2008). However, microarrays are limited in a number
of ways that next-generation sequencing is not. Since microarrays
rely on base complementarity between the probe and the mRNA or
cDNA, the technology is prone to artifacts of cross-hybridization
of highly homologous genes or isoforms (Metzker,2010). Microar-
rays contain a pre-defined set of oligonucleotide probes designed
using existing gene annotations for organisms with known genome
sequences (Graveley, 2008), whereas sequencing facilitates the
identification and absolute quantification of low-abundance tran-
scripts without prior knowledge of the sequence (Cloonan et al.,
2008; Mortazavi et al., 2008; Wang et al., 2009b; Metzker, 2010).
The sequencing approach has a low background because of the
unambiguous nature of sequence mapping and has increased sen-
sitivity for low-abundance transcripts (Graveley, 2008; Wang et al.,
2009b). Additionally, sequencing enables the detection and inves-
tigation of alternative splicing (Cloonan et al., 2008; Mortazavi
et al., 2008; Wang et al., 2008a), imprinting and allele specific
expression (Wang et al., 2008b), sequence variation (Wang et al.,
2009b), and RNA editing (Wahlstedt et al., 2009) much more eas-
ily and robustly than microarrays. Finally, microarrays provide far

less data than current next-generation sequencing technologies,
which can produce gigabases (109 nucleotides) of sequence from
a single experiment, enabling detection of very minor transcripts
(Graveley, 2008).

DNA sequencing began in earnest in 1975 (Maxam and Gilbert,
1977; Sanger et al., 1977), but the first truly high-throughput
sequencing device was not introduced until the 1990s by Lynx
Therapeutics. Massively parallel signature sequencing of mRNAs
employed microbead arrays and involved in vitro cloning of cDNA
templates on a monolayer of slide-fixed microscopic beads, pro-
ducing “signature” sequences ranging from 16 to 20 nucleotides
in length (Brenner et al., 2000). In 2005, two new methods of
next-generation sequencing were introduced: pyrosequencing, or
“sequencing-by-synthesis,” which detects pyrophosphate release
on nucleotide incorporation (Margulies et al., 2005), and multi-
plex “sequencing-by-ligation” of mate-paired polymerase colonies
(“polonies”; Shendure et al., 2005). In 2006, Solexa introduced
the Genome Analyzer, which provided up to 1 gigabase (Gb)
of sequence in a single sequencing run, and in 2007, Illumina
acquired Solexa, and its sequencers can generate up to 600 Gb of
sequence per run (Illumina, 2011). Rapid sequencing research has
exploded, as evidenced by the exponential increase in publications
in the past few years, increasing from 20 papers in 2005 to nearly
1600 papers in 2011.

Next-generation sequencing of RNA requires the preparation
of libraries (Figure 3); 1 mg of total RNA is sufficient to purify the
small RNA population and prepare a library for miRNA sequenc-
ing. For sequencing of miRNAs, total RNA from tissue (such as
NAc) or a subcellular fraction (such as postsynaptic densities,PSD)
is subjected to size selection; gel purification can be used to iso-
late 18–35 nt RNAs. Adaptors are ligated to the 5′ and then 3′

ends, and then the RNAs are reverse transcribed and amplified by
polymerase chain reaction (PCR). PCR products are then gel puri-
fied and sequenced for 40–50 cycles. The adaptor sequences are
trimmed from the reads, and data are then aligned with annotated
miRNAs (for example, from miRBase).

High-throughput sequencing of RNA is an extremely power-
ful tool, but it is not without limitations. The density of sequence
reads varies along the length of a transcript, indicating the exis-
tence of sequence bias at some point during the library preparation
or sequencing process (Fu et al., 2009; Oshlack and Wakefield,
2009). There are data showing an under-representation of AT-rich
and GC-rich regions in Illumina RNA-Seq data, which is likely
attributable to sequence bias during the reverse transcription and
amplification steps of library preparation (Hansen et al., 2010;
Levin et al., 2010; Metzker, 2010). Strand-specific sequencing, in
which the sequencing adapters are ligated to the RNA fragment
prior to amplification, may show a more even distribution of
aligning reads along the length of the gene; this method, how-
ever, requires additional manipulation of highly labile RNA prior
to its conversion to more stable cDNA (Ozsolak and Milos, 2011).
Other difficulties of traditional RNA-Seq include issues of quan-
tifying very low-abundance transcripts, problems with profiling
repetitive regions of the genome, and trouble in quantifying small
RNAs and RNA with a short half-life (Ozsolak and Milos, 2011).
Next–next-generation (third generation) sequencing, in which
single molecules are sequenced without prior amplification, is
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FIGURE 3 | RNA-Seq. High-throughput sequence analysis requires
isolation of high quality RNA from the tissue, cell type, or subcellular
organelle of interest. For the analysis of miRNAs, a size selection step
yields RNA of the appropriate size (e.g., 18–35 nt); for the analysis of
mRNAs, transcripts of the desired size are isolated and then sheared. A

linker is attached to the 5′-end of each RNA fragment; a different linker is
then attached to the 3′-end. Reverse transcription followed by PCR yields
sufficient material for analysis. Adaptor sequences are computationally
removed from the sequencing data, and then sequences are aligned with
annotated miRNAs.

considered the future of the sequencing field (Ozsolak and Milos,
2011; Hayden, 2012).

Challenges accompany the rapidly improving technology and
accumulation of datasets containing vast amounts of informa-
tion. Many biologists struggle to make scientific sense of the data
at hand, while many computer scientists are not equipped with the
biology training to tackle the relevant questions on their own. A

growing number of tools are available to assist in the analysis of
high-throughput datasets, including packages for sequence align-
ment (Langmead et al., 2009), de novo genome and transcriptome
assembly (Trapnell et al., 2010), analysis of alternative splicing
(Trapnell et al., 2009), functional category assessment, and iden-
tification of signaling pathway enrichment (Kanehisa and Goto,
2000; Dennis et al., 2003; Thomas et al., 2003; Li et al., 2008). At
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present, few “user friendly” and fully customizable packages exist
for the comprehensive analysis of sequencing data.

PICKING THE SYSTEM TO STUDY
Abundant evidence, from both animals and humans, identifies
the limbic system as the convergence point for the actions of all
drugs of abuse (Koob and Le Moal, 2001; Nestler, 2001, 2005b; Di
Chiara, 2002; Volkow et al., 2004; Wise, 2004). The mesocorticol-
imbic dopamine pathway, which involves a subset of all limbic
structures, is activated by normal physiologic rewards such as
food, drink, social interaction, and sex (Wise, 1996, 2002; Nestler,
2005a). This system includes dopaminergic projections from the
ventral tegmental area (VTA) to the NAc and prefrontal cortex
(PFC) as well as glutamatergic projections from the PFC to the NAc
(Kauer and Malenka, 2007; Figure 4A). Although drugs of abuse
originate from a diverse array of chemical classes and have a variety
of different primary targets, their effects all ultimately converge on
the dopamine neurons of the VTA (Wolf, 2006). Other neurotrans-
mitters, including γ-aminobutyric acid (GABA), opioid peptides,
serotonin, acetylcholine, and endogenous cannabinoids, are also
involved in the signaling of addiction (Spangler et al., 1996; Hyman
and Malenka, 2001; Ross and Peselow, 2009). The convergence of
these myriad signaling systems has led many to hypothesize that
the NAc is the key integration point in the rewarding effects seen
with drugs of abuse (Nestler and Aghajanian, 1997; Berke and
Hyman, 2000; Kalivas et al., 2005; Nestler, 2005b; Hyman et al.,
2006).

Neurons modulate gene expression with subcellular preci-
sion; polyribosomes and mRNAs are found at the base of den-
dritic spines and are involved in localized protein synthesis (Rao
and Steward, 1991; Kiebler and DesGroseillers, 2000). Individual
synapses may act independently in the local control of excitation-
coupled protein translation (Schratt, 2009b; Zukin et al., 2009).
The morphological changes that occur in dendritic spines as a
result of synaptic activity cannot occur without de novo protein
synthesis, and a blockade of protein synthesis blunts formation
of long-term memory (Schratt, 2009b). Modulating synthesis of
selected synaptic proteins gives neurons the ability to fine-tune
and integrate extracellular cues at single dendrites or at individual,
specified synapses (Wang et al., 2009a). Subcellular fractionation is
an important technique that enables the differentiation of events
occurring at the synapse from those occurring in the cell soma.
Despite the complex interactions between presynaptic endings
and their target receptors on dendritic spines (Figure 4B), PSD-
enriched fractions can be prepared and allow identification of
postsynaptically enriched components.

miRNAs are known to play a role in modulating localized trans-
lation of mRNAs in dendrites (Kim et al., 2004). Localization of
the miRNA processing enzyme DICER and the RISC component
AGO2 to the PSD in mouse cortical and hippocampal slices by elec-
tron microscopy supports the possibility of local regulation (Lugli
et al., 2005). Further studies identified the RISC component and
RNA helicase MOV10 (homologous to Drosophila Armitage) at
the synapse and established a role for RNA-induced silencing in the
control of synaptic gene expression, learning, and memory (Ashraf
et al., 2006; Banerjee et al., 2009; Vo et al., 2010). Through its effects
on LIMK1,miR-134,which is synapto-dendritically localized,plays

a role in the activity-dependent regulation of spine size (Schratt
et al., 2006; Siegel et al., 2011). Similarly, miR-132 and miR-138
play a role in dendritic remodeling and synaptogenesis (Wayman
et al., 2008; Siegel et al., 2009).

Sensitization is the progressive and persistent amplification of
behavioral and motivational responses to a fixed dose of drug
(Berke and Hyman, 2000; Hyman et al., 2006). It persists for weeks,
months, and years after cessation of drug taking and is thought
to play an important role in the risk of a reformed addict for
relapse to drug taking behavior (Paulson et al., 1991; Castner and
Goldman-Rakic, 1999; Robinson and Berridge, 2001). We there-
fore exposed adult male mice to a treatment paradigm (eight daily
intraperitoneal injections of cocaine or saline) that reliably yielded
locomotor sensitization before harvesting tissue for library prepa-
ration (Figure 4C). We harvested NAc 24 h after the final injection
of saline or cocaine and constructed small miRNA-Seq libraries
for miRNA analysis (Eipper-Mains et al., 2011).

In order to identify miRNAs localized to synapses, we pre-
pared another cohort of saline-injected and cocaine sensitized
mice; 24 h after the final injection, we purified PSD from their
striata and isolated the total RNA associated with this fraction
(Figure 4B; Eipper-Mains et al., 2011). While NAc was used to
analyze the total miRNA population, striatum was used to ensure
availability of sufficient PSD RNA. Sequencing libraries were pre-
pared and analyzed as outlined in Figure 3 (Eipper-Mains et al.,
2011). As methods for library preparation improve, it will be
possible to work with RNA purified from even smaller brain
regions.

Sequence analysis identifies all of the RNAs present in a given
sample (Figure 5). While miRNAs accounted for over 70% of the
reads in the NAc libraries, they accounted for slightly under half of
the reads in the PSD libraries. Sequences mapping to rRNAs and
tRNAs were about five-times more prevalent in the PSD libraries
than in the NAc libraries. Sequences that mapped to the tran-
scriptome accounted for about 15% of the reads in both types of
sample and most likely represent products of mRNA degradation
isolated during size selection. Although minor components, snoR-
NAs, snRNAs, and SINE (short interspersed element) are present
and their sequences can also be analyzed.

miRNA-Seq analysis identifies the exact miRNA species present
(Figure 6). As shown in Figure 2, the opposite ends of each
miRNA are generated by Drosha and DICER. While the major
miR-375 sequence identified corresponded to that predicted, mul-
tiple miR-182 and miR-212-3p species (isomirs) were found in
all four libraries; of note, levels of both miR-182 and miR-212-3p
had previously been identified as cocaine-responsive (Hollander
et al., 2010; Im et al., 2010; Lippi et al., 2011). This heterogeneity
has important consequences when comparing miRNA-Seq data
with microarray and qPCR data, since miRNA-Seq can unam-
biguously identify many sequences as belonging to one miRNA
(e.g., miR-212-3p), while qPCR and microarrays will miss most of
the variants. For miRNAs with a single major species which con-
forms to the accepted annotation (e.g., miR-375), the agreement
across methods should be much better, enabling firm comparisons
of RNA-Seq with qPCR data (Eipper-Mains et al., 2011). Tools
for analysis include websites such as http://www.microrna.org and
http://www.targetscan.org.
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FIGURE 4 | (A) Medium spiny neurons (MSN), which use γ-NH2-butyric acid
(GABA) as their major transmitter, are the primary cell type in the nucleus
accumbens (NAc). Some MSNs express mostly the D1 dopamine receptor
while others express primarily the D2 dopamine receptor. Dopamine released
from the endings of dopaminergic neurons in the ventral tegmental area (VTA)
signals through both types of receptor, affecting the activation of adenylate
cyclase (AC); reuptake of dopamine by the dopamine transporter (DAT) is
blocked by cocaine. MSNs receive excitatory inputs from glutamatergic
neurons in the prefrontal cortex (PFC), hippocampus, and amygdala.
Activation of AMPA and NMDA receptors localized to the spine-studded
dendrites of MSNs leads to the influx of Ca2+ and activation of CaMKII. In
addition, MSNs are responsive to various neuropeptides, which bind to
G-protein coupled receptors such as the κ-opioid receptor (κOR). (B) Standard
procedures have been developed to purify postsynaptic densities (PSDs) from
tissue homogenates; miRNAs enriched at the PSD are thought to allow local
regulation of mRNA translation and stability. The electron micrograph (7 week

mouse hippocampus) illustrates the complex system from which PSDs must
be purified: presynaptic terminals can be recognized by their content of
synaptic vesicles; PSDs are closely apposed to the presynaptic endings. (C)
Sensitization to the locomotor stimulating effects of cocaine requires
repeated exposure to the drug. Adult mice typically are typically given
10–20 mg cocaine/kg; locomotor activity (ambulations) is monitored for the
next 30 min in an activity chamber with infrared light sensors. “Sal” is the
average locomotor data for all mice given saline initially and the mice given
saline throughout; Coc1 are data for mice give 10 mg/kg cocaine on day 1;
Coc2 and Coc7 are data from days 2 and 7 for mice given 20 mg/kg cocaine
daily for days 2–7; Coc8 are the data for the cocaine treated mice given
10 mg/kg on day 8; substantial locomotor sensitization is apparent compared
to Coc1. Tissue harvested soon after drug administration allows analysis of the
immediate response, while tissue harvested 24 h after final drug
administration allows evaluation of the steady state response. N =10 each for
saline and cocaine.
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FIGURE 5 | Identity of mapped miRNA sequences in NAc and PSD
libraries. Adaptor sequences were trimmed from the extracted sequence
data. Bowtie (version 0.12.7; Langmead et al., 2009) was used to align
sequences 18–30 nt in length to the miRBase annotated mouse microRNA
database (version 16; Griffiths-Jones et al., 2006, 2008); perfect alignment
was required. The Rfam, Repbase, and NON-CODE databases were used to

identify sequences that aligned with annotated non-coding and repetitive
elements. Sequences were then aligned to the mouse transcriptome (exons,
introns, exon–exon junctions) and mouse genome. For non-miRNA
alignments, 1-mismatch was allowed. Data (% total reads mapped to each
category) for the NAc and PSD libraries from saline-injected animals are
shown.

GLOBAL ANALYSIS REVEALS ROLE FOR miRNA CLUSTERS
AND FAMILIES
In a tour de force, Lagos-Quintana et al. (2002) cloned hundreds of
miRNAs from the cortex, cerebellum, and midbrain of 18.5-week-
old mice. One year later, microarray technology was used to study
regulation of miRNAs during neuronal development (Krichevsky
et al., 2003). We chose to use ultra-high-throughput sequenc-
ing of miRNAs with the overarching goal of attaining a more
complete picture of the response of the brain to chronic cocaine
exposure (Eipper-Mains et al., 2011). Previous genome-wide char-
acterizations of drug-induced gene expression focused on mRNA
transcripts rather than miRNAs, were carried out using microarray
technology, and often looked at other regions of the brain using
different experimental paradigms (McClung and Nestler, 2008).
The data reviewed here represent the first look at striatal miRNA
synaptic enrichment and cocaine-regulation by deep sequencing.

Eighteen of the synaptically enriched miRNAs identified in
our analysis are members of genomic miRNA clusters. For both
the total lysate and PSD samples, the expression patterns of
the clustered miRNAs are quite similar across the entire clus-
ter. Especially instructive examples of clusters include the miR-8
family clusters on chromosomes 4 and 6 (miR-429/200a/b and
miR-141/200c), thelet-7 family cluster on the X chromosome (let-
7f/miR-98) and the clusters for miR-1/133a (chromosome 2), miR-
182/96/183(chromosome 6), and miR-216a/217 (chromosome 11;
Figure 7). In contrast, little concordance is seen across the
large miR-379-410 cluster, in which only miR-485 is synaptically
enriched (Figure 7).

Lugli and colleagues used microarrays to identify the sub-
cellular localization of mature and precursor miRNAs in adult
(2-month-old) mouse cortex and hippocampus. They found that
synaptically enriched miRNAs were primarily expressed in evo-
lutionarily newer species (Lugli et al., 2008). We compared our
synaptic enrichment ratios to this earlier data set, revealing signif-
icant overlap between the most synaptically enriched and synap-
tically depleted miRNAs in our striatal samples and the previous
hippocampal and cortical samples (Eipper-Mains et al., 2011).
Importantly, most of the miR-8 family (miR-200a/b/c/429) are
markedly enriched in both datasets. In addition, miR-182 and

miR-183 are dramatically enriched in PSDs in both datasets. By
contrast, miRs-126, -143, -145, -150, and -451 are depleted in both
synaptic datasets. A separate study used microarrays to identify
synaptosomally enriched and depleted miRNAs from rat P15 total
forebrain samples (Siegel et al., 2009). In a direct comparison,
miRs-219-5p, -21, -377, -98, -376b, -218, -7a/b, and -29a are synap-
tically enriched in both datasets, and in both datasets miRs-143,
-145, and -150 are depleted. The remarkable extent of agreement
between these three datasets, which were obtained using different
experimental platforms to analyze synaptically enriched samples
prepared in different ways from multiple brain regions taken from
animals of different ages, may be emblematic of the preponder-
ance of glutamatergic synapses and additional similar properties
in all of these brain regions. Whether the identities and expression
levels of miRNAs differ substantially from one synapse to the next,
dictated by the local microenvironment, remains to be determined.

Particularly striking was the synaptic enrichment of members
of several miRNA clusters (Figure 7). The miR-8 family has been
studied most extensively in relation to cancer pathophysiology
and has been shown to inhibit the first step of cancer metasta-
sis, the epithelial-mesenchymal transition (Inui et al., 2010). An
expression atlas of miRNAs indicates enrichment of all members
of the miR-8 family, except miR-429, in endocrine glands and tis-
sues, kidney, and the reproductive system (Landgraf et al., 2007).
Expression of this family of miRNAs is thought to maintain the
epithelial phenotype through direct targeting of ZEB1 and ZEB2,
transcriptional repressors of the cell adhesion molecule ECAD
(Inui et al., 2010). Members of the cadherin family of cell surface
glycoproteins mediate calcium-dependent cell–cell adhesion and
have critical roles in early brain development, axonal outgrowth,
and synaptogenesis (Martinek and Gaul, 1997). ECAD is present
at the synapse, and antibodies which block homophilic interac-
tions between pre- and postsynaptic ECAD attenuate induction of
long-term potentiation (Tang et al., 1998).

Members of the highly conserved let-7 family of miRNAs, with
almost a dozen members in the mammalian genome and key
roles in development and cancer suppression (Roush and Slack,
2008; McCarty, 2012), are also highly enriched at the PSD. The
let-7 family is highly expressed in pituitary, hypothalamus, and
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FIGURE 6 | Heterogeneity in miRNA sequence. Expression data for the
four different libraries (NAc saline, NAc cocaine, PSD saline, PSD cocaine)
are shown as reads (adjusted for equal total reads per sample) for
sequences mapping to miR-375 (top), miR-182 (middle), and miR-212-3p

(bottom). The arrowhead ( ) marks the miRBase (version 16) annotated
mature miRNA sequence (Griffiths-Jones et al., 2008). Commercially
available qPCR primers will only amplify the sequence marked by the
arrowhead.
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FIGURE 7 | miRNA clusters and families. Expression of striatal
PSD-enriched miRNAs and other members of each genomic cluster is
shown as a heat map; the chromosomal (chr) localization of each
cluster is indicated. Z -scores were computed using normalized
miRNA frequency across all samples: blue, low expression; yellow,

high expression. miRNA families are indicated by text color;
PSD-enriched miRNAs are indicated by bold; miRNAs not enriched at
striatal PSDs and/or not belonging to the listed miR families are
shown in gray italic. Reproduced from Eipper-Mains et al. (2011) with
permission.
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pancreatic islets (Landgraf et al., 2007), and its members play a
major role in controlling insulin secretion in response to a glucose
load and tissue responsiveness to insulin (Frost and Olson, 2011).
The let-7 family members localized at the PSD may participate in
the control of vesicle trafficking and secretion, both of which play
essential roles at the synapse. The miR-183 family has not been
studied as extensively, but clearly plays a crucial role in the devel-
opment and function of sensory cells such as photoreceptors and
hair cells (Li et al., 2010; Weston et al., 2011; Zhu et al., 2011).

RESPONSE TO COCAINE
Our finding that PSD levels of AGO2 protein rose in the NAc
of mice sensitized to cocaine led to our analysis of the effects
of cocaine on miRNA expression and localization (Eipper-Mains
et al., 2011). One particularly intriguing pattern emerged from
our data analysis: many of the miRNAs that were up-regulated in
NAc tissue lysate after chronic cocaine were down-regulated at the
synapse. Specifically, members of the miR-8 family, which were
very highly enriched in striatal PSDs, exhibited opposite changes
in tissue lysate versus PSDs after cocaine.

As summarized above, several recent studies investigated
miRNA regulation in the mesolimbic dopamine system after
cocaine administration. The first used qPCR and in situ hybridiza-
tion of specific bioinformatically identified miRNAs to identify
three cocaine-regulated miRNAs in rats receiving cocaine for
15 days, let-7d (decreased in NAc), miR-124 (decreased in NAc
and dorsal striatum), and miR-181a (increased in NAc and dorsal
striatum; Chandrasekar and Dreyer, 2009). Our data, from mice
receiving cocaine for 7 days, indicate no cocaine-regulation of let-
7d or miR-124 and a modest increase in miR-181a in NAc lysates
(Eipper-Mains et al., 2011). Two related studies identified induc-
tion of miR-132 and miR-212 in dorsal striatum after 7 days of
cocaine self-administration in rats and implicate miR-212 in the
behavioral and motivational response to cocaine through CREB,
MeCP2, and BDNF signaling (Hollander et al., 2010; Im et al.,
2010). Our data support induction of miR-132 in the NAc and
a decrease in miR-132 in striatal PSDs. miR-212, with 10 major
isomirs identified using miRNA-Seq (Figure 6), exhibits a complex
response to cocaine: tissue levels of three isomirs increase while tis-
sue levels of five isomirs decrease and two are unchanged (Eipper-
Mains et al., 2011). In the fourth study, miRNA microarrays were
used to identify the overlapping subset of cocaine-induced and
AGO2-knockdown-depleted miRNAs in Drd2-expressing neurons
of the NAc (Schaefer et al., 2010). Direct comparison of our data
to this study is not possible because the experimental paradigms
differ so significantly; it is, however, interesting to note that abla-
tion of AGO2 caused a marked reduction in the level of miR-182
(Schaefer et al., 2010), identified in our data as cocaine-regulated
and synaptically enriched. Future studies will need to address
specific cell-types and subcellular localization of the entire com-
plement of miRNAs, to determine more precisely how miRNAs
are involved in the response of the brain to cocaine.

BIOINFORMATICALLY PREDICTED TARGETS
We used an established list (Suzuki et al., 2007) of PSD-enriched
mRNAs to identify potential target genes for the 16 most cocaine-
regulated synaptically localized miRNAs (Eipper-Mains et al.,

2011). Bioinformatic analysis using miRanda yielded a mirSVR
score for each gene. A striking feature of this list was the num-
ber of miRNA binding sites predicted for any given transcript.
Transcripts encoding metadherin (Mtdh), which is also known as
AEG-1 or Lyric, had the most negative mirSVR score, with five
sites for PSD-localized miRNAs down-regulated by cocaine and
four sites for PSD-localized miRNAs up-regulated by cocaine; sites
predicted for each of the PSD-enriched cocaine-regulated miRNAs
are shown (Figure 8A).

Primarily studied for its role in cancer progression, Mtdh is
expressed in most tissue types and has been localized to epithe-
lial tight junctions (Hu et al., 2009). Using Western blot analysis,
we first documented the presence of metadherin at the PSD, and
observed a 42% increase in PSD-localized metadherin protein
following chronic cocaine treatment (Eipper-Mains et al., 2011).
Ectopic expression of Mtdh in primary human fetal astrocytes
inhibits expression of the glial high-affinity glutamate transporter
(SLC1A2 or EAAT2; Kang et al., 2005). An expanding body of evi-
dence implicates glutamatergic signaling in the response of the
brain to cocaine (Kalivas, 2009), and more rapid removal of glu-
tamate from the glutamatergic synapses formed by neurons of the
PFC onto the medium spiny neurons of the NAc would be of
functional significance.

In addition to Mtdh, Pcdh8 (protocadherin 8; also known as
arcadlin for activity-regulated cadherin-like protein), and Pcdh12
(protocadherin 12) were identified as targets for synaptically local-
ized miRNAs (Eipper-Mains et al., 2011). Expression of Pcdh8,
which is known to be localized to synapses, is rapidly and tran-
siently increased in response to seizures, and plays a role in
long-term potentiation (Yamagata et al., 1999). A comparison
of the gene expression profiles in the hippocampus of cocaine
addicts versus drug-free age-matched controls identified PCDH8
in a group of up-regulated genes, many of which are involved in
regulating the extracellular matrix (Mash et al., 2007). The role of
Pcdh12 in the brain has not yet been addressed.

Ntrk2, the BDNF receptor or TrkB, was also identified as a
potential target for the cocaine-regulated PSD-localized miRNAs;
predicted binding sites are shown in Figure 8A. Prior studies have
shown that the level of TrkB increases in the NAc of rats after
chronic cocaine self-administration (Graham et al., 2009) and
TrkB-BDNF signaling in the NAc is thought to modulate behav-
ioral responses to cocaine (Lobo et al., 2010). Using an antibody
to the BDNF receptor, we found increased expression in striatal
PSDs following cocaine treatment (Eipper-Mains et al., 2011).

Two of the predicted miRNA targets, Pcsk2 (prohormone con-
vertase 2, PC2) and Penk (proenkephalin) are part of the peptider-
gic system, which is known to play multiple roles in addiction;
predicted binding sites for cocaine-regulated PSD-enriched miR-
NAs are shown in Figure 8A. PC2, a Ca2+-dependent subtilisin-
like endoprotease, is the major prohormone convertase in the
brain (Winsky-Sommerer et al., 2000). Expressed at relatively
high levels in the striatum, PC2 is a key enzyme in the cleavage
of all three opioid precursors, proenkephalin (Penk), prodynor-
phin (Pdyn), and proopiomelanocortin (Pomc), as well as CART
(Cartpt, cocaine,and amphetamine-regulated transcript; Pan et al.,
2006). Based primarily on studies of neuroendocrine cells, PC2 has
been localized to the trans-Golgi network and secretory granules.
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FIGURE 8 | miRanda predictions. (A) The transcripts shown are all
PSD-enriched; based on miRanda analysis using the 16 most
cocaine-regulated striatal PSD miRNAs, it was predicted that cocaine
exposure might affect expression of these genes via regulation of
miRNAs. Cocaine-regulation of metadherin, Ntrk2 (BDNF receptor), and
PC2 (PCSK2) protein expression at the PSD was verified by Western blot
analysis. Gray box indicates the open reading frame (ORF) for each

transcript; the 3′-UTR is shown by gray stripes; arrowheads indicate
miRNA binding sites predicted for miRNAs up (N) and down (H) regulated
by cocaine. Reproduced from Eipper-Mains et al. (2011) with permission.
(B) Kalrn was included in the list of synaptically enriched transcripts
targeted by cocaine-regulated PSD-enriched miRNAs. Shown are the
miRanda predicted binding sites for the 16 most cocaine-regulated striatal
PSD miRNAs in the 3′-UTR of mouse KAL7.

Peptide-containing secretory granules are found in presynaptic
axon terminals and in dendrites, at the base of spines (Winsky-
Sommerer et al., 2000). Using Western blots, we confirmed the
presence of PC2 at the synapse and demonstrated an increase
of 67% in levels of mature PC2 at the synapse after chronic
cocaine treatment (Eipper-Mains et al., 2011). PC2 is synthe-
sized with a signal sequence that guides the nascent chain into
the lumen of the secretory pathway. The signal sequence is
removed co-translationally; proPC2, which is inactive, is activated

by an endoproteolytic cleavage that releases an autoinhibitory N-
terminal peptide (Helwig et al., 2011). Our data suggest that this
entire process can occur in the vicinity of the synapse and may
respond in part to synaptic activity.

Penk, another bioinformatically predicted miRNA target, is
expressed primarily in the medium spiny neurons that express
Drd2 (Curran and Watson, 1995). Penk is involved in the behav-
ioral response to cocaine and its mRNA and peptide levels were
known to be cocaine-regulated (Przewlocka and Lason, 1995;
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Daunais et al., 1997; Crespo et al., 2001). Striatal expression of
CART peptides increases after cocaine exposure and is hypoth-
esized to modulate the effects of the enhanced dopaminergic sig-
naling in response to cocaine (Hubert et al., 2008). The increased
levels of PC2 could play an essential role in their appearance.

Based on the same bioinformatic analysis, miRNA-regulated
expression of Kalirin (Kalrn), a Rho guanine nucleotide exchange
factor that regulates dendritic spine morphology and function
(Ma et al., 2008), was predicted (Figure 8B). Cocaine-regulated
expression of Kalrn is of special interest because of the well-
documented morphological effects of chronic cocaine exposure
on the mesolimbic dopaminergic pathway (Wolf, 2006). Increased
dendritic spine size and density are observed in the MSNs of mice
following both experimenter-administered (Robinson and Kolb,
1997, 1999; Kiraly et al., 2010a,b) and self-administered cocaine
(Robinson et al., 2001). Chronic cocaine exposure is known to
result in an increase in expression of Kal7, the predominant adult
isoform of Kalrn, in the NAc (Kiraly et al., 2010a; Mains et al.,
2011), and an increase in Kal7 protein at the PSD (Kiraly et al.,
2010a; Mains et al., 2011). Mice lacking Kal7 fail to form addi-
tional spines in response to chronic cocaine treatment (Kiraly
et al., 2010a; Mains et al., 2011). The 3′-UTR of mouse Kal7 con-
tains multiple predicted binding sites for cocaine-regulated PSD
miRNAs (Figure 8B).

NEXT – CONCLUSION; FUTURE STUDIES
The number of studies examining the effects of cocaine on one or
a small number of genes still dwarf the number of genome-wide
expression studies. These focused studies have revealed widespread
changes in multiple neurotransmitter systems (dopamine, gluta-
mate, peptidergic), in proteins controlling cytoskeletal organiza-
tion and in multiple transcription factors. Examples include sev-
eral dopamine receptors and the dopamine transporter, a number
of ionotropic and metabotropic glutamate receptors, opiate recep-
tors and opiate peptides, other neuropeptides, the synaptic vesicle
associated proteins α-synuclein and synaptotagmin, clathrin, sig-
naling pathway protein such as the mitogen-activated protein
kinases (MAPKs), calmodulin, and Ca2+/calmodulin-dependent
protein kinases along with components of the machinery regulat-
ing the actin cytoskeleton (Self and Nestler, 1995; Lehrmann et al.,

2003; Mash et al., 2003; McClung and Nestler, 2003; Norrholm
et al., 2003; Morabito et al., 2004; Rossman et al., 2005; Benavides
et al., 2007; Anderson et al., 2008; Li et al., 2008; Liu et al., 2009;
Kiraly et al., 2010a,b; Mains et al., 2011).

A number of comprehensive analyses of cocaine-induced gene
expression in animal models and human postmortem brain, pri-
marily using microarray, have been published over the years.
Like our global analysis of cocaine-regulated miRNA expression,
these studies have further expanded the scope of targets affected
by cocaine. In particular, these global approaches have consis-
tently highlighted the effects of cocaine on components of the
extracellular matrix, including cadherins, integrins, and matrix
metalloproteinases (Lehrmann et al., 2003; Albertson et al., 2004;
Bannon et al., 2005; Mash et al., 2007). Particularly appealing is
the idea that some of the long-lived effects of cocaine may reflect
changes in the extracellular matrix. Drugs designed to target mul-
tiple participants in these chronic effects of cocaine may prove to
be more effective than drugs targeted to individual intracellular
signaling pathways in the treatment of drug abusers.

Knockout and transgenic mouse models have been invaluable
for investigations into the behavioral, biochemical, and molecu-
lar effects mediated by single genes. It is becoming increasingly
clear, however, that the changes that occur as a result of drug
abuse are incredibly complex and widespread, affecting multiple
brain regions and cell-types in a system-wide manner. These global
studies emphasize the broad effects of drug exposure on neuronal
gene expression,underscoring the need for an integrative approach
that combines mRNA, miRNA, and protein expression profiling
in combination with focused single gene studies and innova-
tive behavioral paradigms in the quest to uncover what drives
addiction and develop integrated therapeutic approaches. With
improved methodologies it will be possible to study the role of
miRNAs in specific cell-types in animals self-administering drugs
or undergoing withdrawal.
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