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Non-coding RNAs (ncRNAs), especially microRNAs, are reported to be involved in a variety
of biological processes, including several processes related to drug addiction. It has been
suggested that the biological functions of opioids, one typical type of addictive drugs, are
regulated by ncRNAs. In the current review, we examine a variety of mechanisms through
which ncRNAs could regulate w-opioid receptor (OPRM1) activities and thereby contribute
to the development of opioid addiction. Using miR-23b as an example, we present the
possible ways in which ncRNA-mediated regulation of OPRM1 expression could impact
opioid addiction. Using miR-190 as an example, we demonstrate the critical roles played
by ncRNAs in the signal cascade from receptor to systemic responses, including the pos-
sible modulation of adult neurogenesis and in vivo contextual memory. After discussing
the possible targets of ncRNAs involved in the development of opioid addiction, we sum-
marize the mechanisms underlying the interaction between ncRNAs and opioid addiction
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INTRODUCTION TO ncRNAs

The central dogma — DNA transcription results in RNA produc-
tion and RNA translation results in protein production — places
RNA as an intermediate between gene and protein. It has been pro-
posed that the information storage and catalytic functions of RNA
have been transferred to DNA and protein, respectively, during
evolution, however, the publication of the alanine tRNA structure
in 1965 suggested that translation into protein was not the only
function of an RNA molecule (Holley et al., 1965). Thus, non-
coding RNA (ncRNAs, also named non-protein-coding RNA or
non-messenger RNA) and mRNA are now considered to be two
distinct parts of the RNA world.

For many years, tRNAs and rRNAs were the only known
ncRNAs. However, more ncRNAs have been discovered recently,
including small nuclear RNAs (snRNAs), small nucleolar RNAs
(snoRNAs), microRNAs (miRNAs), piwi-interacting RNAs (piR-
NAs), small interfering RNAs (siRNAs), and long ncRNAs (Hut-
tenhofer et al., 2005; Kurth and Mochizuki, 2009).

With the exception of long ncRNAs, ncRNAs are typically
categorized by their function. For example, piRNAs form RNA-
protein complexes with piwi proteins to induce epigenetic and
post-transcriptional gene silencing in germ line cells (Girard
et al., 2006). miRNAs bind to target mRNA via complemen-
tary sequences, usually resulting in translational repression or
target degradation (Zeng and Cullen, 2003; Zeng, 2006; Bartel,
2009). Long ncRNAs are arbitrarily considered to be longer than
200 nucleotides. Although the functions of long ncRNAs require

and present suggestions for further study.
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further investigation, they may function as signals, decoys, guides,
or scaffolds (Kapranov et al., 2007; Mercer et al., 2009; Wang and
Chang, 2011), and may be involved in drug addiction (Michel-
haugh et al.,, 2011). In general, ncRNAs have been reported to
affect multiple aspects of gene expression in a variety of biological
processes (Shivdasani, 2006; Bueno et al., 2008; Ivey and Srivas-
tava, 2010; Kaikkonen et al., 2011), including the development
of several diseases, such as cancer, autism, Alzheimer’s disease and
drug addiction (Talebizadeh et al., 2008; Dreyer, 2010; Ferdin et al.,
2010; Satoh, 2010). The current review discusses the involvement
of ncRNAs in opioid addiction.

INTRODUCTION TO OPIOID ADDICTION

Alcohol, nicotine, caffeine, and opioids are the classic addictive
drugs. Addiction to such drugs has been historically viewed from
two aspects: (1) compulsive drug-taking and drug-seeking behav-
ior is acquired because of the rewarding and reinforcement prop-
erties of the drug; and (2) drug withdrawal episodes enhance the
drug’s incentive value to such an extent that compulsive drug-
seeking and drug-taking takes over the behavioral repertoire.
Although there are common pathways for drug addiction, the
ability of these individual drugs to activate distinct signaling cas-
cades and induce specific biological responses through binding to
different receptors indicate that addiction to these drugs occurs
through diverse mechanisms. In the current review, we focus on
the probable influence of ncRNAs on opioid addiction (Nestler
and Aghajanian, 1997).
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The history of opioid addiction can be traced back to the
first use of morphine, one of the most efficacious and oldest
drugs in the treatment of moderate to severe pain. There are
also other opioids used in clinic or laboratory: fentanyl, oxy-
codone, etorphine, and [D-Ala?, N-MePhe?, Gly-ol]-enkephalin
(DAMGO). Although opioid addiction is considered to be a com-
plex process involving genetic/epigenetic, cellular, and molecu-
lar regulation of neuronal plasticity and drug-related contextual
memory, opioid receptors are definitely the major determinants
in the addiction process because the receptors are the initiation
sites of all opioid function. Since the first discovery of the opi-
oid receptor in 1973 by scientists (Pert and Snyder, 1973), four
members in the family of opioid receptors have been identified: -
opioid receptor (OPRM1), 3-opioid receptor (OPRDI1), k-opioid
receptor (OPRK1), and nociceptin receptor (ORL1). OPRM1 and
OPRM 1-related pathways are discussed in the current review.

OPIOID ADDICTION AND ncRNAs

Although there has been no reported exploration of how ncRNAs
regulate opioid addiction, several miRNAs have been suggested to
interact with the signaling pathway downstream of OPRM1 and
possibly be involved in the opioid addiction process, as reviewed
by Dreyer and Li (Dreyer, 2010; Li and van der Vaart, 2011).

As summarized in Table 1, by inducing a decrease in miR-
133b and a subsequent increase in the expression of Pitx3, mor-
phine regulated dopaminergic neuron differentiation in zebra
fish embryos (Sanchez-Simon et al., 2010). Significant changes in
the expression of 26 miRNAs, including miR-15b and miR-181b,
were identified between morphine-treated and control human
monocyte-derived macrophages (Dave and Khalili, 2010). A let-7
binding site was identified in the 3’-UTR of OPRM1 mRNA, and
decreasing the brain level of let-7 partially attenuated the tolerance
induced by morphine (He et al., 2010). In the previous reports
from our laboratory, long-term morphine treatment increased the
expression of miR-20a, miR-23b, miR-224, miR-331, and miR-365
in both mice hippocampi and primary cultures of rat hippocampal
neurons. Long-term fentanyl treatment increased the expression

of miR-224, miR-331, and miR-365, but decreased the expres-
sion of miR-184, miR-190, and miR-301 (Wu et al., 2009; Zheng
et al., 2010d). The agonist-selective regulation of miR-190 and its
target, neurogenic differentiation 1 (NeuroD), resulted in differ-
ential influences over the dendritic spine stability of hippocampal
neurons (Zheng et al., 2010c). In addition, miR-23b targeted the
3’-UTR of OPRM1 mRNA and regulated the association between
OPRM1 mRNA and polysomes (Wu et al., 2008, 2009). Five long
ncRNAs were up-regulated in the nucleus accumbens of heroin
abusers when compared with drug-free control subjects (Michel-
haugh et al., 2011). The ncRNAs listed in Table 1 may contribute
to the development of opioid addiction by affecting different
aspects of opioid signaling, though further confirmation is still
required.

ncRNAs MAY CONTRIBUTE TO OPIOID ADDICTION BY CONTROLLING
RECEPTOR EXPRESSION

On the one hand, opioid treatment affects the expression of sev-
eral miRNAs: morphine treatment affected the expression levels of
miR-23b and let-7, which have binding sites on the 3’-UTR of the
OPRM1 mRNA and control the expression of OPRM1 (Wu et al.,
2008,2009; He etal., 2010). On the other hand, the expression level
of opioid receptor, especially membrane receptor, is essential for
receptor signaling or even opioid addiction. Some OPRM1 ago-
nists, like etorphine and DAMGO, induce receptor internalization
and subsequent loss of membrane receptor after acute treatment
(El Kouhen et al., 2001; Eisinger and Schulz, 2005). Although
debate still exists, receptor internalization correlates closely with
signaling desensitization in vitro (Koch et al., 2001; Qiu et al,
2003) and analgesia tolerance in vivo (Zuo, 2005; Narita et al,,
2006). In addition, OPRM1 down-regulation has been observed
after chronic treatment with morphine (Davis et al., 1979) and has
been considered as one mechanism for the development of opi-
oid tolerance (Tao et al., 1987; Bhargava and Gulati, 1990). Since
tolerance is linked with addiction, it is still reasonable to suggest
the involvement of receptor down-regulation in opioid addiction.
Thus, the signaling cascade from opioid to the expression of several

Table 1 | Non-coding RNAs involved in opioid signaling.

ncRNAs involved Phenomena

Reference

let-7

Morphine increases the expression of let-7 which binds to the 3’-UTR of OPRM1

He et al. (2010)

mRNA. Decreasing let-7 impaired morphine-induced tolerance

miR-15b, miR-181b, plus 24
additional miRNAs
miR-20a, miR-184, miR-224,
miR-301, miR-331, and

macrophages

These 26 miRNAs were regulated in morphine-treated human monocyte-derived

Morphine increases the expression of miR-20a, miR-23b, miR-224, miR-331, and
miR-365. Fentanyl increases the expression of miR-224, miR-331, and miR-365, but

Dave and Khalili (2010)

Zheng et al. (2010d)

Wu et al. (2008, 2009)

Sanchez-Simon et al. (2010)

miR-365 decreases the expression of miR-184, miR-190, and miR-301

miR-23b Morphine increases the expression of miR-23b, which can regulate the expression
of OPRM1

miR-133b Morphine decreases the expression of miR-133b in zebrafish embryos, which
subsequently affects dopaminergic neuron differentiation

miR-190

NeuroD-related pathways
MIAT, MEG3, NEAT1, NEAT2,

and EMX20S abusers

Fentanyl decreases the expression of miR-190, which subsequently affects the

These five long ncRNAs are up-regulated in the nucleus accumbens of heroin

Zheng et al. (2010a,c¢,d)

Michelhaugh et al. (2011)
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ncRNAs and then to OPRM1 expression may be a mechanism for
opioid addiction.

There have been numerous studies of the promoter region and
UTR of OPRM1 (Min et al., 1994; Kraus et al., 1995; Shigeta et al.,
2008). Two miRNAs have been reported to bind the 3’-UTR of
OPRMI mRNA and regulate the expression of OPRMI1. Let-7
bound to the 399-405 region in 3’-UTR of the human OPRMI1
mRNA and the 402-408 region in the 3’-UTR of mouse OPRM1
mRNA. It also impaired the association between OPRM1 mRNA
and polysomes (He et al., 2010). In our laboratory, the K box in the
3’-UTR of the OPRM1 mRNA (3805-3812 bp downstream from
the stop codon) was identified to be a negative cis-acting element
(Wu et al., 2008). Since, in Drosophila, K box interacts with miR-2
and miR-16, which have seed sequences homologous to that of
miR-23b (Kimura et al., 2004; Kokkola et al., 2005), we assessed
the ability of miR-23b to regulate OPRM1 expression. Down-
regulation of miR-23b expression increased the endogenous level
of OPRM1 protein in NS20Y cells (Wu et al., 2008). In order to
determine the involvement of miR-23b in the signaling cascade of
OPRM1, we also tested the expression of miR-23b after morphine
treatment. Morphine treatment increased the expression of miR-
23b in an exogenous system (N2A cells stably expressing OPRM1)
aswell asan endogenous system (SHSY5Y and NMB cells; Wu et al.,
2009). Although transcriptional regulation of OPRM1 mRNA is
limited during opioid addiction since OPRM1 mRNA level does
not change after morphine treatment (Brodsky et al., 1995), the
post-transcriptional regulation of receptor expression should be
studied in depth.

Let-7 and miR-23b are definitely not the only ncRNAs that
regulate the expression of OPRM1. Additional ncRNAs can be
identified via bioinformatics methods, microarray studies, or other
experimental procedures. Basing future studies on the current
understanding of ncRNAs, it will not be difficult to explore
the mechanisms through which the identified ncRNAs regulate
OPRM1 expression. However, it will be difficult to explore the
roles played by these ncRNAs in opioid addiction. One of the most
reasonable studies will be to determine whether opioid treatment
can affect the expression of these miRNAs, as with the studies on
let-7 and miR-23b.

ncRNAs MAY CONTRIBUTE TO OPIOID ADDICTION VIA
miR-190-RELATED PATHWAYS
Addiction is highly related to changes in neuronal activity and
involves a number of brain nuclei, thus, modulating neuronal cir-
cuitry should be one possible mechanism through which ncRNAs
regulate opioid addiction (Di Chiara et al., 2004; Kelley, 2004;
Koob, 2009). Since neuronal circuitry is a large and complex topic
and ncRNAs can affect the expression of many proteins within
the neuronal circuitry (Bartel, 2004; Kosik, 2006), the current
discussion focuses on the signaling cascade surrounding miR-190.
Using microarray analysis, we determined the opioid-induced
changes in the expression profiles of miRNAs in primary cultures
of hippocampal neurons and in mice hippocampi (Zheng et al.,
2010d). Two opioids, morphine and fentanyl, were used in our
studies, because of their different characteristics in inducing recep-
tor internalization, receptor phosphorylation, and receptor desen-
sitization (Keith et al., 1996; Zhang et al., 1998; Chu et al., 2010;

Zhengetal.,2011). The two opioids induced similar changes in the
expression of miR-224, miR-331, and miR-365, but had agonist-
selective effects on the expression of miR-20a, miR-184, miR-190,
and miR-301 (Zhenget al., 2010d). In our several other reports, we
delineated both the upstream and downstream signaling pathways
of miR-190 (Zheng et al., 2010a,b,c, 2011).

The signaling cascades surrounding miR-190 are summarized
in Figure 1. Fentanyl, but not morphine, uses the B-arrestin
pathway to induce extracellular signal-regulated kinase (ERK)
phosphorylation and leads to the nuclear translocation of phos-
phorylated ERK. Phosphorylated ERK decreases transcription of
Talin2 by affecting the phosphorylation status of Yin Yang 1 (YY1)
and the subsequent interaction between YY1 and Talin2 pro-
moter (Zheng et al., 2008, 2010a). Since miR-190 is located in
the intron of Talin2, fentanyl treatment decreases the expression
of miR-190. Since morphine induces ERK phosphorylation in a
PKC-dependent manner, morphine treatment does not affect the
expression of miR-190, an example of agonist-selective regulation
on miR-190 expression.
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FIGURE 1 | Schematic illustration of signaling pathways surrounding
miR-190. Morphine uses PKC pathway to induce ERK phosphorylation,
fentanyl induces ERK phosphorylation in a B-arrestin-dependent manner.
Fentanyl decreases miR-190 expression via B-arrestin pathway, YY1, and
talin2. Fentanyl-increased NeuroD protein level was mediated by miR-190.
Since both morphine and fentanyl impaired CaMKlla activity, there is
agonist-selective regulation on NeuroD activity. Morphine decreases
NeuroD activity, but fentanyl keeps it at basal level. The activity of NeuroD
may contribute to DCX expression, dendritic spine stability, neuron
functions, adult neurogenesis, learning, and memory.
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miR-190 binds to the 3’-UTR of NeuroD mRNA and induces
a decrease of NeuroD protein (Zheng et al., 2010d). NeuroD
activity is influenced by both the NeuroD protein level and
calcium/calmodulin-dependent protein kinase IIo (CaMKIla)-
mediated phosphorylation on serine 336 (Gaudilliere et al,
2004). Since both morphine and fentanyl decrease the activity of
CaMKIla, the two opioids regulate NeuroD activity differentially
(Zheng et al., 2010c). On the one hand, after fentanyl treatment,
decreased expression of miR-190 leads to an increase in NeuroD
protein, which counteracts the reduced activity of CaMKIIa. Thus,
fentanyl maintains NeuroD activity close to basal levels. On the
other hand, after morphine treatment, miR-190 expression is not
affected, but the reduced activity of CaMKIIa leads to the impaired
activity of NeuroD. Thus, morphine decreases NeuroD activity
(Zheng et al., 2010c¢).

Since NeuroD is critical for neuronal morphology (Gaudilliere
et al., 2004), morphine and fentanyl differentially regulate den-
dritic spine stability and the electrophysiology of hippocampal
neurons (Liao et al., 2007a,b; Zheng et al., 2010c). Furthermore,
due to the involvement of NeuroD and its target, Doublecortin
(DCX), in adult neurogenesis in the subgranular zone of dentate
gyrus (Cho and Tsai, 2004; Hevner et al., 2006; von Bohlen Und
Halbach, 2007), there may exist a connection between agonist-
selective signaling, opioid addiction, and ncRNA expression (Eisch
and Harburg, 2006; Leuner et al., 2006).

To characterize the possible connection between miR-190-
related signaling pathways and opioid addiction, we categorized
the factors mentioned above into three types: (1) those related
to agonist-dependent signaling of OPRM1 including B-arrestin,
ERK, and YY1; (2) those expressed in the central nervous sys-
tem with close relation with miR-190, including CaMKIIo and
Talin2; and (3) NeuroD and NeuroD-related biological processes,
including dendritic spine stability, adult neurogenesis, contextual
learning, and memory.

Agonist-selective signaling

The first several factors discussed here are closely related to
agonist-selective signaling. Different from the “intrinsic efficacy”
concept, which suggests that each agonist activates the signal-
ing pathways under one particular receptor with similar efficacies
(Furchgott, 1966; Kenakin, 1995), agonist-selective signaling the-
ory suggests that agonists may activate different signaling pathways
differentially (Urban et al., 2007; Drake et al., 2008). Although no
direct evidence links agonist-selective signaling with opioid addic-
tion, the opioids do have differing abilities to induce tolerance
(Duttaroy and Yoburn, 1995).

Extracellular signal-regulated kinase phosphorylation may be
involved in opioid addiction. The ERK pathway has been reported
to regulate learning and memory, which in turn relate to drug
addiction (Mazzucchelli et al., 2002). In addition, addictive and
non-addictive drugs induce distinct and specific patterns of ERK
activation in the mouse brain (Valjent et al., 2004). The possible
involvement of the ERK pathway in opioid addiction is further
supported by the roles of ERK in opioid reward (Liu et al., 2007),
opioid withdrawal (Asensio et al., 2006; Li et al., 2010), and opioid-
induced conditioned place preference (Valjent et al.,2006; Lin etal.,
2010).

Agonist-selective ERK phosphorylation may be involved in
opioid addiction. Two pathways can be used by G protein-
coupled receptors (GPCRs) to mediate ERK phosphorylation: the
PKC/PKA pathway and the p-arrestin pathway, as demonstrated
by siRNA and kinase inhibitor studies (Shenoy et al., 2006; DeWire
etal.,2007; Violin and Lefkowitz, 2007). The selectivity of agonists
for these two pathways is indicated by the abilities of agonists to
use the pathways to induce ERK phosphorylation (Azzi et al., 2003;
Kohout et al., 2004; Shenoy et al., 2006). For OPRM1, morphine
acts through the PKC pathway to induce ERK phosphorylation,
and the phosphorylated ERK remains in the cytosol. Etorphine
and fentanyl prefer to use the B-arrestin pathway to induce ERK
phosphorylation, and the phosphorylated ERK translocates into
nucleus (Zheng et al., 2008). Since the differences among opi-
oids in inducing ERK phosphorylation are consistent with their
differences in inducing receptor phosphorylation (Zhang et al,,
1998; Zheng et al., 2010b, 2011), receptor internalization (Keith
etal., 1996; Koch et al., 2005), and receptor desensitization (John-
son et al., 2006; Chu et al., 2008, 2010), agonist-selective ERK
phosphorylation may be involved in opioid addiction.

How ERK phosphorylation and agonist-selective ERK phos-
phorylation contribute to opioid addiction is still unclear. Whether
miR-190, which is downstream of ERK pathway, is involved is also
not clear. However, miR-190 is not likely to be the only ncRNA
whose expression is regulated by ERK pathway. In addition, it is
likely that there additional ncRNAs that regulate the expression
of ERK or related factors like PKC and B-arrestin. Thus, fur-
ther investigation is required to define the connection between
agonist-selective signaling and opioid addiction.

Neuronal related factors
The sequence of miR-190 is conserved between human, mouse,
and rat, and is located in the intronic regions of the gene encod-
ing Talin2 in each genome (Griffiths-Jones et al., 2008). Similar
to other miRNAs located within the intronic regions (Rodriguez
etal., 2004), the expression of miR-190 is regulated by Talin2 pro-
moter activity, at least in part (Zheng et al., 2010d). Although
Talin2 has not been well studied, its functions can be predicted
by the reports on its homolog, Talinl. Talinl is considered to
be an integrin-associated cytoskeletal protein and induces con-
formational changes in integrin that increase the affinity of its
extracellular domains for ligand (Calderwood, 2004; Critchley,
2009). Talin2 is similar in amino acid sequence to Talinl (74%
identity and 86% similarity). Talinl expression is highest in the
heart and lowest in the brain, as measured in both mouse and
human (Ben-Yosef and Francomano, 1999; Monkley et al., 2001).
The Talin2 expression pattern is different from that of Talin1, with
highest expression in heart and the second highest expression in
brain (Monkley et al., 2001). Considering their sequence similarity
and differential expression patterns, Talin2 may execute the func-
tion of Talinl in brain. Thus, the opioid-induced modulation of
Talin2 transcription may affect cell adhesion to the extracellular
matrix, which may subsequently influence neuronal circuitry and
opioid addiction. These functions indicate that Talin2 is a potential
start for ncRNA-mediated regulation of opioid addiction.
CaMKIla activation is one of OPRM1’s downstream signaling
pathways (Lou et al., 1999). The activity of CaMKIla increases
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after acute morphine treatment, gradually returns to basal levels
after chronic morphine treatment, and reaches to a high level if
naloxone is used to precipitate the opiate withdrawal (Lou et al.,
1999). As an important factor in central nervous system, CaMKIla
is essential for synaptic transmission and dendritic morphology
(Colbran and Brown, 2004), and its phosphorylation is associated
with microtubule stabilization and dendrite formation (Vaillant
etal.,2002; Okamoto et al., 2009). In addition, CaMKIIa activation
has been reported to be a mediator for the development of opioid
tolerance (Fan et al., 1999; Shukla et al., 2006). The CAMKIIa sig-
naling pathway has been considered a common pathway for drug
addiction (Steiner et al., 2007; Anderson et al., 2008; Li et al., 2008).

NeuroD
Neurogenic differentiation 1 is critical for the development of both
the central nervous and endocrine systems. NeuroD null mice have
difficulty surviving after birth without insulin supplement. Surviv-
ing mice have defects in the cerebella and hippocampi (Cho and
Tsai, 2004). NeuroD is an important transcription factor during
adult neurogenesis in the subgranular zone of the hippocampus
(von Bohlen Und Halbach, 2007), and is expressed at high lev-
els during the differentiation and migration of neuronal stem
cells. In addition to supporting the formation of new neuronal
circuitry, NeuroD also contributes to the stability of existing cir-
cuitry. CaMKIIa-mediated NeuroD phosphorylation supports the
formation and maintenance of dendritic morphology in cerebel-
lar granule neurons (Gaudilliere et al., 2004). Reducing NeuroD
activity with miR-190 or CaMKIIa inhibitors impairs the stabil-
ity of dendritic spines in hippocampal neurons (Zheng et al.,
2010c¢). Therefore, by regulating the neuronal circuitry, NeuroD
may contribute to opioid addiction.

In addition to NeuroD itself, its target doublecortin (DCX)
is also a critical factor in adult neurogenesis (Seo et al., 2007;
von Bohlen Und Halbach, 2007). Since addictive drugs such as
alcohol, morphine, and cocaine regulate adult neurogenesis in
the hippocampus (Eisch et al., 2000; Nixon, 2006; Noonan et al.,
2010), a connection between adult neurogenesis and drug addic-
tion has been suggested (Eisch and Harburg, 2006; Canales, 2007).
This hypothesis is supported by studies on learning and memory
which are connected to both neurogenesis (Leuner et al., 2006;
Deng et al.,, 2010) and drug addiction (Davis and Gould, 2008;
Robbins et al., 2008). In addition, miR-19b and miR-124 have
been reported to target NeuroD (Liu et al., 2011; Zhang et al,,
2011), thus, these two ncRNAs may regulate opioid addiction by
affecting NeuroD-related pathways.

ncRNAs MAY CONTRIBUTE TO OPIOID ADDICTION BY AFFECTING
OTHER BIOLOGICAL PROCESSES

Above we discuss how factors related to miR-190 may contribute to
opioid addiction. Other miRNAs, including miR-133b and let-7,
will be described in depth in other reviews in this issue. How-
ever, not all miRNAs identified in the published reports have
been well studied. For example, 24 miRNAs, in addition to miR-
15b and miR-181b, were identified in a comparison of miRNA
expression in morphine-treated versus control samples (Dave and
Khalili, 2010). We also identified several miRNAs whose expres-
sion changed significantly after morphine or fentanyl treatment

in primary hippocampal cultures and mouse brain (Zheng et al.,
2010d). Although the majority of these miRNAs relate to cell pro-
liferation or cancer development, it was demonstrated that several
miRNAs are involved in opioid addiction.

For example, miR-26b targets the 3’-UTR of brain-derived neu-
rotrophic factor (BDNF) mRNA (Caputo et al., 2011). BDNF is
a neurotrophin that is an essential part of neuronal development
and plasticity (Greenberg et al., 2009). A study on alcohol and
cocaine also demonstrated BDNF’s central role in drug addiction
(Janak et al., 2006; McGinty et al., 2010). The expression of miR-
132 in neuronal cultures is up-regulated by BDNF (Numakawa
et al., 2011), and miR-132 mediates the regulation of BDNF on
glutamate receptors (Kawashima et al., 2010). Other studies have
revealed the interaction between miR-132 and other addiction-
related pathways, including CREB and ERK signaling cascades
(Remenyi et al., 2010), dendritic spine morphology and synaptic
physiology (Edbauer et al., 2010; Mellios et al., 2011), and the inte-
gration of newborn neurons into the adult dentate gyrus (Luikart
et al,, 2011). miR-301 affects the ERK and CREB pathways by
targeting EMOX2 (Cao et al., 2010).

SUMMARY

To further explore the possible mechanisms through which ncR-
NAs contribute to opioid addiction, a simplified schematic illustra-
tion is provided in Figure 2. The binding of an opioid to OPRM1
leads to various biological responses, some of which ultimately
lead to addiction. The ncRNAs involved in opioid addiction can
be classified into two categories: (1) ncRNAs whose expression
are regulated by opioids and mediate one or several biological
responses that lead to addiction, and (2) ncRNAs whose expres-
sion are not regulated by opioids, but support the cascade from
receptor to biological responses and then to addiction. The ncR-
NAs listed in Table 1 should belong to the first category if their
contribution to opioid addiction is confirmed in future investiga-
tions, since not all ncRNAs regulated by opioids contribute to the
development of addiction. The number of ncRNAs in the second
category can be larger than those in the first, since the develop-
ment of opioid addiction requires a large number of biological
steps. Unfortunately, reports on these ncRNAs are limited, possibly
because they are not regulated by opioids and thus have relatively
lower significance in this field.

In further studies of the relationship between ncRNAs and opi-
oid addiction, the key point will be to confirm the involvement of
ncRNAs in the development of opioid addiction. One common
method for confirmation is monitoring the development of opi-
oid addiction after modulating the expression of a specific ncRNA.
The categorization of ncRNAs mentioned above will be also use-
ful when using the involved ncRNAs as targets to control the
development of opioid addiction. Counteracting opioid-induced
changes in the expression of ncRNAs in category 1 may lead to
fewer side effects than blocking opioid tolerance by modulating
the expression of ncRNAs in category 2.

As mentioned above, most functions of ncRNAs target differ-
ent aspects of gene expression, thus, controlling the expression of
essential factors in opioid signaling cascades or neuronal circuitry
is one of the most likely mechanisms for regulation of opioid
addiction by ncRNAs. In the sections above, we discussed several
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ncRNAs

Various Biological Responses

FIGURE 2 | The possible mechanisms through which ncRNAs
contribute to opioid addiction. The binding of an opioid to OPRM1 leads
to various biological responses, some of which ultimately lead to addiction.
The ncRNAs involved in opioid addiction can be classified into two
categories: (1) ncRNAs whose expression are regulated by opioids and
mediate one or several biological responses that lead to addiction; and (2)
ncRNAs whose expression are not regulated by opioids, but support the
cascade from receptor to biological responses and then to addiction.

potential targets or target groups, including OPRM1 itself, factors
related to agonist-selective signaling, and factors related to neu-
ronal circuitry. As mentioned above, morphine treatment affected
the expression levels of miR-23b and let-7, which have binding
sites on the 3'-UTR of the OPRM1 mRNA. Since modulating let-7
expression could regulate morphine tolerance, it is reasonable to
suggest that modulating miR-23b expression could lead to the sim-
ilar effects. Furthermore, the other reported functions of miR-23b,
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