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Since the introduction of the Gene Ontology (GO), the analysis of high-throughput data
has become tightly coupled with the use of ontologies to establish associations between
knowledge and data in an automated fashion. Ontologies provide a systematic description
of knowledge by a controlled vocabulary of defined structure in which ontological con-
cepts are connected by pre-defined relationships. In plant science, MapMan and GO offer
two alternatives for ontology-driven analyses. Unlike GO, initially developed to characterize
microbial systems, MapMan was specifically designed to cover plant-specific pathways and
processes. While the dependencies between concepts in MapMan are modeled as a tree,
in GO these are captured in a directed acyclic graph.Therefore, the difference in ontologies
may cause discrepancies in data reduction, visualization, and hypothesis generation. Here
provide the first systematic comparative analysis of GO and MapMan for the case of the
model plant species Arabidopsis thaliana (Arabidopsis) with respect to their structural prop-
erties and difference in distributions of information content. In addition, we investigate the
effect of the two ontologies on the specificity and sensitivity of automated gene function
prediction via the coupling of co-expression networks and the guilt-by-association principle.
Automated gene function prediction is particularly needed for the model plant Arabidopsis
in which only half of genes have been functionally annotated based on sequence similarity
to known genes. The results highlight the need for structured representation of species-
specific biological knowledge, and warrants caution in the design principles employed in
future ontologies.

Keywords: Arabidopsis thaliana, design principles of ontologies, gene function prediction, Gene Ontology,

information content, MapMan

INTRODUCTION
With the ever increasing availability and quality of high-
throughput data from all levels of cellular organization (e.g., tran-
scriptome, proteome, and metabolome), ontologies have become
an integral part of multivariate data analysis to facilitate biological
interpretations. Accumulated knowledge in biology, unlike other
scientific fields, is rather difficult to capture,and convey with math-
ematical formalisms. Nevertheless, ontologies offer the means for
structured representation of knowledge gathered in various (elec-
tronic) written forms (e.g., text books, journal articles, databases),
whereby the structure pertains to the relationships between knowl-
edge concepts. Since ontologies are intended to represent corpora
of knowledge, often in a particular field, the considered concepts
can be used to annotate entities from the field of research.

Decade-long research efforts in this area, including annota-
tion schemes such as the MIPS functional categories as well
as the KEGG ontology (Ruepp et al., 2004), have resulted in
ontologies tailored to different aspects of biological research, from
genes and pathways to species-specific tissues, organs, and entire
anatomies (Bard and Rhee, 2004). Two aspects of using biologi-
cal ontologies have already been adequately addressed and thor-
oughly investigated, namely: (1) statistical tests for enrichment of

ontological concepts (Rivals et al., 2007), (2) categorization and
choice of semantic similarity measures for comparison of onto-
logical concepts (Guzzi et al., 2011). However, the integration of
biological ontologies, to facilitate interoperability of genomic data-
bases, and their comparison, with the aim of selecting suitable
ontologies, can still be regarded as pressing issues in bioinfor-
matics and computational biology (Stein, 2003; Punta and Ofran,
2008).

In combination with methods from multivariate data analysis
(e.g., clustering and separation), structured biological knowledge
allows for automated reasoning and statistically sound inferences
in biology. This is particularly relevant due to the recent surge of
methods and applications in network-driven co-expression analy-
sis of transcriptomics (i.e., gene expression) data. Co-expression
networks provide the medium for transfer of gene annotation fol-
lowing the guilt-by-association (GBA) principle, whereby known
(and enriched) function in a set of genes is propagated to the genes
of unknown function in the set. Solutions for automated gene
function annotation are still relevant even for well-investigated
model organisms, such as Arabidopsis thaliana (Arabidopsis) with
∼27,000 genes of which only half have been functionally annotated
based on sequence similarity to known genes, while the function
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of mere 13% has been experimentally confirmed (Lamesch et al.,
2012).

In modern plant biology, there are two widely used ontologies:
the Gene Ontology (GO) and MapMan. While the general GO has
originated as species-unspecific, MapMan was initially specifically
tailored to Arabidopsis. Furthermore, the latter has been extended
to cover other plants such as maize (Doehlemann et al., 2008),
Medicago (Tellström et al., 2007), tomato (Urbanczyk-Wochniak
et al., 2006), and potato (Rotter et al., 2007). With respect to the
nomenclature of concepts, the MapMan ontology comprises a set
of 34 tree-structured bins, describing the central metabolism as
well as other cellular processes (e.g., stress responses). On the
other hand, GO is a collection of concepts, called terms, which
are connected via is a and part of relations aimed at functionally
categorizing genes (for details of scope and structure of GO, the
reader is directed to, Ashburner, 2000; Stevens et al., 2000; Blake
and Harris, 2002). Moreover, GO can be regarded as a collection of
three ontologies that correspond to independent categories of gene
function: molecular function (GO-MF), biological processes (GO-
BP), and cellular component (GO-CC). Functional categorization
of genes can also be performed across species with the help of
high-level GO terms, reducing GO to the so-called GO slim ontol-
ogy. Besides the generic species-unspecific version, there are GO
slim ontologies which are designed for specific species, e.g., Sac-
charomyces cerevisiae (Cherry et al., 2012), Arabidopsis (Lamesch
et al., 2012), and Drosophila (Adams et al., 2000). In MapMan,
the original assignment of bins was based on publicly available
gene annotation in TIGR (The Institute for Genomic Research),
adopting a process alternating between automatic recruitment,
and manual correction (Thimm et al., 2004).

Although the two ontologies have both been used in plant
research, systematic comparison of GO and MapMan has not yet
been undertaken. Assessing the advantages and drawbacks of the
two is crucial for the selection of the ontology suitable for auto-
mated gene function annotation. Here we present the findings
from the comparative analysis of GO and MapMan, first by ana-
lyzing similarities and differences with respect to the (1) overall
structure and size, and (2) design principles. Here, we suggest
suitable preprocessing strategies to alleviate the problem of incon-
sistent mappings regarding the inheritance of concepts given by
the respective structure of the ontology.

Furthermore, for the specific case of the gene annotation for
Arabidopsis, we investigate (3) the coverage and (4) biological rel-
evance of concepts within the two ontologies. In addition, we
analyze the effect of a particular ontology on the function transfer
across genes based on the coupling between the GBA principle
and co-expression networks. The findings from our comparative
analysis point out that the domain in which ontologies are used
may have a profound effect on the selection of a best-performing
alternative. Therefore, our results pinpoint the need for develop-
ment of methods for objective, systematic, and problem-specific
comparison of biological ontologies as well as formal frameworks
for transfer of ontologies in cross-species analyses.

RESULTS
THE STRUCTURE OF MAPMAN AND GO
Although the relationships between two ontological terms in GO
and MapMan can be described by is a and part of relationships, the

structures of the two ontologies differ. While all three categories
of GO are structured in the form of a directed acyclic graph (DAG;
Yon Rhee et al., 2008), the relationships in MapMan are modeled
following a tree structure (cf. Figure 1). The implication of using a
DAG as an underlying structure of the ontology is that child con-
cepts may have more than one parent. The multiplicity of parent
concepts can be regarded as an advantage, as it provides a high
degree of flexibility and may enable powerful grouping, searching,
and analysis of genes (Yon Rhee et al., 2008). In contrast, although
the tree structure closely resembles the intuitive connotation of a
hierarchy of concepts, it sacrifices a part of the flexibility when the
ontology is updated (e.g., by adding new concepts).

A disadvantage of the DAG structure, compared to a tree, is
that the depth of a concept cannot be unambiguously defined,
since there may exist multiple paths to the root node. Therefore, we
define the depth of a concept in GO (i.e., term) as the shortest path
to the root node, corresponding to the minimum concept depth
(see Guzzi et al., 2011) for other similar measures). In addition,
multiple parent concepts increase the overall number of possible
ancestors at the same concept depth. This is particularly the case
when comparing the DAG structure of GO with the tree struc-
ture of MapMan. Furthermore, the number of potential parent
concepts as well as the overall size of an ontology renders it diffi-
cult to visualize concept associations for large-scale transcriptomic
analyses (for the plethora of available visualization methods see,
e.g., Zeeberg et al., 2003; Tsiaras et al., 2008; Carbon et al., 2009;
and has effect on statistical hypothesis testing, e.g., in multiple
testing scenarios Goeman and Mansmann, 2008).

An immediate solution represents GO slim, which catego-
rizes genes on the basis of a relatively small set of high-level
GO terms. Like in the tree structure of MapMan, the smaller
number of (parent-) terms of the slim ontologies facilitates the
interpretability of obtained results. However, similarly to the pre-
vious arguments, a small number of parent terms can also turn
out to be a disadvantage, as it may lead to a comparatively flat-
ter hierarchy structure, regardless of the actual size of the used
ontology. Subsequently, a flat hierarchy may compromise the
specificity and biological relevance of individual concepts due to
its coarseness.

DESIGN PRINCIPLES OF ONTOLOGIES – CAPTURING BIOLOGICAL
CONCEPTS
An important characteristic of GO is the division in three non-
overlapping domains of molecular biology–biological process
(GO-BP), molecular function (GO-MF), and cellular component
(GO-CC; Ashburner, 2000; Harris and Gene Ontology, 2004).
While terms in GO-BP domain describe biological objectives and
processes in which the annotated genes participate, terms in GO-
MF characterize biochemical activities that ultimately contribute
to biological processes. Finally, GO-CC summarizes the subcellu-
lar localization where a gene product is active. In contrast, while
MapMan does not have a structure composed of independent cat-
egories, one can still distinguish between high- and low-level bins.
Since the design principle of MapMan was to intuitively character-
ize and visualize metabolic pathways and processes (Thimm et al.,
2004), high-level bins tend to be similar to terms in the GO-BP
ontology, whereas low-level bins often resemble terms from the
GO-MF ontology.
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FIGURE 1 | Comparison of the concepts used in the annotation of the gene coding for naphthoate synthase (at1g60550, 264920_at) in the DAG and

tree structure of GO DAG and MapMan, respectively.

To illustrate this claim based on the whole annotation of gene
products rather than examples of individual concepts, we quanti-
fied the similarity of MapMan bins and GO terms by utilizing a
network-based approach. For the purpose of this analysis, nodes
correspond to concepts, i.e., terms in GO and bins in MapMan. An
edge between two nodes is established if the set of genes which are
annotated with the respective terms corresponding to the nodes
are similar (cf. Materials and Methods).

Figure 2 shows the resulting network which consists of all GO-
MF and GO-BP terms that exhibit a similarity to at least one
MapMan bin. The edges of the resulting network can further be
divided by the type of association they model, namely: similarity
between MapMan bin and GO-BP term, MapMan bin and GO-MF
term as well MapMan bin, and both GO-MF and GO-BP terms.
Inspection of the three types of edges in this concept-association
network shows that high-level MapMan bins are often associated
with terms originating from GO-BP. In contrast, MapMan bins
deeper in the hierarchy are predominantly associated with GO-MF
terms. A statistical analysis quantifies this observation as the dif-
ference of average depth of concepts for the first two of the groups
of edges is statistically significant at the 5% level (Wilcoxon-Rank-
Sum test, p-value = 0.016, cf. Figure 3). Here and in the following,
we only use the terms from the two GO ontologies, namely: GO-
MF and GO-BP, since there is no correspondence between GO-CC
and any bin in MapMan.

GENE ANNOTATION COVERAGE – THE STATUS QUO FOR ARABIDOPSIS
The genome of Arabidopsis contains 27,416 protein coding genes
according to the latest genome annotation version (TAIR10,
November 2010)1 which excludes pseudo genes and genes encoded
by transposable elements (Lamesch et al., 2012). Inspection of
these mappings shows that a total of 15,238 gene products are

1http://arabidopsis.org

annotated with MapMan bins, while 12,225 and 13,157 genes are
annotated by GO-BP and GO-MF terms, respectively. By com-
bining the available annotation of all three ontologies ∼63% of
Arabidopsis’ genes can be annotated.

The number of genes that are annotated with both MapMan
and GO terms (either GO-BP or GO-MF) is ∼87% of the total
number of annotated genes with concepts from any of the three
ontologies (cf. Figure 4). Furthermore, each ontology contains
concepts used in the annotation of a unique set of genes: the
contribution of MapMan is slightly larger, with 2,557 unique
bins, compared to 625 and 572 terms for GO-MF and GO-BP,
respectively (Figure 4). In summary, the coverage of the two
ontologies is comparable, which further serves as a justification
for the undertaken comparative analysis.

In addition, we find that 3,598 unique GO-BP terms are used
to annotate ∼45% of Arabidopsis’ genes. GO-MF contains 2,148
unique terms covering ∼48% of the genes. Finally, 1,361 unique
bins of MapMan are used in annotating 56% of Arabidopsis’ genes.
Similarly to the overall size of the ontologies, we demonstrate that
the average number of parent terms per gene in MapMan is 3
in comparison to 20 and 7 in GO-BP and GO-MF, respectively.
Clearly, MapMan is the smaller ontology with roughly one-third
of the size of GO-BP.

Furthermore, to see whether a comparatively low number of
parent terms ultimately results in an overall flatter hierarchy struc-
ture in the case of MapMan, we analyze the differences in the
distribution of depth in the two ontologies. Again, we contrasted
the concept depth distribution on the current state of ontologi-
cal gene annotation in Arabidopsis. Here, for each annotated gene,
we determined the depth of every associated term and all of its
parents (further defined as “complete ontology”, see Materials
and Methods). As shown in Figure 5, MapMan indeed repre-
sents a flatter hierarchy: while both term depth distributions of
the two GO categories closely resemble a normal distribution
with a mean ∼= median term depth of ∼5 (sample skewness:
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FIGURE 2 | Network of associations between MapMan bins and GO

terms. Blue nodes represent MapMan bins, yellow denote GO-BP terms, and
orange nodes correspond to GO-MF terms. The size of the nodes
representing MapMan bins corresponds to their depth in the ontology. Note
that the low-level bins (small blue nodes) correspond to terms in GO-MF,

while high-level bins (large blue nodes) are associated to terms in GO-BP. The
edges of the network are divided by the type of association they model,
namely: association between MapMan bin and GO-BP term (left), MapMan
bin and GO-MF term (middle) as well MapMan bin and both GO-MF and
GO-BP terms (right).

GO-MF = 0.01,GO-BP = 0.26), the term depth distribution of
MapMan is skewed toward lower values with median term depth
of three (sample skewness: 0.69). In addition, the maximum term
depth is lower, and is of value seven in MapMan and 10 in both
GO categories, respectively.

INFORMATION CONTENT OF ONTOLOGICAL TERMS
Common to both ontologies is that high-level concepts describe
general processes, functions, or structures, while low-level con-
cepts are more specific. The previous claim that MapMan consti-
tutes a flatter hierarchy structure, compared to GO, needs further
investigation to ascertain whether the structure of MapMan can
be used equally well in elucidating biologically meaningful infor-
mation from its ontological concepts (i.e., bins). Here we rely on
the information content (IC) of an ontology concept to quantify
its specificity by accounting for the overall number of genes anno-
tated with it (Resnik, 1995). Briefly, the information content of
an ontology concept is lower as its specificity decreases; the more
abstract a concept, or broader an ontological category, the lower its
information content (see Material and Methods). Figure 6 shows
a histogram of the IC of all MapMan, GO-MF and GO-BP used in
the annotation of the Arabidopsis’ genome. One can observe that
both GO ontologies exhibit a higher maximum IC as well as more
terms of large IC. Moreover, the median IC of 9.23 for MapMan is
smaller than that of GO ontologies, i.e., 10.4 for GO-MF and 10.82

for GO-BP. This implies a slightly coarser grouping of processes
and functions in the case of MapMan. However, one can also
observe that MapMan contains more terms of average IC (∼5.5 to
∼8.5).

Besides the analysis of the distribution of ICs for concepts of an
ontology, it is important to also investigate the interplay between
the underlying structure (captured by the concept depth) and
IC to characterize the level at which a deeper hierarchy relates
to more specific sets of genes. This dependence between con-
cept depth and IC is visualized in Figure 7 with the help of
box plots. One can observe that all three ontologies exhibit an
asymptotic trend of the median IC values per concept depth.
Interestingly, none of the ontologies displays a gradual trend of a
linearly increasing IC with the increasing concept depth. Further,
this non-linear behavior can be modeled using classical Michaelis-
Menten kinetics (Lehninger et al., 2008), which relates the rate of
a reaction (dependent variable) with the (saturating) concentra-
tion of its substrate (independent variable). The relation is fully
described by two parameters: V max, representing the maximum
rate achieved at maximum (saturating) substrate concentrations,
and K m, denoting the substrate concentration at which the rate
is half of V max. Analogously to this classical enzyme kinetics, we
take V max to denote maximum IC achieved at maximum concept
depth and K m, the concept depth at which the IC is V max/2. By
using non-linear (least-squares) regression (Leskovac, 2003), we
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FIGURE 3 | Concept depth of MapMan bins associated with GO terms

based on similarity of the annotated genes (cf. Figure 2). Low-level
MapMan bins tend to represent terms from the GO-MF ontology (left
boxplot), while high-level MapMan bins are associated with terms from
GO-BP (middle). The difference of the bin depth for these two groups is
statistically significant at level α = 0.05.

FIGURE 4 | Venn diagram illustrating the overlap in the gene

annotation of Arabidopsis thaliana with concepts from MapMan,

GO-BP, and GO-MF, respectively.

obtain estimates for the constants V max and K m (cf. Materials and
Methods). Interestingly, we find the all determined K m values are
close to ∼1, relating to V max/2 of 6.08, 6.04 and 6.76 for MapMan,

GO-MF and GO-BP, respectively. Therefore, we conclude that,
in the case of Arabidopsis, all three ontologies possess the sim-
ilar structural capabilities to allow for an adequate biologically
meaningful discrimination of concepts and genes.

EMPLOYING MAPMAN AND GO FOR AUTOMATED GENE FUNCTION
ANNOTATION – THE CASE STUDY OF ARABIDOPSIS
The current incompleteness of available gene annotation for Ara-
bidopsis clearly emphasizes the need for automated gene function
prediction, even in the case of well-studied model organism.
In addition to sequence similarity, gene co-expression analysis
employing genome-wide transcriptomics data across tissues or
in response to environmental perturbation has become a valuable
tool to predict gene function based on the GBA principle (Klie
et al., 2010). The transfer of function annotations between two
genes, exhibiting similar profiles, according to GBA is now a stan-
dard procedure for gene function prediction. Furthermore, gene
co-expression networks have emerged as a powerful representa-
tive of the structure of similarity of transcriptomic profiles, and
are readily employed for intra-species transfer of gene annotations
following GBA (e.g., in the field of plant science see, Obayashi et al.,
2009; Mutwil et al., 2010; Mochida et al., 2011).

Due to the previously described difference in the structure of
GO and MapMan, we next evaluate the effect of these character-
istics on the performance of gene function prediction by using
a GBA-based network-driven approach. To this end, we employ
a transcriptomic data-set of 273 publicly available Arabidopsis
microarray experiments to construct a gene co-expression network
(see Materials and Methods). We rely on the approach described
in Mutwil et al. (2011) to obtain a co-expression network which
is based on robust statistical parameter estimation combined with
successive optimization of the biological relevance of the obtained
network. In the co-expression network, the nodes correspond to
Arabidopsis’ genes, and edges are established if the incident nodes
(i.e., genes) are mutually in the top 30 most similar genes. The sim-
ilarity is assessed by the Pearson correlation coefficient, and this
approach, termed highest reciprocal rank, has already been charac-
terized to optimally capture functional annotation of co-expressed
genes (Obayashi and Kinoshita, 2009).

In the following, we rigorously extend this method to allow for a
network-based prediction method of gene annotation by employ-
ing the method of majority voting (cf. Materials and Methods). In
majority voting, the annotations of all adjacent nodes (i.e., imme-
diate neighbors) of a given gene are ordered in a list, from the
most to the least frequently appearing (Schiwikowski et al., 2000).
The function of an unannotated gene is then predicted by the
first k functions in the list. Note that k is a user-specified para-
meter. Although the approach is very simple, it is exceptionally
fast and can serve as an excellent reference for the amount of local
information captured by the network due to the consideration of
annotations of immediate neighbors.

To generate and verify predictions of annotation with both
ontologies, we conduct the following simulation: We first select the
genes which are annotated with concepts from each of the three
ontologies, i.e., MapMan, GO-MF, and GO-BP, which resulted
in 9,994 genes. Moreover, the annotation provided in all three
ontologies for a set of randomly chosen genes is discarded. To
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FIGURE 5 | Distributions of concept depth in GO-MF (upper), GO-BP

(middle), and MapMan (lower). The x -axis denotes the depth of a concept
while the left y -axis denotes the corresponding occurrence. For all three
distributions, a normal distribution is fitted (right y -axis).

this end, the number of this artificially unannotated genes is
set to be 4,000, corresponding to a fraction of ∼40% genes of
unknown function. This scenario closely resembles the current
state of Arabidopsis’ gene annotation. For these genes, prediction
of gene annotation is obtained by using each one of the three
ontologies. The predictions of the top k∈[1,20] most abundant
concepts in the network vicinity are evaluated for their perfor-
mance based on the original discarded annotation. For every k
most abundant concepts from the unannotated genes, this proce-
dure is repeated 1,000 times, such that in every iteration a different
set of randomly unannotated genes is sampled. Note, that all three
used ontologies were preprocessed so that for each gene all parent
terms are included. Moreover, to avoid trivially correct predic-
tions, such as the root terms of GO-MF and GO-BP, we do not
consider the root terms as well the 20 less informative terms
(based on the IC; see Materials and Methods). The predictions
are summarized by precision and recall, two widely used perfor-
mance measures in information retrieval and binary classification

(Baeza-Yates and Ribeiro-Neto, 1999), as well as by their harmonic
mean, the F-measure. On the other hand, we evaluate the bio-
logical relevance of the obtained predictions by investigating the
normalized IC (with respect to the maximum) and the depth of the
top k, k∈[1,20] predicted terms. Additionally, we also report the
number of genes for which a prediction can be obtained following
this procedure.

Figure 8 summarizes the acquired prediction performance
results for all three employed ontologies. One can observe that
the use of MapMan exhibits an advantage in the performance
of gene function prediction, as the combined F-measure is the
highest over the whole range of top k, k∈[1,20] concepts (the
exception is the case of k = 20, where the F-measure is zero, due
to the lower number of terms in MapMan). This is mainly due to
a higher average recall, i.e., a higher fraction of all the originally
concepts, used in the annotation of a gene, that were success-
fully retrieved. Nevertheless, the average precision between GO
and MapMan is comparable, indicating that the ratio of correctly
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FIGURE 6 | Histogram of the information content of all concepts used to annotate Arabidopsis’ genome by using the three ontologies MapMan,

GO-MF, and GO-BP.

predicted concepts to all predicted concepts is similar across all
three ontologies.

Correspondingly, the average IC and depth of concepts is gen-
erally higher in the case of MapMan, which implies a higher bio-
logical relevance or specificity of the predicted terms (Figure 8).
However, both GO ontologies perform better with respect to the
fraction of genes for which any prediction of gene annotation can
be derived, i.e., 51% for MapMan vs. 64 and 73% for GO-MF and
GO-BP, respectively. This suggests that the distribution of genome
annotation is less clustered and more homogeneous.

DISCUSSION
Here, we provided the first comparative analysis of two ontolo-
gies, GO, and MapMan, both widely used in plant biology studies.
The first part of the comparison comprises the structural char-
acteristics of the ontologies, namely: the type of concepts and
relationships between them as well as the design principles under-
lying GO and MapMan. Our findings were in support of the
claim that higher level bins in MapMan correspond to terms
of GO-BP, while lower level bins are more similar to terms of
GO-MF. Regardless of these analogies, GO offers the possibil-
ity to also investigate gene products with respect to their spatial
distributions, captured in the terms of the third GO ontology –
cellular component (GO-CC). In contrast, MapMan does not

facilitate spatial analysis of genes and the downstream processes
(e.g., metabolism). Nevertheless, although cellular processes and
molecular functions are represented well in both GO and Map-
Man, temporal changes during plant development, fruit ripening,
or progression of stress are in their nascent stages. Therefore,
future developments in plant-specific ontologies should con-
sider integrating the indicated spatial and temporal dimensions
indispensable for accurate description of molecular processes in
plants.

In the second part of the study, we investigated the annotation
corpus of Arabidopsis’ genes and carried out a detailed compari-
son of the two ontologies with respect to the information content
of the respective concepts, i.e., bins in MapMan and terms in
GO. It turned out that MapMan, GO-BP, and GO-MF exhibited
similar relationships between information content and depth of
concepts. In conjunction with the plethora of existing tools for
computational analyses based on both ontologies, our results indi-
cated that both ontologies may be equally suitable with respect to
the biologically meaningful information that could potentially be
extracted.

Finally, we used the two ontologies as a principle source of
information in the context of automated gene function predic-
tion following the GBA principle on co-expression networks.
The co-expression networks were created by using publicly
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FIGURE 7 | Visualization of information content (y -axis) at a given

term depth (x -axis) for GO-MF (left), GO-BP (middle), and MapMan

(right). A non-linear regression is used on the medians of the

information content per concept depth following Michaelis-Menten
kinetics (solid line). The constant V max/2 is shown by dotted lines (see
main text for details).

available transcriptomics data sets for Arabidopsis, and provided
the medium for local propagation of concepts to unannotated
genes in the vicinity of a given well-characterized gene. To this end,
we used the simplest available alternative for automated function
annotation given by the majority voting. Although our findings
that MapMan outperformed GO with respect to function annota-
tion depend on the algorithm for annotation transfer, we believe
that they are robust as most of the available algorithms rely on
propagation of local information only. While MapMan’s tree hier-
archy at a first glance appears to be flatter,as assessed by term depth,
and IC, in comparison to GO’s DAG structure, MapMan’s design
tailored to Arabidopsis is most likely reflected in the improved per-
formance in gene function prediction. In contrast to MapMan, GO
represents a more generic ontology, reflected in its changing struc-
ture and gene annotation. Since no other plant model organism is
currently equally well-annotated by GO and MapMan as it is the
case for Arabidopsis, no general conclusions for plant species can be
made. Nevertheless, what remains to be investigated is the effect of
the distribution of annotated genes in the network. In other words,
we expect that choice of the ontology for automated gene function
annotation will ultimately depend on the dispersion of patches of
annotated nodes (following the focused biological interest in genes
of particular process/function).

Last but not the least, the major implication of our study is that
the choice of which ontology to be used computational analyses
is problem-specific, as it highly depends on the interplay between
the structural properties of the ontology, the size, and quality of
the annotation corpus, using the ontology, as well as the employed
multivariate data. Therefore, we believe that aside from the com-
parison of ontologies based on intra-ontology characteristics (e.g.,
distribution of information content), our study emphasizes the
need for another criterion – namely, the biological question to be
answered by using ontologies, for instance, comparison of plant
developmental stages, or plant-specific structures and the here
addressed gene annotation. This, of course, may open yet another
field of bioinformatics research related to the design of sound
methods for ontology selection suitable for a particular problem
at hand. In this respect, we believe that the suggested direction
may result in development of (external and internal) measures
for problem-specific comparison of ontologies and their perfor-
mance – an issue which was already addressed in other research
areas (e.g., data clustering, retrieval in audio and video databases).
Taken altogether, the identified issues warrant caution in extend-
ing ontologies from model to other species and suggest that this
may be most appropriately performed in a careful semi-automated
manner.
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FIGURE 8 | Evaluation of prediction performance (y -axis) for gene

function annotation using the three ontologies. Three classical
performance indices from information retrieval were employed: F-measure
(upper-left), precision (upper-middle), and recall (upper-right). In addition, the
information content (lower-right), and the concept depth relative to the

maximum depth within the respective ontology (lower-middle) of predicted
concepts were evaluated. In all cases, the 20 most abundant concepts
(x -axis) in an unknown gene’s neighborhood are evaluated. Finally, the fraction
of unknown genes for which a prediction could be derived is given (bar plot,
lower-right).

MATERIALS AND METHODS
ARABIDOPSIS TRANSCRIPTOMICS DATA-SET AND RECONSTRUCTION
OF A GENE CO-EXPRESSION NETWORK
The employed transcriptomic data-set used to derive the gene
co-expression network consist of 279 of publicly available microar-
ray experiments (Affymetrix Ath1 gene-chip, 22,500 probe sets)
obtained from the Gene Expression Omnibus2 (Edgar et al.,
2002). Note, that this is the same transcriptomics compendium
which is used in the PlaNet co-expression analysis platform
(Mutwil et al., 2011). Initially, a total of over 6,000 microarray
experiments were downloaded and the quality of each individ-
ual microarray experiment was ensured by an automated outlier
detection and quality control. Here, the R Bioconductor pack-
age array Quality Metrics (Kauffmann et al., 2009) was
employed to conduct (1) between-array comparisons based on
distance between arrays and Principal Component Analysis, (2)

2http://www.ncbi.nlm.nih.gov/geo/

inspection of array-wide probe intensity distributions by boxplots
and density plots, (3) variance-mean dependence of each array,
and (4) individual array quality assessment by MA plots. After this
preprocessing, 1,707 microarrays were retained. Furthermore, this
transcriptomics compendium was reduced by selecting a subset
of experiments comprising 273 microarrays. This is performed
to remove any bias arising through (potentially) un-informative
or repetitive data while preserving the overall structure of the
transcriptomics compendium (Mutwil et al., 2011). Briefly, this
selection strategy is based on the Subset Selection problem from
linear algebra, whereby, for a given number l and a matrix A,
one is to find the subset of l columns from A which are most
mutually independent. Here, columns of the matrix A denote
individual microarray experiments (1,707 in total), rows cor-
respond to genes, such that each matrix entry represents the
corresponding gene expression levels. Application of the out-
lined selection procedure yielded 279 microarrays which were
subsequently normalized using quantile normalization via the
simple Affy R package. This data-set was used to reconstruct
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the co-expression network and is available in the Table S1 in
Supplementary Material.

PREPROCESSING OF ONTOLOGIES – REMOVAL OF INCONSISTENCIES
AND INTEGRATION OF PARENT CONCEPTS
As sources of mapping genes to ontology terms in Arabidopsis,
we employed the latest versions available for MapMan (Version
1.1 from January 2010)3 and GO (Version 2.5 from September
2010, available via the R package ath1121501.db4). Within
these mappings, a total of 15,238 gene products are annotated
with MapMan bins and 12,225 and 13,157 genes are annotated by
GO-BP and GO-MF terms, respectively. However those raw map-
ping files contain inconsistencies: while the annotations for some
genes contain only the most specific concepts, i.e., terminal or leaf
concepts with no further child concepts, others are additionally
annotated with parent concepts. As an example, consider the genes
annotated with the MapMan bin “29.5.11.4.2” corresponding to
“protein.degradation.ubiquitin.E3.RING” in Arabidopsis. This bin
is a leaf or terminal concept, i.e., it has no children. One gene that
is annotated with this concept is a member of the ARM repeat
superfamily (locus ID at1g71020) and is additionally annotated
with the parent bin “29.5.11” corresponding to “protein degra-
dation ubiquitin.” However, other genes annotated with the bin
29.5.11.4.2, for instance EDA40 (at4g37890), are only annotated
with the leaf bin “29.5.11.4.2” missing the mapping to any parent
bins, e.g., 29.5.11.4 or 29.5.11. Likewise, similar examples hold for
both GO domains, GO-MF, and GO-BP. In total, 25 of such incon-
sistencies can be identified for MapMan and 3,750 and 2,202 for
GO-MF and GO-BP, respectively.

The effect of an incomplete mapping which includes only par-
tially – or even not at all – parent concepts is twofold: first, the
analysis by means of IC of a concept would lead to incorrect
results since the IC of a concept is dependent on the number
of genes associated with it. By definition of an ontology, a gene
annotated with a low-level concept should automatically be anno-
tated with all of the ancestral terms, too (Figures 1 and 9). Only
considering the concept-gene association counts in a raw ontol-
ogy will lead accidentally to erroneous results for the derived ICs;
in this case leaf or terminal concepts might exhibit a higher IC
than their parent terms (Klie et al., 2010). Second, for the purpose
of gene function prediction in majority voting, common ances-
tor terms of the neighboring genes are of great importance. In
the case that the annotation of all neighboring genes is a dis-
joint set of low-level concepts, no majority vote can be found
(cf. Figure 9D). However, the gene’s neighbors can share com-
mon parent concepts that can help in deriving predictions for
the gene in question. Although the derived annotation might not
be as specific, the prediction of a high-level concept suggesting
the putative involvement in processes or pathways is preferred to
obtaining no prediction at all. To resolve the problem of incom-
plete mappings, we preprocessed all three ontologies so that for
each gene, the complete list of parent terms is included. Note, that
those parent terms can readily be identified by enumerating the
respective DAG or tree structure defined by is a or part of relations

3http://mapman.gabipd.org/
4http://www.bioconductor.org

(Figures 9A,B). We further define these modified mappings as
“complete ontologies”.

Finally, the preprocessing involved removal of control and
unknown probe sets, which corresponds to probes associated with
MapMan bins 0 and 35 (“control”and“unknown”/“not assigned”)
and all their child bins.

EVALUATION OF ONTOLOGY STRUCTURE AND INFORMATION CONTENT
We employ two measures to characterize the structure and the
characteristics of an ontology – the depth and the information
content (IC) of concepts.

Given a directed acyclic graph G = (V, E), which defines the
relationships of concepts within an ontology, where V is a set of
vertices, E is a set of edges, the depth of a term x is given by the
distance d(x, r) between the two vertices x and r, where node r
corresponds to the root concept of the ontology. Furthermore,
the distance is defined as the length of the shortest path from x
to r (Bondy and Murty, 2008). Note that node r represents the
root term which is explicitly defined for GO-BP as and GO-MF
and which can be implicitly defined for MapMan by adding an
artificial root node, i.e., bin r.

The IC of an ontological concept c is defined as IC(c) = -
log2(|Gc|/|Gall|), where Gc is the set of genes annotated with the
concept c and Gall is the set of genes annotated with any of the
concepts in the ontology (Resnik, 1995).

DETERMINING SIMILAR CONCEPTS ACROSS ONTOLOGIES
To quantify the similarity of two concepts c1 and c2, we use the
Jaccard similarity coefficient of the set of genes G1 annotated with
concept c1in MapMan and the set of genes G1 annotated with con-
cept c2 in GO. The Jaccard similarity coefficient for two sets G1

and G2 is defined as sim(c1, c2) = J (G1, G2) = |G1∩G2|/|G1∪G2|.
As 50% of all MapMan and GO concepts describe four or more
genes, we consider only concepts of MapMan and GO that are
annotated with at least four genes (i.e., |G1| and |G2| > 3) to avoid
identifying similar concepts based on individual genes.

In addition, to analyze the pair-wise similarity over all con-
cepts, we create a network in which nodes correspond to concepts
and edge are established between two nodes c1 and c2 if sim (c1,
c2) ≥ 0.6. Note, that despite its numerical value, this threshold is
rather strict as it refers to only the highest 1% of all observed pair-
wise concept similarities, not only between MapMan and GO but
also within the respective ontologies. Nodes corresponding Map-
Man bins that are not connected to a node denoting a GO term
are discarded. Finally, the edges of the resulting network can be
divided by the type of association between nodes they model: the
similarity between a MapMan bin and GO-BP term, a MapMan
bin and GO-MF term as well as a MapMan bin and both GO-MF
and GO-BP terms. For each of those three derived types of associ-
ations, the average bin depth of MapMan bins is determined and
the statistical significance of the difference of means within the
first two groups (MapMan/GO-MF, MapMan/GO-BP) is derived
via Wilcoxon-Rank-Sum test (Sokal and Rohlf, 2003).

GENE FUNCTION PREDICTION USING NETWORK-BASED MAJORITY
VOTING
Majority voting is one of the simplest, yet fastest, network-based
gene function prediction methods (Schiwikowski et al., 2000).
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FIGURE 9 | Preprocessing of ontologies and network-based gene

function prediction by majority voting. (A) The original annotation of
genes (“raw” annotation) and corresponding concepts (denoted by letters)
is extended for each gene by including all parent concepts. The latter is
referred to as “completed” annotation. Additional filtering can be
performed to remove concepts annotated by many genes (gray letters). (B)

Parent terms can be readily obtained by traversal of the ontology structure
(a node represents a concept, an arrow an is a or part of relationship
among concepts; terminal or leaf concepts are denoted in black). (C) Gene

function prediction of the unknown gene, denoted by I, by using the
majority voting approach: the annotation of all immediate neighbors in a
co-expression network (black ellipses) is considered. (D) Deriving a
prediction for the gene I by ranking the annotation obtained through its
neighbors. By using the raw annotation, unambiguous prediction cannot
be derived (left column); the “completed” annotation aids in deriving
meaningful predictions by considering concepts intermediate in the
hierarchy (e.g., concept c, middle column); additional filtering (right
column) further improves the prediction (“optimized ontology”).

Particularly, its reliance on the immediate neighborhood of a
given node renders it applicable in estimating usefulness of local
information on gene function prediction.

Here, the network consists of nodes corresponding to the genes
included in the aforementioned Arabidopsis transcriptomics com-
pendium. The necessary steps to transform similarity of gene
expression profiles to edges between genes in a final co-expression
network rely on the approach presented in Mutwil et al. (2011).
In summary, this approach is comprised of ranking pair-wise
gene expression profiles by the Pearson correlation coefficient.
Successively, the application of statistical tests is conducted to
determine the optimal cut-off (range) for the reciprocal ranks
which translate into establishing edges between the nodes in the
network. Moreover, an optimality principle is employed to select
a set of best-performing parameter values with respect to the GBA

principle. To this end, we conduct an iterative search on the allow-
able ranges for the reciprocal ranks that maximize the similarity of
gene function in the neighborhood of a given gene/node. A high-
est reciprocal rank (HRR) cut-off between 10 and 30 produced
biologically relevant networks (Mutwil et al., 2010). However,
while >80% of the nodes were disconnected for HRR = 10, and
consequently excluded from any further co-expression analysis,
a HRR = 30 was chosen as the number of disconnected nodes
decreased to 25%. Note, that by relying on ranks of derived
from pair-wise correlations of gene expression profiles, no explicit
threshold for the Pearson correlation coefficient is needed. This
is nicely illustrated by the range of Pearson correlation coeffi-
cients of expression profiles of a pairs of genes with a HRR of 30
which varies from 0.32 to 0.9 depending on the individual gene.
The advantage of using HHR rather than the simple pair-wise
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correlation is that co-expression analysis by HRR uncovers more
meaningful biological associations (Aoki et al., 2007).

The obtained co-expression network is composed of 9,994
nodes, which correspond to those genes in Arabidopsis’ genome
that are annotated with a set of concepts from all three ontolo-
gies, i.e., MapMan, GO-BP, and GO-MF. This network consists of
461 connected components of which 439 are singleton genes, i.e.,
nodes with no adjacent edges, and exhibits a density of 0.001. The
largest component contains 9,506 nodes and the average degree of
a node is 10.36. To simulate the effect on gene function prediction
depending on the ontology used, the annotation provided in all
three ontologies for a set of randomly chosen genes is discarded.
To this end, the number of this artificially unannotated genes is
set to be 4,000, a fraction corresponding to the ∼40% genes of
unknown function in Arabidopsis.

For each of the 4,000 genes, the annotations of all adjacent
nodes are derived using the completed ontology and ordered in a
list, separately for all three ontologies. Every concept present in the
annotation of neighboring nodes is ranked from the most to the
least frequently appearing within the neighborhood (Figure 9).
The function of an unannotated gene is then predicted by exam-
ining the first k functions in the list. Here, we consider the
predictions of the top k∈[1,20] most abundant concepts in the

network vicinity and successively evaluate them by comparing the
predicted terms to the original discarded annotation. This proce-
dure is repeated 1,000 times, such that in every iteration a different
set of randomly unannotated genes is sampled and evaluated for
every k most abundant concepts.

Furthermore, we removed those 20 concepts (corresponding
to the choice of parameter k) with the lowest IC from all three
complete ontologies. The aim of this filtering step is to avoid deriv-
ing trivial annotation (e.g., the root concepts of the ontologies)
or unspecific annotations (e.g., very broad, high-level biological
concepts) as predictions. We note that although those high-level
terms are technically correct in terms of prediction, their ben-
efit in characterizing a gene of unknown function is limited (cf.
Figure 9D). An example of terms exhibiting a low IC are within the
GO-BP sub-ontology “biological process” (GO:0008150), i.e. the
root term or “transport” (GO:0006810). For GO-MF, examples
of removed terms include “binding” (GO:0005488) and, again,
the root node “molecular function” (GO:0003674). In contrast,
more specific concepts of higher IC are unaffected by this fil-
tering step. These include, for instance, the children of the term
“binding”which are“secretion”(GO:0046903) and“ion transport”
(GO:0006811). These modified ontologies are termed “optimized
ontologies” and further used for evaluation of the prediction

FIGURE 10 | Effect of the preprocessing of ontologies (cf. Figure 9) and

the impact on network-based gene function prediction by majority

voting for all three ontologies quantified by the F-measure (upper

panel) and the normalized depth of term/concept (lower panel)

separately for raw, complete and optimized versions of the

ontologies.
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performance (Figure 8). Finally, the effect of this optimization
step on gene function prediction is illustrated in Figure 10: A
raw ontology only contains some of the ancestral concepts result-
ing in a lower prediction performance (F-measure; similar results
hold for precision and recall; data not shown) and average term
depth of predicted concepts (similar results hold for the aver-
age IC of predicted terms; data not shown). In contrast, the
complete ontology includes all ancestral concepts defined in the
respective ontology, resulting in an increase of prediction per-
formance; however, it is accompanied by a lower term depth of
predicted concepts. The optimized ontology removes ambiguous
terms, i.e., terms of high IC, and represents a compromise between
good prediction performance and specificity of derived predic-
tions. Interestingly, MapMan profits the most from the proposed
optimization strategy.

EVALUATION OF GENE ANNOTATION PREDICTION PERFORMANCE
The quality of the predicted ontological concepts for genes is eval-
uated by two complementary strategies. While the first strategy
comprises the use of classical quality measures from the field of
pattern recognition and information retrieval that assess the cor-
rectness of predicted terms, the second strategy seeks to quantify
the quality of those derived predictions in terms of biological rel-
evance. Again, the previously established concepts of term depth
and IC are employed for this task. Note that for the purpose of
comparative evaluation, both term depth and IC are normalized to
the respective maximum value encountered within the particular
ontology.

For a single gene, the prediction performance for a set of derived
concepts, Cp, is used in defining the precision as:

precision =
∣
∣Cp ∩ Ca

∣
∣

∣
∣Cp

∣
∣

,

where Ca denotes the set of originally annotated concepts. Fur-
thermore, we define the recall of the prediction of concepts for the
gene as:

recall =
∣
∣Cp ∩ Ca

∣
∣

|Ca | .

Finally, we rely on the F-measure as a combined performance
index, defined as the harmonic mean of precision and recall:

F = 2 · recall · precision

recall + precision
.

In the case of precision = recall = 0,we take F = 0. Note, that the
values for all three performance indices correspond to the average
of precision, recall, and F-measure, respectively, for all artificially
unannotated genes over 1,000 iterations.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at
http://www.frontiersin.org/Bioinformatics_and_Computational_
Biology/10.3389/fgene.2012.00115/abstract
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