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Growth and maturation of healthy oocytes within follicles requires bidirectional signal-
ing and intercellular gap junctional communication. Aberrant endocrine signaling and
loss of gap junctional communication between the oocyte and granulosa cells leads
to compromised folliculogenesis, oocyte maturation, and oocyte competency, conse-
quently impairing fertility. Given that oocyte-specific DNA methylation establishment at
imprinted genes occurs during this growth phase, we determined whether compro-
mised endocrine signaling and gap junctional communication would disrupt de novo
methylation acquisition using ERβ and connexin37 genetic models. To compare mutant
oocytes to control oocytes, DNA methylation acquisition was first examined in individ-
ual, 20–80 μm control oocytes at three imprinted genes, Snrpn, Peg3, and Peg1. We
observed that each gene has its own size-dependent acquisition kinetics, similar to previ-
ous studies. To determine whether compromised endocrine signaling and gap junctional
communication disrupted de novo methylation acquisition, individual oocytes from Esr2-
and Gja4-deficient mice were also assessed for DNA methylation establishment. We
observed no aberrant or delayed acquisition of DNA methylation at Snrpn, Peg3, or
Peg1 in oocytes from Esr2-deficient females, and no perturbation in Snrpn or Peg3 de
novo methylation in oocytes from Gja4-null females. However, Gja4 deficiency resulted
in a loss or delay in methylation acquisition at Peg1. One explanation for this difference
between the three loci analyzed is the late establishment of DNA methylation at the
Peg1 gene. These results indicate that compromised fertility though impaired intercellu-
lar communication can lead to imprinting acquisition errors. Further studies are required to
determine the effects of subfertility/infertility originating from impaired signaling and inter-
cellular communication during oogenesis on imprint maintenance during preimplantation
development.
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INTRODUCTION
The tight regulation of monoallelic gene expression based on
gametic origin is termed genomic imprinting (Bartolomei and
Ferguson-Smith, 2011). This dynamic process relies on epigenetic
modifications such as DNA methylation to mark, or“imprint”, one
of the two parental alleles, resulting in differential gene expres-
sion in progeny (Verona et al., 2003). Gametogenesis encompasses
the critical period of heritable epigenetic reprogramming for
imprinted genes. Imprinted DNA methylation is first erased in
primordial germ cells, subsequently allowing for de novo differen-
tial methylation at imprinted loci in oocytes and sperm (Li and
Sasaki, 2011). In males, de novo DNA methylation acquisition
occurs during the prenatal stages of spermatogenesis, beginning

in prospermatogonia and is completed by birth (Kafri et al., 1992;
Davis et al., 1999, 2000; Ueda et al., 2000). In females, de novo
DNA methylation is acquired after oocytes enter the growth phase
of follicular development, from the primary to antral follicle stage
(Lucifero et al., 2004; Hiura et al., 2006; Sato et al., 2007; Song et al.,
2009). Importantly for oocytes, imprinted methylation acquisition
is dependent on oocyte size and not oocyte age, with methylation
levels increasing as oocyte diameter increases.

The correct establishment of germline imprints is significant
as disruptions to this process can result in the development of
imprinting disorders such as Beckwith–Wiedemann syndrome
(BWS), Silver–Russell Syndrome (SRS), and Angelman syndrome
(AS). BWS is an overgrowth disorder that is caused by imprinting
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defects that result in a gain of maternal methylation at the
H19 imprinting control region (ICR) or a loss of maternal-
specific methylation at the KCNQ1OT1 (KCNQ1 overlapping
transcript 1) ICR (Weksberg et al., 2010). SRS is an intrauterine
growth restricted imprinting disorder with imprinting defects at
the H19 and possibly at the paternally expressed gene 1 (Peg1)
imprinted domains (Eggermann, 2010). AS is a neurological dis-
order that is caused by loss of maternal-specific methylation at
the small nuclear ribonucleoprotein N (SNRPN) ICR (Mabb et al.,
2011). Sporadic epigenetic errors resulting in these disorders
are reported to occur more frequently in the assisted reproduc-
tive technologies (ARTs) population (Cox et al., 2002; DeBaun
et al., 2003; Gicquel et al., 2003; Maher et al., 2003; Orstavik
et al., 2003; Halliday et al., 2004; Chang et al., 2005; Ludwig et al.,
2005; Rossignol et al., 2006; Azzi et al., 2009; Bliek et al., 2009;
Lim et al., 2009; Lennerz et al., 2010; Turner et al., 2010). For
AS, patients at the highest risk for an imprinting defect have
parents with prolonged infertility undergoing infertility treat-
ment (Ludwig et al., 2005; Doornbos et al., 2007). This raises the
question as to whether imprinting errors in ART patients are asso-
ciated with parental infertility/subfertility. While studies have been
conducted to determine the effects of ARTs on genomic imprint-
ing, investigations of how impaired fertility may contribute to
imprinting errors are lacking. In this study, we queried whether
impaired fertility arising during oogenesis could lead to imprinting
defects.

Development of healthy oocytes is dependent on interactions
between the growing oocyte and surrounding follicular cells (Kid-
der and Vanderhyden, 2010). Oocytes play an important role
in regulating granulosa cell development, proliferation, and dif-
ferentiation, as well as steroid hormone production. In turn,
follicular cells play a critical role in oocyte growth, meiotic pro-
gression, and transcriptional activity and chromatin remodeling
of the oocyte genome. This synergistic partnership is facili-
tated by endocrine and paracrine signaling, and intercellular gap
junctional communication, ensuring meiotic and developmental
competence of the oocyte. In this study, we specifically examined
the effects of aberrant signaling and communication on imprint
acquisition.

A complex endocrine signaling pathway is active in the ovary
that regulates follicle and oocyte development. 17β-estradiol act-
ing through nuclear estrogen receptor beta (ERβ) augments the
actions of follicle stimulating hormone (FSH). In the ovary, ERβ

is expressed primarily in granulosa cells and at low levels in the
oocyte (Drummond and Fuller, 2011). Female mice bearing a
targeted deletion of the ERβ (Esr2) gene are subfertile, producing
fewer oocytes following superovulation, as well as litters with fewer
pups (Krege et al., 1998; Couse et al., 2000, 2003, 2005; Dupont
et al., 2000; Emmen et al., 2005). Attenuated differentiation of
granulosa cells following gonadotropin stimulation in Esr2-null
mice leads to decreased antrum formation, delayed follicle matu-
ration, and reduced follicular rupture, producing greater numbers
of atretic follicles and fewer preovulatory oocytes. In addition,
vascularization of the thecal layer, which is required for follic-
ular growth, is impaired (Inzunza et al., 2007). Mechanistically,
ERβ is required for optimal cAMP production in mouse granu-
losa cells following gonadotropin stimulation (Deroo et al., 2009).

ERβ deficiency causes disruption of cAMP second messenger sig-
naling in granulosa cells in response to FSH, producing aberrant
FSH-regulated gene expression, decreased response to luteinizing
hormone, and impaired ovulation and fertility.

Gap junctions are specialized channels composed of six mem-
brane proteins termed connexins (CX). These channels are essen-
tial for communication between neighboring cells (Harris, 2001).
In the mouse, CX37 and CX43 are the only connexins known to be
required in developing follicles (Kidder and Vanderhyden, 2010).
CX43 localizes to gap junctions in the granulosa cell membranes,
enabling granulosa cell to granulosa cell communication. By com-
parison, CX37 constitutes the gap junctions coupling the oocyte
with surrounding granulosa cells and is specifically located at the
interface between the oocyte and the first layer of granulosa cells
(Simon et al., 1997). Gap junctions allow the transport of nutri-
ents, metabolites and second messengers, such as cAMP, between
the granulosa cells and the oocyte (Kidder and Vanderhyden,
2010). Targeted deletion of the CX37 (Gja4) gene causes arrested
folliculogenesis at the early antral stage, impaired oocyte develop-
ment and meiotic competency, and premature luteinization of the
follicles (Simon et al., 1997; Carabatsos et al., 2000).

In this study, we employed the Esr2−/− and Gja4−/− genetic
models to interfere specifically with endocrine signaling and gap
junctional communication, compromising fertility. We hypothe-
sized that inhibition of the ERβ pathway and/or oocyte–granulosa
cell gap junctional communication would lead to perturbations in
imprinted methylation acquisition. To compare mutant oocytes
to control oocytes, DNA methylation acquisition was first exam-
ined in individual, 20–80 μm diameter control oocytes at three
imprinted genes, Snrpn, Peg3, and Peg1 (also known as Mest).
Similar to previous studies (Lucifero et al., 2004; Hiura et al., 2006;
Sato et al., 2007; Song et al., 2009), we observed that each gene had
its own size-dependent acquisition kinetics. To determine whether
compromised endocrine signaling and gap junctional communi-
cation disrupted de novo methylation acquisition, preovulatory
oocytes from Esr2−/− females, and early antral stage oocytes from
Gja4−/− mice were assessed for DNA methylation establishment
at Snrpn, Peg3, and Peg1. We observed no aberrant or delayed
acquisition of DNA methylation at Snrpn, Peg3, and Peg1 in pre-
ovulatory oocytes from ERβ-deficient females. Similarly, we found
no perturbation of Snrpn and Peg3 de novo methylation in oocytes
from CX37-null follicles. However, Peg1 methylation acquisition
was lost or delayed in Gja4-deficient oocytes compared to controls.
We attribute this to the late establishment of DNA methylation at
the Peg1 gene. These results indicate that compromised fertility
though impaired intercellular communication can lead to imprint-
ing acquisition errors. Further studies are required to determine
the post-fertilization effects of subfertility/infertility originating
from impaired signaling and intercellular communication during
oogenesis.

MATERIALS AND METHODS
OOCYTE ISOLATION
Control oocyte collections
Ovaries were obtained from C57BL/6 female mice (Charles River)
at 10, 14, 21, and 28 days postpartum (dpp), and placed in
Waymouth MB 752/1 medium (Invitrogen) supplemented with
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10% fetal bovine serum (Li et al., 2007). For further follicle sep-
aration, ovaries were digested in the same medium containing
2 mg/ml type I collagenase (Sigma-Aldrich) at 37◦C. Primary,
secondary and early tertiary (antral) follicles were liberated by
repeated aspiration and expulsion with a 1 ml pipette. Follicles
were washed several times in culture medium without collage-
nase. For oocyte isolation, follicles were centrifuged for 5 min at
4,000 rpm, re-suspended and digested in 0.05% Trypsin/EDTA in
a culture dish for 15 min at 37◦C. Oocytes were dissociated from
the granulosa cells by repeated aspiration and expulsion with a
1 ml pipette. Oocytes were retrieved through mouth pipetting
and placed in 30 μl drops of M2 medium (Sigma) for further
analysis.

Gja4-null oocyte collections
Ovaries were removed from Gja4−/− female mice (C57BL/6 back-
ground) at 21 and 28 dpp, and placed in Waymouth MB 752/1
medium (Invitrogen) supplemented with 10% fetal bovine serum.
Gja4-null oocytes were retrieved through the same collection
method as control oocytes and placed in 30 μl M2 medium
(Sigma) for further analysis.

Esr2-null oocyte collections
Ovaries were removed from Esr2−/− females (C57BL/6 back-
ground) at 28 dpp and placed in a 100-mm cell culture dish
containing 15 ml ice-cold M199 medium (Sigma) supplemented
with 1 mg/ml BSA (Invitrogen) and 2.5 g/ml gentamicin (Invitro-
gen; Deroo et al., 2009). Follicles were released by manual puncture
with 25-gauge needles and subsequent pressure applied with a ster-
ile spatula. Oocytes were retrieved through mouth pipetting and
transferred to 30 μl drops of M2 medium (Sigma) for further
analysis.

Single oocyte bisulfite mutagenesis and sequencing
Processing, embedding, and bisulfite mutagenesis of individual
oocytes was performed as previously described (Denomme et al.,
2011). Briefly, oocytes were treated with 0.3 mg/ml hyaluronidase
(Sigma) to remove any surrounding cumulus cells (if present),
washed three times in 30 μl drops of M2 medium (Sigma), and
then imaged using the Olympus IX81 microscope. Oocyte diame-
ter was measured using Macnification v.1.8 (Orbicule). Following
treatment with acidic Tyrode’s solution (Sigma) to remove the
zona pellucida (if present), oocytes were washed twice in M2
medium, then individual oocytes were embedded in 10 μl of
2:1 LMP agarose and lysis solution [100 mM Tris–HCl, pH 7.5
(Bioshop), 500 mM LiCl (Sigma), 10 mM EDTA, pH 8.0 (Sigma),
1% LiDS (Bioshop), and 5 mM DTT (Sigma), 1 μl 2 mg/ml pro-
teinase K (Sigma), and 1 μl 10% Igepal (Sigma)] under 300 μl of
mineral oil (Sigma), and placed on ice for 10 min for the agarose
to harden. Mineral oil was replaced with 500 μl SDS lysis buffer
[450 μl 1× Tris EDTA (TE), pH 7.5 [10 mM Tris (Bioshop), 1 mM
EDTA], 50 μl 10% SDS (Bioshop), 1 μl 2 mg/ml proteinase K] and
incubated at 50◦C overnight. Following overnight incubation, lysis
buffer was replaced with 300 μl mineral oil and oocytes were either
immediately treated for bisulfite conversion or frozen at −20◦C for
up to 5 days. Firstly, samples were placed at 90◦C for 2.5 min to heat
inactivate the proteinase K, and then DNA was denatured using
0.1 M NaOH (Sigma) at 37◦C for 15 min. Treatment with 2.5 M

bisulfite solution (0.125 M hydroquinone (Sigma), 3.8 g sodium
hydrogen sulfite (Sigma), 5.5 ml water, and 1 ml 3 M NaOH) at
50◦C for 3.5 h was followed by desulfonation using 0.3 M NaOH
at 37◦C for 15 min. Samples were washed twice in 1× TE pH 7.5
and twice in water, and then added directly to a Ready-To-Go PCR
bead (GE) consisting of 15 μl water, gene-specific primers and
1 μl of 240 ng/ml transfer RNA as a carrier, with 25 μl mineral
oil overlay. Negative controls (no oocyte) were processed along-
side each bisulfite reaction. PCR amplification of the Snrpn ICR,
Peg3 DMR, and Peg1 DMR was performed as previously described
(Market-Velker et al., 2010). Following ligation into the PGEM-T
easy vector (Promega) and cloning, 30 μl of colony PCR prod-
uct was sent to Bio-Basic Inc. (Markham, Ontario, Canada) for
sequencing. For each sample, five clones were sequenced. As MI
oocytes have not extruded the first polar body, both alleles were
successfully amplified in some oocytes, and only one allele was
detectable in other oocytes. However, oocytes with more than two
clones having very different methylation patterns and different
non-CpG conversion rates were excluded from analysis, as cumu-
lus cell contamination could not be ruled out. Table 1 gives the
number of oocytes included and excluded from analysis per gene.

STATISTICAL ANALYSIS
For each imprinted gene, significant difference of CpG methyla-
tion percentage was determined by a two-tailed Mann–Whitney
U test between mutant oocytes and control oocytes matched for
size. A diameter range of 65–80 μm was used to compare Esr2-
deficient oocytes to control oocytes, while the 35–60 μm diameter
range (including KO468 for Snrpn with a diameter of 60.5 μm) was
used to compare the Gja4 deficient to control oocytes. A p-value
of <0.05 was taken to be statistically significant.

RESULTS
METHYLATION ACQUISITION IN CONTROL OOCYTES CORRELATES
WITH OOCYTE DIAMETER
In female mammals, imprinted DNA methylation has been shown
to arise during follicle growth from the primary to the antral stage
in correlation with oocyte diameter (Lucifero et al., 2004; Hiura
et al., 2006), with gene-specific kinetics for imprint acquisition.
However, these analyses were performed with pooled oocytes of
different sizes. To compare individual mutant oocytes to control
oocytes, we first needed to examine imprinted DNA methylation
acquisition in individual control oocytes. C57BL/6 oocytes were

Table 1 | Number of oocytes included and excluded from analysis

Snrpn Peg3 Peg1

IN EX %EX IN EX %EX IN EX %EX

WT 55 1 1.8 56 6 9.7 58 7 11.1

Esr2−/− 12 1 7.7 11 1 8.3 11 1 8.3

Gja4−/− 31 5 13.9 20 1 4.8 31 3 8.8

Total 98 7 6.7 87 8 8.4 100 11 9.9

IN, included oocytes with one to two clone patterns; EX, excluded oocytes with
3 or more clone patterns.
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collected at 10, 14, 21, and 28 dpp to obtain oocytes with a diameter
range of 20–80 μm. Oocytes that were collected at 10 dpp displayed
a diameter range of 20–70 μm, those at 14 dpp were 40–80 μm
in diameter, at 21 dpp ranged from 50 to 70 μm, and at 28 dpp
ranged from 60 to 80 μm in diameter.

Analysis of de novo methylation acquisition at the Snrpn ICR
showed mean methylation levels of 8.7% in 20–40 μm, 12.6%
in 40–45 μm, 9.3% in 45–50 μm, 39.3% in 50–55 μm, 82.7% in
55–60 μm, 97.0% in 60–65 μm, 82.8% in 65–70 μm, 93.8% in
70–75 μm, and 98.0% in 75–80 μm oocytes (Figures 1 and 2).
Likewise, mean methylation levels at the Peg3 DMR were 1.6%
in 20–40 μm, 11.2% in 40–45 μm, 16.1% in 45–50 μm, 22.9% in
50–55 μm, 47.5% in 55–60 μm, 51.7% in 60–65 μm, 82.6% in
65–70 μm, 85% in 70–75 μm, and 94.0% in 75–80 μm oocytes
(Figures 3 and 4). For the Peg1 DMR, mean methylation levels
were 4.3% in 20–40 μm, 4.7% in 40–45 μm, 12.2% in 45–50 μm,
15.9% in 50–55 μm, 45.5% in 55–60 μm, 51.6% in 60–65 μm,
91.0% in 65–70 μm, 92.0% in 70–75 μm, and 93.2% in 75–80 μm
oocytes (Figures 5 and 6). Thus, we observed that each gene had
its own acquisition kinetics. DNA methylation acquisition began
first for Snrpn at ∼50 μm and was near completion at >60 μm.
Next was Peg3, where DNA methylation acquisition was initiated
at ∼45 μm and nearly complete at >65 μm, which was followed
by Peg1, where DNA methylation acquisition began at ∼55 μm
and was near completion by >70 μm. Snrpn had the shortest
acquisition interval while Peg3 had the longest.

METHYLATION ACQUISITION IN ERβ-DEFICIENT OOCYTES
Ovaries deficient in Esr2 produce a reduced number of maturing
oocytes, but those that do mature appear to not be developmen-
tally compromised (Krege et al., 1998). Consistent with this, we
recovered a small number of oocytes from 28 dpp females, ranging
in diameter size from 66 to 82 μm, corresponding to the preovu-
latory stage in oocyte growth. To investigate the role of reduced
hormone signaling on imprint acquisition, we analyzed the pro-
gression of DNA methylation acquisition in developing oocytes
from mice deficient in Esr2. For the Snrpn ICR, mean methylation
levels were 98.0% for 65–70 μm, 97.0% for 70–75 μm, and 100.0%
for 75–80 μm oocytes (Figures 2 and 7). For the Peg3 DMR, mean
methylation was 100.0% in 65–70 μm, 99.4% in 70–75 μm, and
98.7% in 75–80 μm oocytes (Figures 4 and 8). For the Peg1 DMR,
mean methylation levels were 96.5% for 65–70 μm, 95.1% for 70–
75 μm, and 96.5% for 75–80 μm oocytes (Figures 6 and 9). Thus,
oocytes from Esr2-null females had comparable DNA methylation
levels to control oocytes, indicating that imprint DNA methylation
acquisition was unaffected by Esr2 deficiency.

METHYLATION ACQUISITION IN CX37-DEFICIENT OOCYTES
Previous analyses have shown that oocytes in CX37-null ovaries
arrest development before reaching meiotic competence, around
the time the antrum begins to form (∼21 dpp; Simon et al., 1997;
Carabatsos et al., 2000; Li et al., 2007). We collected and analyzed
oocytes from Gja4-null 21 dpp females, which ranged in diameter
sizes from 35 to 55 μm and from 28 dpp females, which ranged
in size from 50 to 60.5 μm. The maximum diameter obtained
was 60.5 μm, consistent with previous studies (Simon et al., 1997;
Carabatsos et al., 2000). To explore the relationship between gap

FIGURE 1 | Methylation analysis of the Snrpn ICR in individual oocytes

derived from control C57BL/6 female mice. The Snrpn ICR region
analyzed contains 16 CpGs. Black circles indicate methylated CpGs while
white circles indicate unmethylated CpGs. Each row represents an
individual oocyte (designation indicated to the left). Methylation percentage
and diameter for each oocyte is shown at the right. Oocytes are grouped
into cohorts ranging from 20 to 80 μm diameters in 5 μm increments.
Oocytes with one methylation pattern represent one of the two parental
alleles detected. Oocytes with two methylation patterns represent
detection of both parental alleles.
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FIGURE 2 | Methylation percentage of each parental allele at the Snrpn

ICR in relation to oocyte diameter (μm). For oocytes with two parental
alleles, each allele was graphed separately. Blue diamonds represent
oocytes from control females, red circles represent oocytes from
Esr2−/− females, and green triangles represent oocytes from Gja4−/−
females.

junction loss and imprint acquisition, we analyzed the progression
of DNA methylation establishment in developing oocytes from
Gja4-deficient mice.

At the Snrpn ICR, mean methylation levels were 6.3% in 35–
40 μm, 14.0% in 40–45 μm, 17.4% in 45–50 μm, 45.8% in
50–55 μm, 80.8% in 55–60 μm, and 88.0% in 60–65 μm oocytes
(Figures 2 and 10). No significant difference was observed in
methylation levels between Gja4-null and control oocytes. Anal-
ysis at the Peg3 DMR showed mean methylation levels of 2.7%
for 35–40 μm, 74.0% in 40–45 μm, 28.0% for 45–50 μm, 50.7%
for 50–55 μm, and 55.3% for 55–60 μm oocytes (Figures 4 and
11). No significant difference was observed in methylation levels
between Gja4-null and control oocytes. For the Peg1 DMR, mean
methylation levels were 1.8% in 35–40 μm, 2.8% in 40–45 μm,
9.7% in 45–50 μm, 14.3% in 50–55 μm, and 19.1% in 55–60 μm
oocytes (Figures 6 and 12). Statistical analysis of Peg1 showed
a significant difference in methylation acquisition between con-
trol and Gja4-deficient oocytes (P = 0.0006). Because Gja4-null
oocytes stop growing and are eventually lost from the follicles, it
could not be determined whether this is a delay or a disruption in
Peg1 DNA methylation acquisition.

DISCUSSION
Growth and maturation of oocytes within follicles requires bidi-
rectional signaling and exchange of nutrients, metabolites, and
second messengers through gap junctions between the oocyte and
granulosa cells (Matzuk et al., 2002; Gilchrist et al., 2008; Su et al.,
2009). Aberrant endocrine signaling and loss of gap junctional
communication between the oocyte and granulosa cells leads
to compromised folliculogenesis, oocyte maturation, and oocyte
competency, consequently impairing fertility. Given that oocyte-
specific DNA methylation establishment at imprinted genes occurs
during this growth phase, we determined whether compromised
endocrine signaling and gap junctional communication would dis-
rupt de novo methylation acquisition. Individual oocytes from
Esr2- and Gja4-deficient mice were assessed for DNA methylation
establishment at Snrpn, Peg3, and Peg1. We observed no aber-
rant or delayed acquisition of DNA methylation at Snrpn, Peg3, or

FIGURE 3 | Methylation analysis of the Peg3 DMR in individual

oocytes derived from control C57BL/6 females. The Peg3 DMR region
analyzed contains 23 CpGs. Details are described in Figure 1.
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FIGURE 4 | Methylation percentage of each parental allele at the Peg3

DMR in relation to oocyte diameter (μm). Oocytes from control females,
Esr2−/− females and Gja4−/− females are represented by blue diamonds,
red circles and green triangles, respectively.

Peg1 in oocytes from Esr2-deficient females, and no perturbation
in Snrpn or Peg3 de novo methylation in oocytes from Gja4-null
females. However, Gja4 deficiency resulted in a loss or delay in
methylation acquisition at Peg1. One possible explanation for this
difference between the three loci analyzed is the late establishment
of DNA methylation at the Peg1 gene. These results indicate that
compromised fertility though impaired intercellular communica-
tion can lead to imprinting acquisition errors. Further studies are
required to determine whether subfertility/infertility originating
from impaired signaling and intercellular communication during
oogenesis has an effect post-fertilization on imprint maintenance
in the preimplantation embryo.

GENE-SPECIFIC METHYLATION ACQUISITION ACCORDING
TO OOCYTE SIZE
Our study is the first to investigate imprint methylation acquisi-
tion of Snrpn, Peg3, and Peg1 in individual oocytes. We observed
that each gene has its own size-dependent acquisition kinetics.
Snrpn had the shortest acquisition interval with de novo methyla-
tion beginning at ∼50 μm and near completion at >60 μm. Peg3
had the earliest and longest acquisition interval. DNA methylation
acquisition was initiated at ∼45 μm and was nearly complete at
>65 μm. Peg1 had the latest acquisition of de novo methylation,
beginning at ∼55 μm and near completion by >70 μm. Previ-
ous studies reported similar findings using pooled oocytes where
methylation level increased with days postpartum, follicular stage
or with oocyte diameter/size, and initiation of acquisition was
gene-specific (Lucifero et al., 2004; Hiura et al., 2006; Sato et al.,
2007; Song et al., 2009). Oocyte-specific de novo methylation was
also found to occur differentially with the maternal allele acquiring
methylation prior to the paternal allele for Snrpn, Zac1, and Peg1
(Lucifero et al., 2004; Hiura et al., 2006). Our data are consistent
with this observation. Firstly, in oocytes for which two alleles were
successfully amplified, one allele possessed higher and the other
allele lower methylation levels, indicative of maternal and pater-
nal contribution, respectively. For example, Snrpn WT563 oocyte
had 81 and 50% methylation (Figure 1). Secondly, for oocytes
within each diameter range (see Peg3 control oocytes between 60
and 65 μm; Figure 3), a subset of oocytes had high methylation

FIGURE 5 | Methylation analysis of the Peg1 DMR in individual

oocytes derived from the control C57BL/6 mice. The Peg1 DMR region
analyzed contains 15 CpGs. Details are described in Figure 1.
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FIGURE 6 | Methylation percentage of each parental allele at the Peg1

DMR in relation to oocyte diameter (μm). Oocytes from control females,
Esr2−/− females and Gja4−/− females are represented by blue diamonds,
red circles and green triangles, respectively.

FIGURE 7 | Methylation analysis of the Snrpn ICR in individual oocytes

derived from Esr2−/− females. Details are described in Figure 1.

FIGURE 8 | Methylation analysis of the Peg3 DMR in individual

oocytes derived from Esr2−/− mice. Details are described in Figure 1.

FIGURE 9 | Methylation analysis of the Peg1 DMR individual oocytes

derived from Esr2−/− female mice. Details are described in Figure 1.

FIGURE 10 | Methylation analysis of the Snrpn ICR in individual

oocytes derived from Gja4−/− mice. Details are described in Figure 1.
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FIGURE 11 | Methylation analysis of the Peg3 DMR individual GV

oocytes derived from Gja4−/− female mice. Details are described in
Figure 1.

percentages (68, 71, 87, and 96%, indicative of the maternal allele)
while others had low methylation percentages (18, 28, 48, 52%,
indicative of the paternal allele). Finally, scatter plots show two
distinct cohorts within the same range of diameter measurements.
For example, Peg1 control oocytes between 55 and 65 μm grouped
into 0–40% methylation and 75–100% methylation (Figure 6).

COMPROMISED FERTILITY LEADS TO LOSS OR DELAYED Peg1
METHYLATION ACQUISITION
While Gja4-deficient oocytes ceased development and did not
achieve mature size, our analyses indicated that they were not com-
promised in their ability to catalyze DNA methylation as de novo
DNA methylation was initiated for the Snrpn and Peg3 imprinted
genes. The failure to initiate Peg1 methylation acquisition may sim-
ply be due to the fact that oocytes lacking CX37 never reach the size
necessary for de novo methylation to commence at late-acquiring
loci. However, control oocytes of comparable size (55–60 μm)
displayed initiation of de novo Peg1 methylation. This suggests
that Peg1 methylation acquisition was lost or delayed in mutant
oocytes. Alternatively, CX37-null oocytes may have reduced stores
of methyl donors or other metabolites required for DNA methy-
lation that would normally be transported from granulosa cells to
the oocyte via gap junctions. If this is the case, then there must have
been sufficient availability of methyl donors in mutant oocytes for
Snrpn and Peg3 de novo methylation, but oocytes lacking junctional
coupling with the granulosa cells may have exhausted their methyl

FIGURE 12 | Methylation analysis of the Peg1 DMR individual GV

oocytes derived from Gja4−/− females. Details are described in Figure 1.

donors during oocyte growth, preventing de novo methylation at
late-acquiring genes like Peg1. To investigate the requirement for
methyl donors during follicle development, Anckaert et al. (2010)
cultured preantral follicles in medium with low methyl donors.
While this led to impaired antrum development and polar body
formation, it did not impede the acquisition of DNA methylation
at the Snrpn ICR and the Peg3 DMR. However, a reduced level
of DNA methylation was found at the Peg1 DMR. This provides
support for the argument that gap junctional communication pro-
vides important metabolites for DNA methylation acquisition. To
better understand the mechanism leading to loss or delayed methy-
lation acquisition, further studies are required to assess the level
of methyl donors, amount of S-adenosylmethionine, and ability
to carry out global and gene-specific methylation in 55–60 μm
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CX37-null or CX37-depleted oocytes. Furthermore, methylation
studies should be carried out using F1 females. For Peg1 CX37
oocytes between 45 and 60 μm, oocytes possessed 0–53% methy-
lation. DNA methylation acquisition was likely initiated on the
maternal Peg1 allele in some oocytes, while other oocytes lacked
methylation on both parental alleles. Thus, loss or delayed Peg1
methylation acquisition may preferentially lead to a failure of the
paternal allele to become methylated. Further studies are required
to investigate this potential grandpaternal effect.

Peg1 may also be more susceptible to perturbation by assisted
reproductive technologies. Loss of Peg1/PEG1 methylation was
observed in mouse oocytes following in vitro maturation (Kerjean
et al., 2003), and human oocytes following ovarian stimulation
(Sato et al., 2007). Further studies are required to determine
whether the susceptibility of Peg1 to perturbation relates to its
late acquisition of methylation or whether a different epigenetic
regulatory mechanism(s) operates at this gene. Superovulation
also caused imprinting errors in the mouse preimplantation
embryo (Market-Velker et al., 2010), although imprinted methy-
lation acquisition was not perturbed in mouse oocytes by exoge-
nous hormone treatment (Anckaert et al., 2009; Denomme et al.,
2011). We hypothesized that superovulation disrupts maternal-
effect gene products required for imprint maintenance during
embryo development. Thus, impaired fertility may not only
disrupt Peg1 methylation acquisition but may also lead to inad-
equate stores of maternal products, including those from gran-
ulosa cells, that may disrupt imprint maintenance at Peg1 as
well as at Snrpn and Peg3 during preimplantation develop-
ment. Extending studies to preimplantation embryos generated
from fertilized ERβ-deficient and CX37-depleted oocytes will
be required to determine their effects on imprint maintenance.
In addition, further studies are required to determine whether
assisted reproductive technologies, such as in vitro oocyte mat-
uration and superovulation, lead to aberrant endocrine and
paracrine signaling as well as granulosa cell–oocyte gap junctional
communication.

It is important to understand granulosa cell–oocyte commu-
nication as technological advances move forward. Procedures
such as slow-freezing cryopreservation and ultra-fast vitrification

of oocyte-enclosed follicles, which employ cryoprotectants and
very low temperatures, may permanently or temporally disrupt
actin- or tubulin-rich projections that extend from granulosa cells
through the zona pellucida to the oocyte (Kidder and Mhawi,
2002). Slow-freezing of mouse, rhesus monkey, and human pre-
antral follicles disrupted projections and uncoupled the oocyte and
granulosa cells (Barrett and Albertini, 2010). Temporal disrup-
tion of oocyte–granulosa cell contacts was also observed following
vitrification (Trapphoff et al., 2010). Thus, transfer of molecules
between the two compartments may be temporarily disturbed.
While low levels of imprinting errors were detected in a subset
of oocyte pools following vitrification (Trapphoff et al., 2010),
further studies are required to determine whether disruption of
oocyte–granulosa coupling leads to errors in imprint acquisition
and/or maintenance.

Continued studies in animal models and in humans are
required to understand the molecular mechanisms regulating
genomic imprinting acquisition and maintenance as well as how
impaired fertility and assisted reproductive technologies induce
epigenetic changes and disease.
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