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Dating the Tree of Life (TOL) has become a major goal of biological research. Beyond the
intrinsic interest of reconstructing the history of taxonomic diversification, time-calibrated
trees (timetrees for short, as used throughout below) are required in many types of com-
parative analyses, where branch lengths are used to assess the conservation importance
of lineages, correlation between characters, or to assess phylogenetic niche conservatism,
among other uses. Improvements in dating theTOL would thus benefit large segments of
the biological community, ranging from conservation biology and ecology through func-
tional biology and paleontology. Recently, progress has been made on several fronts:
in compiling databases and supertrees incorporating paleontological data, in computing
confidence intervals on the true stratigraphic range of taxa, and in using birth-and-death
processes to assess the probability distribution of the time of origin of specified taxa.
Combined paleontological and molecular dating has also progressed through the inser-
tion of extinct taxa into data matrices, which allows incorporation of their phylogenetic
uncertainty into the dating analysis.
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INTRODUCTION
WHY DATE THE TREE OF LIFE?
Some of the most basic questions about the evolution of life con-
cern the chronology of events. When did a given taxon appear?
When did it diversify? Was its diversification slow and gradual, or
did it occur in bursts (evolutionary radiations), and if so, when
were these bursts, and what caused them? Answering such ques-
tions is important not only to satisfy our intellectual curiosity
about the history of life, but also to allow sophisticated analyses in
other fields.

Dating the Tree of Life (TOL) has become a major goal of bio-
logical research, as shown by various well-funded initiatives (at
least in the USA), such as the Assembling the Tree of Life program
of the National Science Foundation (http://www.nsf.gov/funding/
pgm_summ.jsp?pims_id=5129), which has distributed over US $
57 000 000 since 2006. Dating the TOL has also been the exclu-
sive subject of a large, recent edited book (Hedges and Kumar,
2009a), and some molecular systematics laboratories now special-
ize in this task. This interest in dating the TOL is not surprising
because beyond the intrinsic goal of reconstructing the history of
taxonomic diversification, timetrees are required in many types of
comparative analyses. In fact, time data are so useful that Avise and
Liu (2011) have suggested to systematically add this information
to taxon names.

These advances in evolutionary biology, which require time-
trees, have revolutionized modern science by allowing more
rigorous analyses. For instance, conservation studies previously
used species counts (at best) or higher taxon count (of genera, fam-
ilies, or even orders) to assess the biodiversity of various regions
(hotspots or simply areas that could be protected to preserve as

much biodiversity as possible), but all these approaches are prob-
lematic to various extents. There is no universally accepted species
concept, despite repeated attempts to unify species concepts (e.g.,
de Queiroz, 1998). As such, the entities that we call “species” and
that are registered into various databases are not ontologically
comparable; some are clades, some are reproductive communities,
some are evolutionary lineages, others are phenetic clusters, and
yet others belong to two or more of these categories. This problem
has far-reaching consequences for conservation biology (Bertrand
et al., 2006), and it has hampered developments of a new, phylo-
genetic code of biological nomenclature for species (Laurin and
Cantino, 2007). Taxa belonging to higher categories are even more
problematic in conservation biology because, like species, they
share no objective properties, and they often differ rather strongly
in many important aspects, such as geological age of origin, num-
ber of included species, or phenotypic variability (Laurin, 2005,
2008; Bertrand et al., 2006). The most objective solution that has
been advocated (and widely applied) to circumvent all these prob-
lems is to use phylogenetic diversity (the sum of branch lengths
expressed as time), as this captures the sum of the unique his-
tory of a given clade, or of a given fauna or flora of a region
(Faith, 1992).

In comparative biology, timetrees have become essential since
we have realized that comparative data are not statistically inde-
pendent from each other. This is because closely related taxa
tend to resemble each other more closely than distantly related
taxa. Thus, all modern comparative techniques for inter-specific
datasets incorporate phylogenetic information, ideally in the form
of timetrees. The interest of this approach is demonstrated by the
high number of ISI citations (1371) of the paper by Felsenstein
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(1985a) that presented the method of phylogenetically inde-
pendent contrasts (ISI databanks consulted on March 4, 2011).
Similarly, the related method called phylogenetic generalized least
squares (PGLS; Martins and Hansen, 1997; Pagel, 1997) is increas-
ingly used in such studies (e.g., Spoor et al., 2007; Organ et al.,
2011a,b). Branch lengths are also needed to study phylogenetic
niche conservatism (Patterson and Givnish, 2002; Desdevises et al.,
2003; Losos, 2008), evolutionary trends from paleontological data
(Laurin, 2010a), or to determine ancestral conditions through
methods such as squared-change parsimony (e.g., Laurin, 2004;
Finarelli and Flynn, 2006), Maximum Likelihood (Pagel, 1999), or
Bayesian inference (e.g., Organ et al., 2011a,b).

Various evolutionary problems, such as the search of a corre-
lation between past climatic changes or geological events (i.e., the
break-up of Pangea) and taxonomic or phenotypic diversification,
require timetrees to be meaningfully studied (e.g., Paradis, 2004;
San Mauro et al., 2005). Thus, timetrees are at the core of several
biological fields, so any project that would significantly improve
how they are built would benefit a large segment of the biological
community.

From an economic perspective, the applications of timetrees
in conservation biology (Faith, 1992), through better-informed
choices in conservation priorities (of regions or taxa), are prob-
ably the most important. Indeed, the twenty-first century faces
a major biodiversity crisis and may well be the “century of
extinction” (Dubois, 2003), in addition to (and partly because
of) facing climate change caused by greenhouse gas emissions.
Biodiversity is important for the maintenance of ecosystems,
and the crucial role of “ecosystem services” (in maintaining a
climate favorable to agriculture and human health, in absorb-
ing greenhouse gases, etc.) are now beginning to be better
documented (Heikkinen et al., 2006; Eronen et al., 2010), even
though policy-makers have not yet understood the importance of
preserving old species-poor clades such as the coelacanths, lung-
fishes, and monotremes (Lecointre, 2011). Therefore, it is very
important to develop better methods for calibrating molecular
timetrees.

HISTORICAL DEVELOPMENT OF TIMETREES
Historically, dating the TOL relied initially almost exclusively on
the fossil record (e.g., Hennig, 1981). Paleontologists inferred
the relationships between various taxa using their morphologi-
cal similarities, and the fossil record provided directly minimal
divergence times between taxa. Actual divergence times were of
course acknowledged to pre-date the oldest fossils attesting to the
presence of a taxon, with the delay between actual appearance and
first fossil record being vaguely proportional to the morphological
gap between the taxon of interest and its presumed predecessors
(Romer, 1966). Thus, it was widely admitted that the evolution
of taxa lacking a fossil record was more or less impossible to
reconstruct (e.g., Gingerich, 1979, p. 454). In the last decades,
the introduction of cladistics (Hennig, 1966) in paleontology has
resulted in rapid progress in our understanding of the phylogeny
of various taxa, sometimes resulting in rather radical changes in
our ideas (e.g., Janvier, 1996), or in new heated debates about the
origin of various extant taxa, such as turtles (Reisz and Laurin,
1991; Lee, 1995; deBraga and Rieppel, 1997; Lyson et al., 2010)

and lissamphibians (Ruta and Coates, 2007; Anderson et al., 2008;
Marjanović and Laurin, 2009).

More recently, use of the fossil record has increasingly been
complemented by molecular timetrees, a change allowed by the
tremendous growth of molecular phylogenetics in the last two
decades (e.g., Sanderson, 2003; Hedges and Kumar, 2009a), even
though the roots of molecular dating hark back to the 1960s
(Zuckerkandl and Pauling, 1962). The basic principle of molecular
dating rests on inferring how much molecular change has occurred
on each branch of the reconstructed tree (or trees, when Bayesian
methods are used). This is not straightforward because multiple
changes can occur at a given nucleotide site, and given that there
are only four possible states (A, T, C, or G), a given site may revert
to its initial condition. Furthermore, all sites do not evolve at the
same speed; some genes evolve faster than others, mitochondrial
genes tend to evolve faster than most nuclear genes, silent portions
of the genome tend to evolve faster than functionally important
portions, and third codon positions evolve faster than first and sec-
ond codon positions because many changes in the third position
result in the same amino acid. Thus, molecular biologists have
developed various evolutionary models that attempt to account
for these factors, as well as sophisticated methods to select the
best-supported model (e.g., Posada, 2008).

The resulting tree is usually not ultrametric because each lin-
eage evolves at its own rate; thus, the tips (extant terminal taxa)
are each at a slightly different patristic distance from the root
of the tree. The differences in height represent deviations from
the hypothesis of a molecular clock. The tree can be ultrametri-
cized using various algorithms, which, in a best-case scenario,
results in a tree in which branch lengths are proportional to
time. However, to be converted into absolute time, such trees
need to be calibrated by dating some cladogeneses (divergences)
through the fossil record (if fossils indicate the approximate
time at which a given divergence occurred) or geological events
(like separation between continental plates, under the hypothe-
sis of vicariance). Multiple calibrations are best because these can
document the changes in molecular evolutionary rates and the
improved rate evolution modeling should improve the dating of
the tree (Britton, 2005). However, as we will see below, getting
these calibration data is usually the limiting factor in accurately
dating the TOL. This paper reviews recent progress in methods to
better get these constraint data and to make them more readily
accessible.

CURRENT LIMITATIONS FOR TIMETREE CONSTRUCTION
Methodological limitations
Because of the recent rise in molecular systematics, paleontologi-
cal data have become more and more neglected. For instance, the
largest share of grant support given in the context of the “Assem-
bling the Tree of Life”program of the National Science Foundation
went to molecular systematics in the broad sense (possibly incor-
porating some DNA barcoding); little was given to paleontology.
The large edited book on the TOL (Hedges and Kumar, 2009a)
was written mostly by molecular systematists (a few paleontol-
ogists contributed to a few chapters) and was based largely on
molecular dating. We have now reached a point at which progress
is limited by the availability of paleontological data to calibrate the
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molecular timetrees (Brochu, 2004; Britton, 2005; Marjanović and
Laurin, 2007; Sauquet et al., 2012).

Other steps of the molecular dating process have been much
more intensively financed and have attracted much more atten-
tion. These steps include gathering data on extant biodiversity
(a major preoccupation of systematists since the eighteenth cen-
tury), sequencing various genes of these taxa (a blossoming,
well-financed field, at least in some countries), analyzing these
sequences (to align them, to select appropriate nucleotide substi-
tution models, etc.), and using molecular dating methods. Several
systematists have worked on the latter (e.g., Sanderson, 2002;
Thorne and Kishino, 2002; Li et al., 2011) and have now pro-
duced methods so sophisticated (e.g., Drummond and Rambaut,
2007) that they can use data that we are only beginning to get for
a few clades (Wilkinson and Tavaré, 2009; Wilkinson et al., 2011),
namely not only most probable (rather than minimal) divergence
date constraints, but also variances around these point estimates,
and even the shape (normal, log-normal, exponential, asymptotic,
etc.) of the prior distribution around these point estimates (Ho
and Phillips, 2009). Strangely, the fact that we lack these critically
important paleontological data has apparently not preoccupied
most systematists; very few efforts have been made to solve this
problem (Marshall, 1990, 1994, 1997; Marshall’s, 2008; Marjanović
and Laurin, 2007, 2008), and we are still far from an adequate,
generally applicable solution (Parham et al., 2012). Thus, working
on this problem should constitute by far the most cost-effective
solution in improving dating of the TOL.

This situation is unfortunate because molecular dates depend
heavily on dating constraints, and the fossil record provides the
best constraint data (Brochu, 2004; Marjanović and Laurin, 2007;
Lee et al., 2009; Inoue et al., 2010). Geological events, such as
the separation between various continental plates, can also be
used, but with a greater risk of error because the assumption
that the distribution of extant taxa reflects vicariance is not
always justified, because the dates of separation of continental
plates are often poorly constrained, because land bridges, island
chains, and channels can act as dispersal routes, and because the
extant distribution of a taxon may not reflect earlier distributions
(Ho and Phillips, 2009). For instance, Phillips et al. (2010) con-
cluded that the apparent Gondwanan distribution of ratites is
artifactual and that multiple flight losses in the group imply that
they may have dispersed far more easily than previously thought.
Similarly, Pascual et al. (1992) showed that monotremes, which are
restricted today to Australasia, once occurred in South America.
Thus, biogeogeographic data should be used only very cautiously
to constrain molecular dating studies, and unfortunately, the taxa
for which they might be the most useful (those with a scanty fossil
record) are precisely those for which using biogeographic data is
most dangerous because there is no way to determine if the present
geographical distribution of such taxa reflects their past distribu-
tion. Because of this, paleontological data constitute the best direct
source of calibration to date the TOL.

Brochu (2004) showed that molecular ages inferred from
quartet dating display a strong dependence on the age of the cali-
brations used, even if the age of each calibration is correct. Using
crocodylians as a test case (which is appropriate given their dense
fossil record and their intensively studied phylogeny), Brochu

(2004) showed that using two recent (e.g., Neogene) events to
infer the age of the divergence between crocodylids and alliga-
torids consistently under-estimated the age of this event, which
the fossil record indicates occurred about 78 Ma ago. Conversely,
using old calibration constraints (e.g., Paleogene) consistently
over-estimated the age of this divergence (to over 100 Ma ago,
sometimes over 200 Ma ago). This phenomenon is unexpected
because under the original formulation of the principles of molec-
ular dating (Zuckerkandl and Pauling, 1962), any calibration
constraint could be used, and provided that the constraint is cor-
rect, results should be independent of the constraint used. This
problem could perhaps be dismissed if it could be shown to be lim-
ited to one dataset or to quartet dating, which has been replaced by
more sophisticated methods, such as penalized likelihood (Sander-
son, 2002, 2003) and Bayesian inference (e.g., Drummond and
Rambaut, 2007). An explanation for this phenomenon was pro-
posed by Hugall et al. (2007), who showed that saturation of DNA
sequences and the consequent compression of basal branches leads
to overestimation of node ages if only external deep calibrations
are used. Thus, this problem is not restricted to quartet dating, and
the most effective solution is likely to be using more calibration
constraints distributed in various parts of the tree.

Even the shape of the prior distribution around the dating
constraints influences strongly molecular dates. Ho and Phillips
(2009) demonstrated this using an amniote dataset emphasizing
neornithine birds. Using three constraints (divergences between
lepidosauromorphs and archosauromorphs, between paleognaths
and neognaths, and between penguins and loons), they demon-
strated that using point-like estimates spanning only 1 Ma toward
the youngest age compatible with the fossil record, the basal neog-
nath node could be dated from the early Cenozoic (approximately
between 60 and 65 Ma). Using widely spread maximal and min-
imal hard bounds for these three time constraints, the posterior
distribution of ages shifted entirely into the Mesozoic (roughly,
from 66 to 113 Ma). Using a lognormal prior distribution adjusted
so that 95% of the prior distribution fell within the hard bounds,
the posterior distribution was slightly shifted toward more recent
times than using hard bounds, but over 95% of the posterior distri-
bution remained within the Mesozoic. The spectacular difference
between the ages yielded by the three ways of specifying the time
constraints illustrates the importance of this step in the analy-
ses. The only problem in the demonstration of Ho and Phillips
(2009) is that few (if any) paleontologists would advocate set-
ting any maximal age constraint within 1 Ma of the age of the
oldest fossil pertaining to a clade, even with a fairly dense fossil
record. Previously, for lissamphibian taxa with the densest fossil
record, Marjanović and Laurin (2007) did a series of analyses with
maximal ages set 15, 30, and 45 Ma from the minimal age.

Hug and Roger (2007) and Marjanović and Laurin (2007),
among other studies, demonstrated the extreme importance of
maximal age constraints in molecular dating. Marjanović and
Laurin (2007) demonstrated that the molecular ages yielded by
penalized likelihood on a dataset composed of whole mitochon-
drial genomes of lissamphibians depend most heavily on the use of
maximal bounds on calibration constraints. This result probably
applies to Bayesian dating as well because by using the same set of
calibration constraints, Marjanović and Laurin (2007) reproduced
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the results initially obtained by Zhang et al. (2005) using Multi-
Divtime (Thorne and Kishino, 2002). Thus, while the analytical
method or evolutionary model selected had only a modest influ-
ence on the obtained ages, Lissamphibia could be as old as Early
Carboniferous (321–356 Ma ago, in this case) if no maximal age
constraints were enforced, or as recent as Permian (250–291 Ma
ago, in this case), if a few maximal age constraints were enforced.
This explains that some molecular ages for Lissamphibia are even
older, and may explain the striking differences between molecular
and paleontological ages of several taxa (Yamanoue et al., 2006;
Tinn and Oakley, 2008; Inoue et al., 2010). For instance, Roe-
lants et al. (2007) inferred a Devonian age (368.8 Ma ago) for
Lissamphibia, which implies a gap of 120 Ma in the lissamphib-
ian record, as the oldest known lissamphibians are from the Early
Triassic, less than 250 Ma ago (Rage and Roček, 1989; Evans and
Borsuk-Białynicka, 2010). However, this surprising result appears
to be attributable to the use of numerous minimal internal age
constraints (15 paleontological and seven geological), while no
maximal internal age constraint was enforced (Roelants et al.,
2007: SOM Figure 4); only the ages of Tetrapoda and Amniota
had minimal as well as maximal age constraints. This was no acci-
dental choice because several molecular biologists (e.g., Hedges
and Kumar, 2009b) have argued that maximal age constraints can
rarely be know. However, given the findings reported above, using
several minimal time constraint and only one or a few maximal
age constraints is a recipe for overestimation, as if curve-fitting
were performed by minimizing the square of the distance between
the curve and the data points only in one direction. The develop-
ment of recent software that allows soft bounds (in which prior
probability that a divergence occurred before the soft bound is
small and decreases progressively) to be used (e.g., Drummond
and Rambaut, 2007; Ronquist et al., 2012) should minimize this
problem, provided that the prior distribution is not too broad
(which would result in large credibility intervals).

Hug and Roger (2007) demonstrated similar effects on meta-
zoan dating using non-parametric rate smoothing (NPRS), penal-
ized likelihood (PL), and Bayesian dating with linked and unlinked
branch lengths. Unreasonably old ages were yielded by the use of
very old maximal ages, with the age of Metazoa being estimated
at up to about 2.3 Ga with NPRS, when the (less inclusive) con-
straints were only specified to be less than 1.5 Ga. They assessed the
relative importance of several factors in determining the molecu-
lar dates and concluded that the influence of the calibration ages
is the greatest, and that maximal age constraints are required, even
though they are much more difficult to get than maximal age
constraints. They also concluded (Hug and Roger, 2007, p. 1893)
that using a single calibration constraint results in the “signifi-
cant introduction of error into the age estimates.” Other factors,
such as taxonomic sampling of sequenced lineages or analytical
method (NPRS, PL, Bayesian) had much less influence on molec-
ular dates. They concluded that the best dating strategy was to
maximize the number of reliable and reasonably narrow calibra-
tion constraints, rather than to maximize the number of gene
sequences included. Thus, obtaining maximal age constraints is of
paramount importance to obtain accurate molecular dates.

Unfortunately, while obtaining minimal divergence dates from
the fossil record requires only placing the relevant fossils in a

phylogeny, getting maximal age constraints remains an outstand-
ing problem, arguably the greatest remaining methodological
challenge in dating the TOL. Getting accurate time constraints
is now the limiting factor because no generally applicable, rigor-
ous method has been developed to estimate the most probable
and maximal divergence dates of taxa based on the fossil record
(Ksepka et al., 2011), even though several studies have developed
methods to assess the reliability of dating constraints (e.g., Near
et al., 2005; Pyron, 2010). Several estimates of maximal ages rely
on the age of fossils located on the stem of the crown-group to date
(e.g., Reisz and Müller, 2004; Müller and Reisz, 2005; Marjanović
and Laurin, 2007, and references cited therein). However, this
approach is neither rigorous nor widely applicable, because of the
notorious incompleteness of the fossil record. For instance, sup-
pose that a given crown clade appears in the fossil record 40 Ma ago,
with three successive sister-taxa on the stem of that clade appear-
ing at 46, 49, and 55 Ma ago (respectively), but that the inferred
molecular age of the crown clade is 60 Ma (Figure 1). Is this pat-
tern of distribution of fossils coherent with the inferred molecular
age? What is the probability of such a stratigraphic distribution of
fossil finds if the molecular age is true? Nobody knows for sure. No
method can give the probability that the crown-clade existed at 55
or 60 Ma ago (for instance) from such paleontological data alone,
although the method of Wilkinson and Tavaré (2009) can be used
when abundant data on diversity through time are available. If
we used a simple binomial distribution and assumed that every
lineage had an equal chance of preservation, our estimate of the
probability that the crown-clade existed (without being observed)
45 Ma ago, given that multiple stem-lineages are observed at that
time, would depend on the estimated paleobiodiversity of the
stem-members of the clade. Unfortunately, there is no simple way
to assess the unobserved paleobiodiversity.

Limitations linked with the fossil record
The problem of estimating the maximal age of clades based on
the fossil record has been frequently discussed because if it of

FIGURE 1 | Phylogeny of a hypothetical taxon. A crown group
(containing taxa 5 and 6) appears in the fossil record 40 Ma ago (green star)
but the inferred molecular age is 60 Ma (arrow). The green dashed line at
45 Ma ago shows that three stem-taxa are observed at that time. All taxa
shown here may represent a single evolutionary lineage (species, under
some species concepts) or clades that may include several species. What
is the probability (P?) that the crown group existed 45 Ma ago?
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paramount importance in molecular dating. Ho and Phillips
(2009, p. 374) listed five sources of uncertainty that must be taken
into consideration when tackling this problem: (1) fossil preser-
vation; (2) taxonomic assignment of fossils; (3) identification of
fossil homologies; (4) sampling effort, and (5) fossil age determi-
nation. These factors can be sorted into three groups because fossil
preservation and sampling effort are related because what really
determines our knowledge of the fossil history of a taxon is the
fossil collections, whereas taxonomic assignment is determined
largely by the fossil homologies, so these are two sides of the same
coin.

Fossil preservation and sampling effort are the most difficult
problems. For some large clades, these factors can be effectively
solved by using an exponential model of diversification (e.g.,
Marjanović and Laurin, 2008), but in many cases, the problem
is likely to be much more complicated by several factors that may
bias the fossil record. Thus, taxa that lack mineralized parts (many
annelids, nematodes, etc.) often have a very poor fossil record
(Laurin, 2010b), although there are obvious exceptions, such as
embryophytes, which have an abundant fossil record. The global
fossil preservation rate is difficult to quantify, as shown by the fact
that it has been estimated to be as low as 1–5% by Forey et al.
(2004, p. 642), and possibly as high as 38% (both at the species
level) by Foote (1996: Table 1). However, it is clearly much higher,
possibly up to 90% complete for taxa that have mineralized struc-
tures, at least for periods in which fossiliferous rock sequences are
preserved (Foote, 1996: Table 2).

Ecological biases affect the fossil record because most fos-
sils are derived from remains that were deposited in aquatic
environments. Thus, taxa inhabiting arid environments are under-
represented in the fossil record. Similarly, alpine faunae and florae
are poorly known because sediments deposited in high-altitude
lakes and rivers are likely to be quickly eroded. Indeed, several
Paleozoic fossiliferous localities that have long been interpreted as
freshwater“intra-montane basins”show signs of marine influence,
so if there were mountains nearby, they must have been coastal,
and the preserved environments were obviously near the sea level
(Laurin and Soler-Gijón, 2010). A few famous examples include
Joggins, Nova Scotia, from which the oldest amniote remains
were recovered. Long interpreted as intra-montane, it has been
shown to harbor marine or brackish-water taxa, such as xipho-
suran chelicerates (Falcon-Lang et al., 2006). Another spectacular
example is Montceau-les-Mines and surrounding Massif Central
permo-carboniferous localities, which were long interpreted as
intra-montane basins, with geologists even arguing for very high
altitudes of 4500–5000 m above sea level (Becq-Giraudon et al.,
1996, p. 239). Yet, recent paleontological investigations have shown
the presence of marine taxa in Montceau, such as hagfishes (Poplin
et al., 2001). Even marine environments are affected by their own
biases because epicontinental seas have varied in extension follow-
ing sea level fluctuations, whereas continental drift has “recycled”
most pre-Jurassic oceanic plates, leading to a virtual absence of
pre-Jurassic fossil record of deep-sea environments. Thus, fossil
preservation is strongly habitat-dependent.

Geographic biases also affect the fossil record. Thus, fossilif-
erous strata in rich, stable countries where several paleontolo-
gists work are probably much better-studied than those of less

prosperous and less politically stable countries. In fact, there
are many more fossiliferous outcrops than can be prospected by
paleontologists, and there is no reason to think that what gets
prospected is a representative (random) sample of the available
exposures. Modern environments also create biases because some
environments, such as warm, humid environments like the Ama-
zonian jungle are very unfavorable to the discovery of fossils
because a thick layer of organic-rich soil covers the rock exposures,
whereas others, like deserts, are notoriously fossiliferous because
the absence of vegetation cover facilitates detection of fossils. The
combination of ecological and geographic biases mean that even
within mid-sized clades, the fossil record is of heterogeneous qual-
ity. Empirical studies support this theoretical expectation. Thus,
Marjanović and Laurin (2007: Figure 9b) concluded that the age of
some lissamphibian taxa, like Urodela, could be reasonably well-
constrained by the fossil record (to about 155–170 Ma), whereas
others, like Neobatrachia, could not (range of plausible ages from
about 70–130 Ma). This is not surprising given that basal urodeles
include many aquatic to amphibious taxa that are expected to have
a good fossilization potential, whereas neobatrachians include sev-
eral terrestrial forms, some of which live in high altitude or have
recently diversified in tropical environments, where the poten-
tial to recover fossils is low. In fact, the Mesozoic fossil record
of lissamphibians shows a rather strong bias toward aquatic taxa,
such as cryptobranchid and sirenid urodeles, or pipid anurans.
The recently described oldest (stem-) salamandroid, Beiyaner-
peton jianpingensis (Gao and Shubin, 2012) is no exception as
this taxon shows traces of a lateral-line organ, had a deep tail, and
various paedomorphic characters, all of which indicate an aquatic
lifestyle.

Taxonomic uncertainty is generally greater with extinct than
extant taxa, although since the advent of cladistics (Hennig, 1966),
much progress has been done on this front. Hennig introduced
several new ideas into phylogenetic research, one of which is
that it is almost impossible to positively identify actual ancestors
because such an identification rests on negative evidence. This is
because the presence of autapomorphies (unique derived char-
acter states) demonstrates that a given taxon is not the ancestor
of any other taxon that lacks these apomorphies, but the absence
of known autapomorphies in a fossil could simply result from
non-preservation of the relevant characters. Thus, many pale-
ontologists consider that we have probable ancestor-descendant
sequences only in cases of densely sampled diachronous pop-
ulations from a given locality, which usually document mostly
infraspecific evolutionary patterns. Consequently, most paleon-
tologists have given up the search for ancestors and concentrate
on assessing sister-group relationships (e.g., Müller and Reisz,
2006; Ruta and Coates, 2007; Laurin, 2010b). This complicates
using the fossil record to assess divergence times because the pres-
ence of an ancestor of a taxon at a given time would prove that
the taxon had not yet diversified, which would validate use of
that fossil to set maximal age limits for molecular dating. How-
ever, the presence of one or even several sister-groups of a taxon
at a given time does not prove that the taxon had not started
diversifying. This explains why it is so difficult to use the fossil
record to set maximal age constraints (Müller and Reisz, 2005;
Marjanović and Laurin, 2007). Nevertheless, the introduction of
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cladistics and other modern phylogenetic methods in paleontol-
ogy now allow uncertainty to be quantified through bootstrap
values (Felsenstein, 1985b; Sterli et al., 2012) or posterior prob-
abilities (e.g., Müller and Reisz, 2006). The recent development
of non-invasive 3D imaging techniques now allows extracting
much more information from some fossils, which will also con-
tribute to producing more detailed and reliable phylogenies in the
future (e.g., Pradel et al., 2010); these techniques have recently
produced sufficiently new data to result in the publication of
special issues of scientific journals (e.g., Clément and Geffard-
Kuriyama, 2010).

Fossil age uncertainty is highly variable and is mostly locality-
dependent. Some localities are dated fairly precisely through
radiometric dating, whereas others are less well-constrained and
are only loosely correlated with other radiometrically dated local-
ities through biostratigraphy (Gradstein et al., 2004a). However,
geologists are making steady progress toward dating the sedi-
mentary rocks, and are even refining the geological timescale and
how it is defined, for instance through the use of GSSPs (Global
Stratotype Section and Point) that replace the classical type-
sections by precisely defining the lower boundary of each time unit
(Gradstein et al., 2004b).

To sum up, rigorously computing the probable and max-
imal appearance dates from a paleontological tree, or from
paleontological data more generally, is a complex (but proba-
bly solvable) mathematical problem that will require substantial
methodological developments and data acquisition to effectively
tackle. Fortunately, progress is being made in this direction, and
these developments are reviewed below. This review frequently
uses the example of lissamphibians to illustrate many of the rele-
vant concepts and problems, but this simply reflects my interests
and competence. Thorough dating studies have been published
for many other taxa, such as embryophytes (e.g., Magallón, 2010),
eukaryotes (e.g., Hug and Roger, 2007), metazoans (e.g., Peterson
et al., 2004), birds (e.g., Dyke and van Tuinen, 2004; Brown et al.,
2008), or placental mammals (e.g., Bininda-Emonds et al., 2007;
Meredith et al., 2011), among other examples.

RECENT METHODOLOGICAL PROGRESS IN DATING THE TOL
DATABASES, COMPILATIONS, AND SUPERTREES
Obtaining dating constraints is now the most severe bottleneck
limiting our ability to accurately date the TOL. Various initiatives
have been undertaken to solve this problem. A few paleontolo-
gists have compiled databases that can be used to set divergence
time constraints (minimal as well as maximal). Thus, Benton
(1993) published a large but family-level compendium,“The Fossil
Record,” which has been widely used to provide minimal diver-
gence dates. More recently, he has published a few papers (Benton
and Donoghue, 2007; Donoghue and Benton, 2007; Benton et al.,
2009) that provide several calibration constraints in a wide range
of metazoans. Obviously, there is a real need for such papers,
as shown by the high number of ISI citations of these papers
[225 for Benton and Donoghue (2007)] according to the ISI data-
banks, searched on 13-7-2011). Reisz and Müller (2004) and
Müller and Reisz (2005) published more sharply focused papers
documenting in detail the age of some divergences in amniotes
and proposed some maximal ages for these divergences, although

some molecular systematists disagreed with some of the maximal
estimates (Hedges et al., 2006). Similarly, Marjanović and Lau-
rin (2007) provided a time-calibrated supertree (a tree assembled
from various other previously published trees) of lissamphibians
showing the phylogenetic position (and geological age) of 223
extinct lissamphibian taxa based on their geological record, and of
about 100 extant lissamphibian taxa, to show the minimal diver-
gence dates between many extant lissamphibian taxa implied by
their fossil record (Figure 2). This compilation was facilitated by
new Mesquite modules that allow users to superimpose a geolog-
ical timescale onto a phylogenetic tree (Figure 3) and provide
several tools adapted to manipulating branches that represent
extinct taxa (Josse et al., 2006). For instance, one such tool allows
the user to move a taxon in the tree without changing the geologi-
cal age (represented by the branch tip). Comparable software was
recently developed for the R package (Ezard and Purvis, 2009).
More recently, a project has recently been started to help central-
izing dating constraint data and encourage gathering of such data
(Ksepka et al., 2011).

STRATIGRAPHY-BASED METHODS
Given that maximal age constraints are much more difficult to
assess than minimal age constraints, the rest of this review will
focus on how to obtain realistic maximal age constraints. Strauss
and Sadler (1989) and Marshall (1990, 1994, 1997); Marshall’s
(2008) have published several papers that developed new methods
to compute confidence intervals (CIs) on the true stratigraphic
range of taxa. These methods can in principle be used to assess
the maximal and most plausible divergence date between extant
taxa, but such applications are hampered by various limitations
of the methods. For instance, the method proposed by Strauss
and Sadler (1989) and Marshall (1990) requires a random fos-
sil discovery potential through time, which largely limits its field
of applicability to species and small clades. However, when its
assumptions are met, the method is very useful because CIs can be
calculated easily, and their width depends simply on the observed
stratigraphic range and on the number of horizons in which the
taxon has a fossil record. Thus, if a taxon is represented by only
two finds, the 95% CI is nearly 29 times larger than the observed
range, but if 300 horizons contain the taxon, its 95% CI extends
its observed range by only 1% (Marshall, 1990: Table 1).

A subsequent method (Marshall, 1994) allows for temporal
variations in that discovery potential (as under an aggregative dis-
tribution of temporal distribution of fossil finds, for instance),
but not increasing or decreasing trends. That method is based on
a binomial distribution of temporal gaps, which are ordered by
increasing size. Then, CIs can be computed if the gaps are numer-
ous enough, and a particularity of this method is that the CIs
themselves have CIs. For instance, if there are 17 gaps (18 fossil
finds), the 95% CI of the 80% CI on the true stratigraphic range
of the taxon may be as short as the 10th shortest gap, but it may
also be as long as the 17th shortest (the longest) gap. Thus, this
method requires a far denser fossil record than the method that
assumes a random temporal distribution of fossil finds, and a 95%
CI on the 95% CI of the stratigraphic range can be computed only
if there are at least 72 gaps (73 fossil finds). This method is also
inapplicable to large, diversifying clades.
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FIGURE 2 | Part of the time-calibrated supertree of lissamphibians presented by Marjanović and Laurin (2007). Modified from Marjanović and Laurin
(2007: Figure 5).

A third method by Marshall (1997) is free of any assumptions
about temporal distribution and can, in principle, be applied to
any taxon. The method requires building a fossil recovery potential
curve, which must be obtained independently from the strati-
graphic distribution of fossils; this is required because otherwise
the curve would fall to 0 on either end of the known distribu-
tion and CIs could not be computed. However, the curve must
adequately predict the temporal occurrence of fossil finds; this
can be tested by looking at the proportion of temporal variance
explained by the curve. The particular criterion to be used to
build the curve is obviously taxon-dependent. Marshall (1997)
suggested that for some aquatic organisms, water depth could
be used, as many aquatic benthic organisms have a reasonably
narrow range of preferred depths, but such criteria are presum-
ably useful for individual lineages of fairly small clades because
large clades typically display a variety of environmental preferences

(Barnes, 1987). For larger clades, Marshall (1997) suggested using
the exposed surface area of appropriate sedimentary rocks. How-
ever, this criterion does not always work for large clades, as
shown by the application of the method to the largest clade on
which it has been applied so far, namely Lissamphibia. In that
case, using exposed areas of continental sedimentary rocks pre-
dicted less than 6% of temporal distribution of fossil finds. This
large extant clade has undergone strong diversification since its
origin; thus, the discovery potential curve needs to reflect this
to adequately predict the temporal distribution of fossil finds.
Indeed, standing biodiversity of Lissamphibia evolved from two
(at the origin, by definition) to more than 6000 species (extant
biodiversity). Marjanović and Laurin (2008) showed that the tem-
poral distribution of lissamphibian-yielding fossiliferous localities
is explained mostly (R2 > 86%) by the paleobiodiversity of lis-
samphibians as inferred using a simple exponential diversification
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FIGURE 3 | Interface of StratigraphicTools (Josse et al., 2006) for

Mesquite (Maddison and Maddison, 2011). Screen capture showing a small
part of a paleontological timetree. The geological timescale is user-specified
through a dialog window (shown at the bottom) in Stratigraphic Tools; users

need only enter name and duration of each period. The timescale can then be
superposed onto the tree (main window); note that under the tree, the height
of each period is proportional to its duration. Only the right window showing
the taxon list is from the stock version of Mesquite.

model. Incorporating the putative effect of mass extinction events
(based on statistics from other taxa) such as the Permian/Triassic,
Triassic/Jurassic, and the Cretaceous/Paleogene events (Jablonski,
1994) increased the explained variance a little further, to nearly
90%. But the generality of this result has to be verified by other
empirical studies. For other taxa, other models (logistic, linear,
or density-dependent) might possibly be more suitable. The main
limitation of this approach is that the fossil recovery potential
function is poorly constrained, and it can have an important
impact on the resulting CIs (Figure 4). Nevertheless, applica-
tion of this method to the lissamphibian fossil record suggests
that lissamphibians appeared in the Permian (Figure 4), even
though this depends partly on poorly constrained extinction lev-
els of lissamphibians across major extinction events, such as the
Permian/Triassic (Ward et al., 2005) or the Cretaceous/Paleogene
(Wilf and Johnson, 2004) crises.

Most recently, Marshall’s (2008) proposed a method to estimate
the maximal age of a clade. That method is designed especially to
allow fixing a maximal age of a clade represented in a molecular
tree in order to provide a calibration constraint (a maximal age).
It requires an uncalibrated molecular timetree (an ultrametric tree
obtained without calibration constraints, typically using a relaxed-
clock algorithm) and knowledge of the oldest fossil records of all
lineages present in the molecular tree (Figure 5A). From these

two sources of data, an empirical scaling factor (Si) is computed
for each branch (Figure 5B). Si is simply the age of the oldest
fossil from each branch (Ai) divided by the relative length Li of
each branch (Li could vary between 0 and 1 if the height of the
uncalibrated tree were initially set to 1). This ratio is then used to
select the branch with the most complete fossil record, which is
simply the branch with the greatest Si. Thus, in Figure 5, lineage
4 has the greatest Si because its oldest fossil is from 13.5 Ma ago
and Li is 0.6, which yields a Si of 13.5/0.6 = 22.5, which implies
that the root is at least 22.5 Ma old. However, this is obviously
an underestimate (this root node could be an unbiased estimate
if lineage 4 had truly appeared at 13.5 Ma ago, in other words,
if its stratigraphic coverage were perfect), and in the hypothetical
example, the true root age would be 25 Ma (Figure 5A). Therefore,
Marshall’s (2008) proposes various formulae that can be applied
to derive a CI on the age of calibration lineage and hence of the
root, whether or not information is available about the num-
ber of fossiliferous horizons (when unknown, a single horizon
is presumed known for each lineage, which yields broader CIs
than if more horizons are known, as is nearly always the case).
If we assume that a single horizon is known for each lineage,
we have:

Sc = Scal/(1 − C)1/n, (1)
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lepospondyls (at least for gymnophionans) and dissorophoid temnospondyls
(anurans and, typically, urodeles). (B) Molecular ages of various lissamphibian
clades proposed by Zhang et al. (2005). Bars represent 95% credibility
intervals. (C) Colored bars: confidence intervals on the age
of appearance of lissamphibians, given the stratigraphic distribution of
fossiliferous localities that have yielded lissamphibians, and assuming an

exponential diversification model and various assumed extinction levels of
lissamphibians resulting from major biological crises (colored bars 1–4).
A model that assumes no impact of major crises on lissamphibians yields
a much longer confidence interval (bar 5), whereas one assuming no
diversification yields a ridiculously short interval (bar 6). Each bar represents a
75% CI, and the black line in the bar represents the 50% CI. The background
tree comes from Marjanović and Laurin (2007) and shows ranges of ages
based on different assumptions about minimal branch lengths. Reproduced
from Marjanović and Laurin (2008).

where Sc is the scaling factor for a CI C, Scal is the scaling factor of
the calibrating lineage (with the greatest Si), C is the CI for which
we want to compute S, n is the number of lineages.

Thus, in our hypothetical example, if we wanted to compute a
95% CI for the calibrating lineage age, Eq. 1 can be rewritten as:

FAc = FAcal/(1 − C)1/n, (2)

where FA is the age of the first appearance of the lineage.
In this case, this gives us:

FAc = 13.5/(1 − 0.95)1/6 = 22.24 Ma (Figure 5C).

If more than one fossil-bearing horizon is known for each
lineage, the CIs are narrower, as expected:

FAc = FAcal/(1 − C)1/nH, (3)

where H represents the average number of fossiliferous horizons
known for each lineage (this is the only difference from Eq. 2).
Thus, if we know only two fossil-bearing horizons for each of
the six lineages on average, in the same hypothetical example,
the 95% CI on the appearance date of the calibrating lineage
would be:

FAc = 13.5/(1 − 0.95)1/6∗2 = 17.33 Ma. (4)

This method is operationally simple and requires few data. It is
even possible to verify the reliability of the stratigraphic data by
using a Kolmogorov–Smirnov test to remove fossils that are obvi-
ously too old to fit in a given lineage. For instance, a fossil dating
from 15 Ma ago and reported as pertaining to lineage 1 (Figure 5)
would most likely be misattributed, and a Kolmogorov–Smirnov
test could show that.
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FIGURE 5 | Hypothetical example illustrating the basic principles of

Marshall’s (2008) method for calculating confidence intervals on the

appearance of taxa based on their fossil record and an uncalibrated

ultrametric molecular tree. (A) Ultrametric molecular tree with
stratigraphic range of known fossil record of each terminal branch. (B)

Empirical scaling factor (Si) for each of the six terminal lineages. In this
hypothetical example, the true (unknown) root age is 25 Ma. (C) Same,
shown vertically, along with the 50 and 95% confidence intervals on the
first appearance (FA) of the lineage with the highest Si (lineage 4) if we
assume that a single fossiliferous horizon is known for each of the six
terminal lineages.

Unfortunately, Marshall’s (2008) method requires a uniform
(random) discovery potential for the taxa represented by the ter-
minal branches through time, which is an unrealistic assumption
for any diversifying clade because the preservation potential of a
clade is expected to increase with its diversity, geographic range,
and number of individuals, all of which are lowest at its origin
and extinction. Even for clades that have not diversified much,
preservation may be non-random because environmental fluc-
tuations, such as sea-level changes, and subsequent erosion of
sediments leave large and not necessarily random gaps in the fossil
record. This assumption of random fossilization potential through
time limits its field of application to cases in which the termi-
nal branches represent individual lineages or small clades (each
of which should have only a few extant species). The analyses
of Marjanović and Laurin (2008) showed to that the fossiliza-
tion potential of large clades such as Lissamphibia could be easily
modeled based on their inferred paleobiodiversity. However, the
generality of this problem has not been verified, and Marshall’s
(2008, p. 738–739) discussed this caveat in detail and proposes
various solutions.

Another limitation of the approach is that it rests on the
assumption of clock-like changes in the molecular data, an
assumption that is known to be violated to a variable extent in
most genuine datasets. The advantage of the relaxed-clock meth-
ods is precisely that they can use multiple calibration constraints
to model variations in molecular evolutionary rates (Sanderson,
2002), but using Marshall’s (2008) method, these variations can-
not be taken into consideration given that the tree is uncalibrated,
a limitation that Marshall’s (2008, p. 728) recognized. However,

the effect of this factor can be assessed by comparing the relative
branch lengths of an uncalibrated molecular tree with those of
a tree obtained using multiple minimal and maximal age con-
straints; if both sets of length are similar, the lengths of the
uncalibrated tree should be reliable.

BIRTH-AND-DEATH PROCESSES
Recently, theoretical biologists have produced and used math-
ematical models to study the diversification rate of taxa (e.g.,
Patzkowsky, 1995; Przeworski and Wall, 1998; Reed and Hughes,
2007; Crisp and Cook, 2009), and such methods can also yield
information about divergence times. For instance, Foote et al.
(1999a) showed that the early (Cretaceous) age of origin of many
placental groups implied by several molecular studies was unlikely.
This finding is based on the minimal number of lineages that
must have existed and estimates of preservation potential obtained
from other studies. Similarly, Wilkinson and Tavaré (2009) used
conditioned birth-and-death processes to estimate the probability
that primates and anthropoids existed in the Cretaceous. Their
method requires information only about the known biodiversity
of primates and anthropoids in various time intervals (includ-
ing their FA in the fossil record). It requires no morphological
and no molecular data, although such data must have been used
(by others) to assess the affinities of extinct and extant taxa to
produce the paleobiodiversity data that are used by the method
(Figure 6). It rests on the hypothesis that rates of speciation (here
equated with cladogenesis) and extinction are constant through
time and among lineages. Fossilization is also modeled as a Pois-
son process, which describes which branches of simulated trees
are represented in the fossil record. The fossil sampling rate is

T13...

τ
τ

T11 T10... T3 T2 T1

∗
A

B

1

2

FIGURE 6 | A primate tree used by Wilkinson andTavaré (2009) to

explain their method and to obtain probability distributions on the

times of origin of anthropoids (clade in red) and crown-group

primates. The oldest anthropoid dates from T11 and the oldest crown
primate from T13 (Table 1). Thus, the unknown gaps in the earliest fossil
record of primates and anthropoids, here denoted τ and τ*, respectively,
are the time intervals that need to be estimated to know the true times of
origin of these two clades. The four clades denoted by alphanumeric
symbols are: A, Haplorhini; B, Strepsirhini; 1, Platyrrhini; 2, Catarrhini.
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Table 1 | Number of primate and anthropoid species that are extant

or known from the fossil record used in the example of Wilkinson

andTavaré (2009). Geological time is divided into 14 intervals (k).

Epoch k Time at base Primate Anthropoid

of interval k species species

(Ma) counts, D counts, A

Extant 0 376 281

Late Pleistocene 1 0.15 22 22

Middle Pleistocene 2 0.9 28 28

Early Pleistocene 3 1.8 30 30

Late Pliocene 4 3.6 43 40

Early Pliocene 5 5.3 12 11

Late Miocene 6 11.2 38 34

Middle Miocene 7 16.4 46 43

Early Miocene 8 23.8 34 28

Late Oligocene 9 28.5 3 2

Early Oligocene 10 33.7 22 6

Late Eocene 11 37 30 2

Middle Eocene 12 49.0 119 0

Early Eocene 13 54.8 65 0

Paleocene and earlier 14 0 0

allowed to vary through time (Wilkinson and Tavaré use 14 time
bins in their example; see Table 1), which accounts for unevenness
in the richness of the fossil record. The process can then be condi-
tioned on having two clades (in the example, crown-primates and
crown-anthropoids) originate no later than a given time (chosen
to match the oldest known fossil of each clade) and the simulated
trees are retained if they reasonably closely match the observed
number of fossils in the various time bins and the observed extant
biodiversity (Figure 6). These simulated trees can then be used to
establish the posterior distribution of true origination times of the
clades of interest. Wilkinson and Tavaré (2009) thus showed that
the fossil record of primates is compatible with an appearance of
the clade in the Mesozoic because the 95% credibility interval for
the origin of crown-primates (euprimates) encompasses the range
from 54.8 to 98.9 Ma ago. This analysis cannot refute the molecu-
lar dates of origin of many mammalian clades (Bininda-Emonds
et al., 2007; Meredith et al., 2011), often considered too old by pale-
ontologists (e.g., Foote et al., 1999a,b), given what we know about
the fossil record of primates. This partly reflects the fact that this
method yields (at least with this dataset) very broad credibility
intervals. However, for anthropoids, the 95% CI extends only to
53.2 Ma ago. More recently, Wilkinson et al. (2011) developed an
integrated approach that uses a similar method to establish priors
on divergence times and uses that information in molecular dating
to get a posterior divergence time distribution.

COMBINED MOLECULAR AND PALEONTOLOGICAL DATING
Another, complementary approach consists in integrating extinct
taxa into combined (molecular and morphological) trees that

are dated using standard techniques developed for molecular
sequences. An early step into this direction consisted in a study of
Juglandaceae (walnut family) that incorporated five extinct and 25
extant taxa into a combined molecular and morphological analysis
to place extinct taxa into a phylogeny and infer minimal ages of var-
ious clades (Manos et al., 2007). Lee et al. (2009) went a bit further
by integrating uncertainty about the phylogenetic position of the
extinct squamate Pygopus hortulanus (about 20 Ma) in a molecular
dating study of Pygopodidae through a Bayesian analysis. For this,
they added 19 mandibular characters to their molecular matrix
(the fossil is represented only by a mandible). They showed that
despite the fact that the position of P. hortulanus recovered by their
combined analysis is the previously suggested one, other positions
were recovered in some trees. This resulted in a fourfold increase
in the width of the credibility intervals of the molecular ages of
the various clades, demonstrating the importance of incorporat-
ing topological uncertainty about the calibrating lineages into such
analyses. Magallón (2010) was the first study that tried to assess
branch lengths of extinct taxa to determine how this would influ-
ence molecular dates. She inserted 13 extinct terminal taxa into a
molecular and morphological matrix that also included 70 extant
embryophyte taxa. The purpose of that study was to determine
if the long branch subtending crown-angiosperms explained that
the previous molecular dates for that node were much greater than
what is suggested by the fossil record. She performed a total evi-
dence parsimony analysis (the molecular characters were scored as
unknown for the extinct taxa) to obtain an initial topology and set
of branch lengths. She then adjusted the branch lengths (initially
reflecting inferred amount of change in the molecular sequences)
of the extinct taxa to take into consideration their known strati-
graphic range and their possible divergence time from the stem of
extant taxa, and simulated 100 molecular datasets for these extinct
taxa using evolutionary models selected on the basis of the molec-
ular sequences of the extant taxa on a tree (a maximum a posteriori
tree). She then performed several molecular dating analyses using
a variety of methods and concluded that the long branch subtend-
ing the basal node of crown-angiosperms does not explain the old
molecular age inferred fort his node. That study made greater use
of the fossil record than many previous molecular dating analy-
ses, but it rested on several assumptions (Magallón, 2010, p. 394),
including that the molecular evolutionary rates of extinct taxa was
the average of the rate inferred for extant taxa and that the diver-
gence times between these extinct taxa and extant ones had been
correctly determined. These assumptions are admittedly tentative,
especially the first one.

Pyron (2011) dealt differently with extinct taxa. Instead of sim-
ulating molecular data for these, which was probably the most
speculative step in the analyses of Magallón (2010), lengths of all
branches are assessed simultaneously. For extinct taxa, these are
usually determined by using morphological data only. However,
this approach can also be used for molecular sequences that come
from serially sampled viruses or ancient DNA (Ho and Phillips,
2009). This allows incorporating phylogenetic uncertainty affect-
ing extinct taxa into the analysis, contrary to the traditional
approach in which the position of the oldest fossil of a clade must
be considered as known without error, at least with respect to the
other terminal taxa represented by molecular sequences in a given
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analysis. This approach is now conveniently implemented in the
latest version (3.2) of MrBayes (Ronquist et al., 2012), which now
performs molecular dating and allows constraints to be applied
to internal nodes (the classical approach) as well as to terminal
taxa, which allows incorporation of extinct taxa directly into the
timetree.

This approach is extremely useful, although as implemented
by Pyron (2011), it requires application of model-based methods
developed for molecular data to morphological data, for which
the justifications for such applications are more tenuous than for
molecular data. For instance, there is no equivalent in morphology
to the natural partitions of molecular datasets into first, second,
and third codon positions, between nuclear and mitochondrial
genes, and between introns and exons. Morphological charac-
ters are much more complex than molecular characters (typically
positions of single nucleotides or amino acids), which reduces the
probability that they evolved according to simple models. Further-
more, branch lengths for extinct taxa need to be estimated using
the sometimes very limited anatomical information provided by
the fossil record. The main practical problem with this approach is
that the morphological part of the mixed matrix needs to include
a random sample of characters evolving on all branches. Such
a sampling has rarely been attempted to my knowledge; a few
exceptions include and Müller and Reisz (2006), Brusatte et al.
(2008), and Organ et al. (2011b). On the contrary, morphological
data matrices are usually compiled to resolve a given phylogenetic
problem using parsimony, with a taxon and character sampling
reflecting this preoccupation. Thus, autapomorphies of terminal
taxa and other parsimony-uninformative characters are generally
excluded from such matrices, and this may bias branch length esti-
mates. Also, given that building large morphological data matrices
is cumbersome (there is no morphological equivalent of Gen-
Bank for molecular sequences, unfortunately), this method may be
applicable mostly to small and mid-sized trees, although this will
need to be assessed in future studies. Nevertheless, this method has
the advantage of using the most detailed available data (molecular
sequences, morphological data, the resulting topologies, geologi-
cal age of fossils, and branch lengths inferred on the basis of all
these data) of all methods surveyed here.

Application of this method to lissamphibians (Pyron, 2011)
has already clarified their origins, to the extent that lissamphib-
ians appear to be monophyletic, to be nested within lepospondyls,
and to have originated at the earliest in the Late Carbonifer-
ous (Figure 7), whereas previous molecular dating had suggested
much earlier origins (in the Late Devonian or Early Carbonifer-
ous) that was more coherent with lissamphibian polyphyly, with
respect to their prospective Paleozoic relatives (San Mauro et al.,
2005; Lee and Anderson, 2006; Roelants et al., 2007; Marjanović
and Laurin, 2007).

PERSPECTIVES
Time is ripe for investigating how to better date the TOL using
paleontological data because paleontological phylogenetics has
undergone a revolution through the advent of cladistics, and
this has triggered a tremendous growth in the number and reli-
abilities of paleontological trees. This revolution is more recent
than it might first appear. Although Hennig (1966) introduced

cladistics over 50 years ago, his German book was read by few
and understood by fewer still (if only, perhaps, due to the facts
that Hennig published in East Germany and in a highly technical,
philosophical style). The English translation (Hennig, 1966) made
the text accessible to far more scientists, and the method slowly
gained popularity in the systematic community over the next three
decades. However, adoption of cladistics proceeded at a different
pace in each field, with human paleontology, for instance, lagging
far behind the study of Paleozoic vertebrates, although thorough
studies have now been performed in both fields (e.g., Strait and
Grine, 2004; Müller and Reisz, 2006). Nevertheless, all fields of
paleontology have produced well-corroborated phylogenies sup-
ported by data matrices over the last decade, and the increasing
power of microcomputers and sophistication of phylogenetic anal-
ysis software (Swofford, 2003; Goloboff et al., 2008) now allow
paleontologists to incorporate several dozen (e.g., Marjanović and
Laurin, 2009), if not hundreds of taxa simultaneously (e.g., Ruta
and Coates, 2007). All this has resulted in a fairly large but scattered
amount of underused paleontological data in the form of phyloge-
nies that could be time-calibrated and assembled into supertrees
to yield new insights to date the TOL, using birth-and-death mod-
els, for instance. This recent progress also allows implementing
more rigorous standards for defining calibration constraints, as
requested by several authors (e.g., Parham et al., 2012).

Three limiting factors currently hamper progress in dating
the TOL: the lack of extensive paleontological timetrees (that
are essential to document minimal divergence times) or compi-
lations of paleontological dating constraints, more sophisticated
analytical methods based on birth-and-death processes that could
better exploit paleontological timetrees to extract divergence time
constraints, and the paucity of datasets suitable for mixed paleon-
tological and molecular dating. Recent developments should help
solve the first problem because Stratigraphic Tools (Josse et al.,
2006) and paleoPhylo (Ezard and Purvis, 2009) facilitate paleonto-
logical timetree construction, whereas the initiative supported by
Palaeontologia Electronica (Ksepka et al., 2011) should promote
compilation of a large database of divergence time constraints.
However, there is still no method to fully exploit paleontologi-
cal timetrees to get statistically validated temporal distributions of
the probability of appearance times of clades, although the method
developed by Wilkinson and Tavaré (2009) can use part of these
data. Using birth-and-death processes, a method using paleonto-
logical timetrees to extract data on the time of origin of taxa could
in principle be implemented, so it is probably only a matter of
time till paleontological data regain their central role in dating the
TOL and lead to substantial improvements in the accuracy of what
can be achieved by molecular dating. And last but not least, it will
be interesting to see how widespread combined paleontological
and molecular dating will become in the coming years. Through
a combination of all these advances, dating the TOL is likely to
become much easier.
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Marjanović, D., and Laurin, M. (2007).
Fossils, molecules, divergence times,

and the origin of lissamphibians. Syst.
Biol. 56, 369–388.
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