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The semantic web depends on the use of ontologies to let electronic systems interpret
contextual information. Optimally, the handling and access of ontologies should be com-
pletely transparent to the user. As a means to this end, we have developed a service
that attempts to bridge the gap between experts in a certain knowledge domain, ontol-
ogists, and application developers. The ontology-based answers (OBA) service introduced
here can be embedded into custom applications to grant access to the classes of ontolo-
gies and their relations as most important structural features as well as to information
encoded in the relations between ontology classes. Thus computational biologists can
benefit from ontologies without detailed knowledge about the respective ontology. The
content of ontologies is mapped to a graph of connected objects which is compatible to
the object-oriented programming style in Java. Semantic functions implement knowledge
about the complex semantics of an ontology beyond the class hierarchy and “partOf” rela-
tions. By using these OBA functions an application can, for example, provide a semantic
search function, or (in the examples outlined) map an anatomical structure to the organs
it belongs to. The semantic functions relieve the application developer from the necessity
of acquiring in-depth knowledge about the semantics and curation guidelines of the used
ontologies by implementing the required knowledge. The architecture of the OBA service
encapsulates the logic to process ontologies in order to achieve a separation from the appli-
cation logic. A public server with the current plugins is available and can be used with the
provided connector in a custom application in scenarios analogous to the presented use
cases. The server and the client are freely available if a project requires the use of custom
plugins or non-public ontologies. The OBA service and further documentation is available at
http://www.bioinf.med.uni-goettingen.de/projects/oba
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INTRODUCTION
Ontologies play a major role in the semantic web (Berners-Lee
et al., 2001). Running in the background they provide electronic
systems with the expertise of a knowledge domain. Through for-
mal and logical statements ontologies are useful to unambiguously
identify and define entities representing material objects as well
as abstract concepts and their mutual relations. By connecting
unknown terms with known ones through defined statements,
new knowledge can be deduced. This knowledge can be used to
provide the user with information that he/she is seeking but could
not exactly specify. This is achieved by means of a mandatory class
hierarchy, using the “is_a” relation, and other relations, connect-
ing the ontology classes to each other. Supplementary data can be
added to each ontology class by annotations. While the meaning of
relations is comprehensible to human users so that they can select
the right one for traversing the graph, it is a particular challenge to
transfer the logical axioms defined in an ontology into an object-
oriented view that is common to most applications (Winston et al.,
1987; Burger et al., 2008).

A multitude of tools and web services dealing with ontologies
are available in the biomedical field. Ontology browsers like Amigo

(Carbon et al., 2009) for the Gene Ontology (GO; Ashburner et al.,
2000) or ontology editors (OBOEdit: Day-Richter et al., 2007;
Protégé1) let the user work interactively with an ontology. The
web services Ontology Lookup Service (OLS; Côté et al., 2008),
the NCBO BioPortal (Noy et al., 2009) and OntoCAT (Adamusiak
et al., 2011) facilitate the search function covering all ontologies
publicly available at the NCBO portal or the OBO-Foundry (Smith
et al., 2007) and provide access to their content. OntoCAT and the
BioPortal also offer an interface to be queried by electronic systems
over the network. By doing so OntoCAT additionally offers a Java
and R client (Kurbatova et al., 2011) for communication with the
service.

The listed portals offer services which are highly valuable to the
community. However, they fall short in two aspects: by approach-
ing the access of a collection of ontologies in a standardized
way, the portals lack functions that are specific for individ-
ual ontologies, leaving the information encoded in the diverse
relationships unattended. An automated system does not allow
the user to decide when to use which relationship, the algorithm

1http://protege.stanford.edu
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has to solve this problem. The application developer is required
to be familiar with the annotation guidelines and implement the
required algorithm.

If a search interface allows the user to enter or select an anatom-
ical structure, for which data should be displayed, the user will
expect results not only for the selected structures, but also for
substructures and perhaps functionally related structures. With
the use of ontologies this challenge can be met. The different
sets of available relations used in ontologies like “part_of,” “con-
tained,” or “bordered_by” require an implementation of such a
search algorithm to be ontology specific.

The other challenge is between the semantics of ontologies,
consisting of a set of axioms, and the modern style of object-
oriented programming. In an ontology the classes and their
relations are stored in separate axioms while in an object graph the
objects themselves have knowledge about the links to their neigh-
bors. APIs like OWL-API (Horridge and Bechhofer, 2011) or Jena-
API (Jena – A Semantic Web Framework for Java2) facilitate full
access to ontologies and follow their design principles. They dis-
close any information and logic of the supported ontology format
to the user. The resulting complexity prevents a straight way to get,
e.g., neighbors of a class from the ontology. To get the subclasses
of an ontology class with the OWL-API the axioms for the super-
class has to be fetched and the right axioms have to be selected.
Also when using the ontology portals an additional request to the
portal is required because the ontology classes fetched from the
portals lack a method to access their own subclasses.

As an alternative way we suggest a service providing ontology-
based answers (OBA service). To benefit from ontologies the OBA

service can be embedded in applications and workflows. The OBA

project’s goal is to make knowledge, which a user can intuitively
retrieve from ontologies, available to applications or to workflows
processing high-throughput data. The service provides semantic
functions that implement knowledge about the curation guide-
lines as well as the used relations and their interpretation. The
client of the service can be embedded into custom applications
and maps the service’s responses to a graph of Java objects. The
OBA service provides the main information stored in ontologies to
computational biologist not familiar with ontologies. The devel-
opers are enabled to concentrate on their research topic while
working with the familiar object-oriented programming style.

Use cases and projects are presented to demonstrate the con-
cept and advantages of OBA. In the use cases the Cytomer ontology
and the iBeetle project are used. Cytomer3 is an ontology con-
cerning anatomical structures of humans in adults and during the
fetal development (Heinemeyer et al., 1999; Michael et al., 2005).
Specific relations describe the progenitor, the derivation and the
appearance in the Carnegie stages.

The iBeetle project4 aims to identify genes essential to insect
development and physiology by genome wide gene silencing in
the red flour beetle Tribolium castaneum (Schröder et al., 2008)
using parental and larval RNA interference (Bucher et al., 2002;
Tomoyasu and Denell, 2004). During the first part of the iBeetle

2http://jena.sourceforge.net
3http://cytomer.bioinf.med.uni-goettingen.de
4http://ibeetle-base.uni-goettingen.de/

project, several thousand genes have been silenced and the
observed phenotypes are stored in a database and linked to an
anatomical ontology for Tribolium (Bucher and Klinger, personal
communication).

MATERIALS AND METHODS
A service which helps to bridge the shortcomings of existing
tools, as it is described in Section “Introduction,” should fulfill
the following requirements:

- The service should enable an application developer to deal with
the ontology in a transparent manner rather than enforcing him
to deal with different ontology formats or low level APIs.

- The service should map the ontology classes and their connec-
tions to a graph consisting of Java objects.

- The part processing the ontologies should be separated from
the part which is embedded in the application. A server process
would in addition offer a central ontology server.

- The communication with the server should be encapsulated by
a connector on the client side to provide network transparency
for the custom application.

- The service should implement knowledge about the used ontolo-
gies and provide the information deduced from the ontologies
by simple Java methods to a computational biologist.

- With more in-depth knowledge about the used network inter-
face or ontologies the service should be extensible to match the
requirements of new or custom ontologies and projects.

The OBA service consists of a server and a client part, which
communicate using the Representational State Transfer (REST)
architecture (Fielding, 2000). Figure 1 gives an overview of the
OBA service design. The server can load any ontology in the OWL
(Lacy, 2005) or OBO format (Smith et al., 2007) and host semantic
functions. For every ontology a basic part of the server provides
access to the entities, connected entities and lists of entities. Each
entity is accessed by a unique Uniform Resource Locator (URL).
Entities linked to another entity, like its child or parent classes,
can also be accessed by a URL denoting the required subresource.
Like the content of the ontologies, the semantic functions are
available through URLs and return entities or a list of entities as
answer.

A list of entities can be stored on the server in order to facilitate
the work on more comprehensive input. This data can be used,
for example, to limit the results of a search to members of a list
of entities used in an application. To manage resource allocation,
the storage area is divided into partitions. A user or a work group
can create their own partition to store one or more lists. Such a
partition is only accessible through its assigned name, allowing a
basic access control.

The server uses a REST interface and provides the data in the
“application/json,” “text/plain,” and “text/html” format (MIME-
types). The open architecture allows the user to communicate
with the server via a command line client, a web browser or with
any custom client. The preferred form is the embedding in cus-
tom applications. For easy integration into applications a Java
client is provided. The client encapsulates the network communi-
cation and facilitates access to the semantic functions of the server
and to the entities of the respective ontology by Java functions.
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FIGURE 1 |The components of the OBA project and their relations. The components of the OBA project are displayed together with their connections to
external parts, to ontology files or to other applications.

The server’s response is converted into Java objects, containing
methods to access super- and subclasses as well as annotations
and relations. To avoid loading the whole ontology upon the first
request, the Java objects representing the ontology classes function
as proxies that load connected objects upon the first access. This
lazy loading is completely transparent to the application.

By default, the client uses the public server available at
http://oba.sybig.de. Currently, this server provides access to the
Cytomer ontology, the Tribolium anatomical ontology (TrOn) and
the GO with ontology specific functions for the first two and
generic semantic functions for all ontologies. To access custom
ontologies or to implement individual OBA functions, the server
and the client can be downloaded and extended. The server can
load plugins to add custom OBA functions to meet new require-
ments of a specific project or ontology. The module containing
the basic functions implements the plugin interface and can be
deemed as built-in plugin. Two additional plugins, one for the
Cytomer ontology and one for the iBeetle project, are already
available and can serve as templates for the development of new
plugins. Client extension is achieved by subclassing. These sub-
classes can provide Java functions to access semantic functions
of a custom plugin or provide convenient functions to access

annotations or relations of the ontology’s classes. Each ontology
has its own defined set of relations and annotations. The generic
client has no knowledge of the specific sets of annotations and
relations for an ontology and enables access to the annotation and
relations as two-dimensional lists containing the type of the anno-
tation or relation and the respective values. To get the synonyms
annotations of an ontology class, the application has to iterate
the list of annotations until the desired one is found. A custom
client can provide the method “getSynonyms()” encapsulating this
iteration.

The OBA server and the example client are implemented using
the Java Platform. The OWL-API is used to access ontologies in
OBO or OWL format. To implement the REST-protocol the Jer-
sey library was selected5. The Grizzly HTTP container handles the
network communication on the server side6. To index the ontol-
ogy’s classes the Lucene library7 is used. To store the metadata of
the uploaded data HSQLDB8 was selected.

5http://jersey.java.net/
6http://grizzly.java.net/
7http://lucene.apache.org/
8http://hsqldb.org/
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RESULTS
With the OBA service a software application was developed to ful-
fill the requirements listed above (see Materials and Methods).
The division into a server and a client component allows the
separation of processing the ontologies from the specific custom
applications. The server has access to the ontologies and hosts plu-
gins with the OBA functions. These functions make intensive use
of the ontologies and transfer the processed results to the client.
The plugins encapsulate the implementation details to process the
ontologies and reduce the complexity to a single function call on
the client’s side. The concept of the OBA functions as a server side
component is a new concept not known to the existing ontology
portals.

The OBA client maps the OBA functions to Java functions and
the ontology classes to Java objects. The objects representing the
ontology classes have functions implemented to access their par-
ents, children, and connected ontology classes. To avoid loading
the complete ontology from the very beginning the neighboring
classes are loaded upon the first access by a proxy functionality. The
Java objects created by the OBA client are internally equipped with
a link to the Java connector to load missing neighboring classes
in the background. In contrast to existing solutions this loading
process is completely transparent to the user. The developer is able
to accesses the neighboring classes through Java methods and does
not have to be concerned about their loading from the backend.
The OBA client facilitates also access to the OBA functions by sim-
ple Java methods. Using the OBA client the network access and
the implementation details of the OBA functions are transparent
to the application developer, who can thus focus on the scope of
his custom application.

The following use cases illustrate some OBA functions and how
OBA is already used in some upcoming projects. The description
of the OBA functions reveals the implementation details of these
functions to show how the ontology is processed. The application
developer can use these functions with a single function call and
is not required to reimplement the logic.

OBA FUNCTION: GENERIC SEARCH
The function “searchCls” is used to search for an ontology class
matching a pattern that has been specified by the user. The search
is not limited to the name of the ontology class, but the annotation
fields of the class are included. On the client side the annotation
fields to be used for the search can be specified.

Table 1 shows the result of a search for “cistern” in the Cytomer
ontology. In the second case the search is restricted to the annota-
tion“definitionEnglish.” The search function of the Java client also
provides the possibility of limiting the search to selected annota-
tion fields. This possibility is not common in existing tools but is
a powerful filter to get more precise search results.

The search functionality uses the name of the ontology class as
well as its annotation fields and works with any loaded ontology.
The classes returned by the search function can serve as starting
point for traversing the graph or as input for other OBA functions.

OBA FUNCTION: MAP ONTOLOGY CLASSES TO ANCESTORS
The goal of the following two functions is to map ontology classes
to more abstract ancestors. The function “reduceToLevel” requires
the input of a level and a single ontology class or a list of them.
Each one of the classes from the input is mapped to all ancestors at
the given level beneath the root node. To determine the ancestors
of a class, all paths between the start class and the root class are
considered. Due to the fact that an ontology class can have more
than one parent, there might be more than one path, resulting in
multiple ancestors for a single class at a specific level. If the node
“negative regulation of binding” in Figure 2 is mapped to level
five, the two nodes “negative regulation of molecular function”
and “regulation of binding” are returned. The function can also
be called with a reference to a previously uploaded list of ontology
classes. In doing so a list of classes with different levels of abstrac-
tion are mapped to classes at a constant and equal level below the
root node.

A similar approach is implemented in the function “reduce-
ToClusterSize.” In this case the ontology classes are successively
mapped to their parents. In each iteration only those classes with
the greatest distance to the root class are mapped to their parents.
The process is finished when the number of resulting ontology
classes is not larger than the specified number. The result is a list
of clusters, each with a list of ontology classes from the input list,
mapped to this class. Due to the specification of a maximum num-
ber of clusters instead of a concrete level, the resulting clusters may
have varying distances to the root class. However, by processing
the farthest ontology classes in each step, this effect is minimized.
The marked nodes in the example of Figure 2 will be mapped
to the nodes “regulation of signaling” and “regulation of protein
binding” if the maximum number of clusters is set to the value
of two. The node “regulation of cytokine activity” is mapped in

Table 1 | Generic search with a limitation to an annotation field.

http://oba.sybig.de/cytomer/functions/basic/searchCls/cistern http://oba.sybig.de/cytomer/functions/basic/

searchCls;field=definitionEnglish/cistern

cistern, pontocerebellar_cistern, chyle_cistern, ambient_cistern, lumbar_cistern, quadrigeminal_cistern,

interpeduncular_cistern, chiasmatic_cistern, pericallosal_cistern, cistern_of_lamina_terminalis,

lateral_cerebellomedullary_cistern, vein_of_cerebellomedullary_cistern,

posterior_cerebellomedullary_cistern, cistern_of_lateral_cerebral_fossa, basilar_artery

pontocerebellar_cistern, basilar_artery

Result of a search for “cistern” in the Cytomer ontology. In the first case the pattern is searched in the class name and all annotation fields including the comment
field. In the right column the search is limited to the annotation “definitionEnglish” by a matrix parameter in the URL.
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FIGURE 2 | A modified screenshot of the Gene Ontology using OBOEdit. The node “thing” was added as root of the ontology and marks the first level. The
marked nodes have a thicker border.

each step, while “regulation of signaling” is just copied to the result
set. The classes representing the final cluster do also have different
distances to the root node, five and six in this case.

The functions described in this section relay on the class hier-
archy and are therefore not ontology specific, they can process any
currently loaded ontology as well as the ontologies added in the
future. When the described function has to be implemented with
existing tools the effort is larger. To map ontology classes to a given
level all classes from the starting class up to the root node have to
be fetched to determine the classes on the required level. The other
classes can be dismissed afterward. The OBA functions simplify the
tasks by hiding the processing step behind a function call provided
by the OBA client.

The result of a gene expression experiment is a list of differen-
tially expressed genes. A common way to analyze this gene list is to
map the genes to the corresponding terms of the GO. The mapping
can be done for example with the help of BioMart from Ensembl
(Kinsella et al., 2011). Apart from a statistical analysis the resulting
list of GO terms can be mapped to more abstract terms until the
list is short enough to give an overview of the main processes the
GO terms belong to. This can easily be achieved with the two OBA

functions “reduceToClusterSize” and “reduceToLevel” and gives a
first and intuitive impression of the experiment’s outcome.

USE CASE: CYTOMER-SPECIFIC FUNCTIONS
In the following the advantages of OBA functions provided by the
service are demonstrated using the anatomical ontology Cytomer.
In biomedical research different anatomical structures are inves-
tigated. These anatomical structures can be cells, tissues, organs,
and entire body parts. A common example is the handling of gene
or protein expression data derived from cells, organs, or biopsies
(Uhlen et al., 2010). For an analysis on an equal level of abstrac-
tion, it is preferable to map all anatomical structures to the level
of organs. These steps need to be automated for high-throughput
data.

OBA function: get organs of an anatomical entity
The function “organsOf” of the OBA service accepts an arbitrary
class of the Cytomer ontology, which represents an anatomi-
cal structure as input and returns its respective organs. Inside
this function the organs are searched along the class hierarchy
and along the selected relations “isPartOf,” “isPartOfOrgan,” and
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“isCellOf.” Other relations, for example relations describing the
development, are ignored in this case. Figure 3 shows a simplified,
abstract section of Cytomer. Using the function “organsOf” on
“Cell 1”“Organ 3” is found using the two relations “isPartOf” and
“isCellOf.” For “Cell 2” the two nodes “Organ 1” and “Organ 2”
are found. “Organ 3” is not part of the result, because the relation
“differentiatesInto” between the nodes “Cell 2” and “Cell 1” is not
considered for the search of the organs of an anatomical entity.
To retrieve the physiological system of an anatomical entity the
function “physiologicalSystemsOf” can be used, which works in
an analogous way.

OBA FUNCTION: MAP TO A PREDEFINED LIST
An alternative approach is to store the data linked to the most
precise anatomical entities, even if these entities do not belong to
the same level. In this case a user needs help to draft a request. If
the request is on another level than the stored data, no match may
be found, although there are relevant entries on a more abstract
or more concrete level. The two functions “findUpstreamInSet”
and “findDownstreamInSet” of the OBA service provide a solution
for this use case. In a set-up step the list of anatomical structures
represented by the input data, is stored on the OBA server. The
list can be reused for each user’s request. Starting from the class,
which has been requested by the user, the ontology is searched
until a class in the previously uploaded set is found. For an illus-
tration of these two functions please refer to Figure 4. The graph
is a simplified view of the Cytomer ontology. The yellow nodes

are anatomical structures used in EndoNet and uploaded to the
OBA service. In the first example the user is searching informa-
tion on nephron, which would give no result in EndoNet. The
function “findUpStreamInSet” searches upstream of the start class
“nephron,” until a class is found which is also in the previously
uploaded list. In this case, following the “isPartOf” relation “kid-
ney” is found, to which EndoNet can provide information to the
user. The example of the function “findDownStreamInSet” starts
with the abstract term “digestive_organ” and returns “liver” and
“pancreas” as matching classes in EndoNet, by following the class
hierarchy. The nodes and edges marked with a green shape are
the entities processed during the mapping. The search only stops
when a member of the predefined list is found, or no more nodes
up- or downstream along the class hierarchy or the used relations
are available.

These two functions contain a list of relations usable for the
up- and downstream search. The path from the starting class to
the result nodes may contain any mixture of the intended relations
for the requested search direction. The length of the path is not
limited, the breadth-first search stops in the iteration step with the
first match and returns all matches found in this step.

The OBA functions presented above process a graph’s represen-
tation of the Cytomer ontology containing the ontology classes,
the class hierarchy, and other relationships between the classes.
As ontology specific information the functions have the knowl-
edge implemented when to use which relation and how organs
or physiological systems can be identified. Processing the graph’s

FIGURE 3 | Abstracted and simplified view of the Cytomer ontology illustrating the handling of organs of an anatomical entity. The green nodes are
the start nodes for the search function specified in the text. In this section, the entities are connected by four different relations given in the legend.
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FIGURE 4 | Mapping entities to a predefined list. The nodes with the
blue border represent the start nodes for the functions “findUpstreamInSet”
and “findDownstreamInSet,” respectively. The nodes and edges marked
with a green background shape are processed during the mapping. The

classes of the result set have to be members of the predefined set which
contains the yellow nodes. A predefined list can be used by a project to limit
the result of a up- or downstream search to a set of classes used in the
project.

representation is done by the OBA framework, to implement anal-
ogous functions for other ontologies or similar tasks, a new plugin
can reuse this existing logic and only the ontology or task specific
knowledge needs to be added, i.e., the relations to use and the key
classes.

To achieve a comparable result with existing ontology portals is
much more complex. In order to retrieve all organs for an arbitrary
anatomical structure using the existing ontology portals the user
has to decide which of the relations of the starting class could be
used to traverse the ontology graph to some organ. In the next step,
all neighboring classes linked by the selected relations have to be
queried from the portal. The last two steps have to be repeated for
every fetched intermediate class multiplying the number of classes
in each step. Whether one of the processed classes represents an
organ has to be decided by the users based on their medical knowl-
edge or based on rules deduced from the curation guideline of the
ontology. Using the OBA function “organsOf” all these steps are
executed on the server where the knowledge is implemented which
ontology classes represent the concrete organs. Due to the mul-
titude of relations to consider, 70 ontology classes are processed
to return “liver” as organ for the ontology class “hepatocyte.” To
get the organs lung, larynx, and trachea for the ontology class
“sensory_epithelial_cell” 2,497classes are needed to be checked.
Without OBA each of these classes has to be downloaded from an
ontology portal and processed locally. The numbers are dependent
on the starting class and the version of the used ontology. New

or removed relations can have a great impact on the number of
processed ontology classes. However, for simple queries like the
example of the hepatocyte cell, a considerable number of ontol-
ogy classes already have to be processed. Using OBA the result is
always achievable with one single function call. Even changes in
the annotation guidelines, like new relations’ types, of the used
ontology would be encapsulated in the plugin and hidden from
the application developer.

PROJECT: iBeetle
In the iBeetle project genes are silenced by RNAi and the observed
phenotypes for several stages are annotated into a database fol-
lowing the Entity–Quality (EQ) system (Washington et al., 2009).
During the project a detailed ontology about the anatomical struc-
tures of Tribolium in different developmental stages has been
created. There is an ontology class for each structure at every
developmental stage where this structure exists. Thus there are
distinguished classes for the pupal and the larval antenna. Both
are linked with an “isPartOf” relation to the corresponding devel-
opmental stages and share the same generic superclass “antenna”.
The annotations are linked to the classes connected to a devel-
opmental stage instead of being linked to generic ones. The most
detailed level in the ontology is chosen for the annotation, i.e., flag-
ellum is used if the phenotype affects only the flagellum and not
the whole antenna. For the search interface the requirements are
different. A typical input is the developmental stage and a generic
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and rather abstract morphological structure, e.g., antenna instead
of flagellum. To fulfill the demands and provide a general access to
the Tribolium ontology the OBA service is embedded into the search
interface and a server plugin with specific semantic functions has
been implemented.

Upon startup the OBA service scans the ontology for concrete
classes (these connected to a developmental stage) and generic
classes, respectively. The concrete classes do not necessarily have a
direct relation to a developmental stage, the path to the stage may
be a collection of “is_a” and “isPartOf” links. The generated list of
generic classes is used as a suggestion list for the user while typing
into the search form. When the user has chosen a developmen-
tal stage and an anatomical structure, the OBA service selects all
concrete classes downstream of the selected structures and con-
nected to the appropriate stage. Because “isPartOf” is used in the
Tribolium ontology to describe meronomic relation, the inverse
“hasPart” relation is generated on the fly. The list of ontology
classes is used as input for the search in the database of the iBeetle
project. As add-on on the result page a tree with the subsections
of the ontology that were used for the search is displayed. Figure 5
shows a screenshot of this ontology tree. The semantic search
started with the search term “head” and added all ontology classes
representing head and its parts.

PROJECT: EndoNet
For the upcoming new web interface for EndoNet, an information
resource of the human endocrine system (Dönitz et al., 2008), a
semantic search, similar to the search function described above is
used. As ontological data source the anatomical ontology Cytomer
is utilized. In this case the focus is not on developmental stages but
on grouping the annotated cells and tissues at the level of organs
in order to generate a survey map of general pathways. To limit
the search result to anatomical structures used in EndoNet a pre-
defined list containing the anatomical structures used in EndoNet
is stored on the OBA server.

PROJECT: OntoScope
Another type of application using the OBA service is the ontology
viewer OntoScope9. OntoScope visualizes ontologies as a graph
extending the common tree like view of ontologies. The repre-
sentation as a graph enables the user to explore ontologies along
arbitrary relations. OntoScope uses from the OBA service the object
graph and the access to the ontologies without any knowledge
about the format or semantics of the ontology. OBA functions
are used in the background, so that for example the nodes of the
Cytomer ontology can be displayed in a color code according to the
physiological system. Figure 6 shows a screenshot of OntoScope
with several nodes and relations.

Table 2 summarizes the OBA functions used in the projects. The
plugin containing the function is named and a short description
is given.

INSTALLATION AND EXTENSION OF OBA

For the use of OBA in a new application the Java client has to be
downloaded and added to the class path of the application. After

9http://www.bioinf.med.uni-goettingen.de/projects/ontoscope/

FIGURE 5 | Ontology tree from the result page of a search in the

iBeetle database. The tree shows the classes of the Tribolium ontology
downstream of the searched structure and linked to the queried
developmental stage. In this example, the user has selected “head” as
anatomical structure and “larva” as stage. All ontology classes shown in
the tree where used for a search in the iBeetle database. The numbers in
parentheses indicate the number of hits linked to this node.

the initialization of the connector, all OBA functions are accessible
as Java methods through the connector. The OBA functions will
return single ontology classes or lists of them. These ontology
classes are mapped to Java objects by the connector and returned
by the Java methods of the connector. The Java objects provide
functions to access the annotations and neighboring classes of the
represented ontology class. If necessary missing information is
queried internally from the OBA server. The application developer
does not have to be concerned about the retrieval of neighboring
classes.

If a required ontology is not available on the public OBA server,
it can be downloaded and started locally. After the extraction of the
zip file default directories for ontologies, plugins, and the storage
area are available. New ontologies can be copied to the ontology
directory together with a short property file. The property file
defines under which name the ontology will be available from the
OBA server and which annotation fields should be indexed for the

Frontiers in Genetics | Bioinformatics and Computational Biology October 2012 | Volume 3 | Article 197 | 8

http://www.bioinf.med.uni-goettingen.de/projects/ontoscope/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


“fgene-03-00197” — 2012/10/4 — 21:25 — page 9 — #9

Dönitz and Wingender OBA service

FIGURE 6 | Screenshot of OntoScope. The ontology viewer OntoScope
uses the object graph from OBA to let the user browse the graph. The
ontology classes are represented by the nodes of the graph. Each relation
type has an own color and are displayed as edges connecting the nodes. The

color of the nodes indicates the physiological system the class belongs to and
is retrieved from the OBA service. On the tabs of the right side additional
information of the selected ontology class is displayed, or the class hierarchy
of the classes in the graph (tab is hidden in the screenshot).

search function. The property file can be copied from the provided
examples and is described in the manual.

SUMMARY
The OBA service is available online at http://oba.sybig.de. Upon
pointing a web browser to this URL an overview is given as a list of
loaded ontologies as well as the available plugins and the OBA func-
tions implemented by them. The object graph of the ontologies
can be browsed by following the links of the HTML representation
of the ontology classes. The syntax to access the OBA functions is
described in the manual available at the home page of the project:
http://www.bioinf.med.uni-goettingen.de/projects/oba. Located
on the home page of the project is the Java connector as well as all
sources and jar files for the server and currently available plugins.
The Cytomer connector contains a test client, which is executed
when the client is run on the command line. This client calls some
functions on the server and prints the results to the console in

order to validate the OBA service’s function. The client’s sources
can serve as a template for a usage of OBA in a custom application.

To give the user a first impression of the function of the OBA

service, a web demo is available at http://webdemo.oba.sybig.de/
implementing some of the provided functions for manual tests.
For each step the example source code is noted, which is needed
to implement the corresponding step in a custom application.

DISCUSSION
Ontologies are powerful and also complex tools. This is espe-
cially true for the OWL format. Parsers like the Jena-API
(Jena – A Semantic Web Framework for Java10) or the OWL-API
(Horridge and Bechhofer, 2011), take care of parsing ontologies
but do not intend to hide the semantics of ontologies. The same
is true for OBO ontologies, although they have a more finite

10http://jena.sourceforge.net
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Table 2 | Overview of the OBA functions used in the projects.

Project Used OBA function Plugin Functionality

iBeetle concreteClasses Tribolium Returns all classes linked to a developmental stage. The annotated phenotypes are linked to these

classes

genericClasses Tribolum Returns all classes not related to a developmental stage, used for the auto-complete function of the

search interface

findInGeneric Tribolium Searches in the labels and synonyms of generic classes and an additional previous generated list for

classes matching the search string. Used for the auto-complete function in the search interface

concreteForDevStage Tribolium Returns the class downstream of the given generic class and linked to the given developmental stage.

Used to map the user query to the annotations stored in the database.

EndoNet findUpStreamInSet

findDownStreamInSet

Cytomer Used to find entities from EndoNet related to the search term

OntoScope physiologicalSystemOf Cytomer Returns all physiological systems of an ontology class, used for coloring in the graph

searchCls built-in Searches ontology classes matching a text pattern in the class name or annotation field

The table summarizes the use of OBA in the projects listed in the first column. The second and the third column denominate the OBA function name and the plugin
containing the function. The last column describes the functionality of the OBA service the projects benefits from.

structure. If a developer plans to include information deduced
from ontologies in an application, a time for training is needed
to learn the semantics of ontologies and the framework’s design.
The basic tutorial of the OWL-API already consists of over 100
slides and deals with a semantic most computational biologists
are unfamiliar with. The OBA service maps the relevant parts of
ontologies to the world of object-oriented programming and pro-
vides semantic functions. The usage of the OBA service does not
call for intensive training time to work with different topics and
programming paradigms. The simplification to an object graph
is oblivious to advanced features of OWL like cardinalities or dif-
ferent OWL dialects. If such a full access is needed, it can be
achieved with the very good ontology APIs, i.e., Jena-API or OWL-
API, with the query language SPARQL or Protege for interactive
work. However, the OBA service can load and process any ontology
in the OBO or OWL format, giving access to their fundamental
information to developers who otherwise would probably not use
ontologies.

Portals like OntoCAT (Adamusiak et al., 2011), the OLS (Côté
et al., 2008), or the NCBO BioPortal (Noy et al., 2009) aim to
provide access to huge collections of ontologies in a standardized
manner. This is the preferred way if the unique definitions of
terms in ontologies take precedence over the complex relations.
Like the OBA service, OntoCAT and the NCBO ontology por-
tal allow the user to access ontologies using the REST-protocol.
OntoCAT also provides basic clients for different programming
languages. In addition to the functions of the OntoCAT client,
the Java objects of the OBA service provide the required func-
tions to access the super- and subclasses as well as classes which
are linked by relations. Together with the proxy function, the
basis of the new feature in the OBA service is to map ontol-
ogy classes to an object graph, traversable by Java methods. The
required network communication with the service is encapsulated
by the OBA client and transparent to the user. The feature to
grant access to the neighbors of an object, representing an

ontology class, by Java methods is beyond the function pro-
vided by the clients of the existing ontology portals. Together
with the proxy function of the OBA client the developer is now
enabled to access ontology classes and traverse the graph using
only Java methods. Network access and parsing of the ontology is
transparent.

One intention of the OBA service is to relieve the user from
ontology specific demands by encapsulating the logic in a service.
With the OBA functions the developer benefits from the rich infor-
mation of a specific ontology encoded in the relations without the
detailed knowledge about these semantics. The goal of the OBA

service is not primarily to provide network access to ontologies,
but to add additional functions to help a developer to solve a sub-
task of an application based on information available in ontologies
without being familiar with ontologies, APIs, or query languages
to process them.

The OBA service’s concept of semantic functions is distinct
from the goal of ontology portals like OBO-Foundry (Smith et al.,
2007), NCBI, or OntoCAT. The portals focus on accessing as many
ontologies as possible. This approach is very well suited for an
ontology overarching search and access. The OBA service provides
access to a set of specific ontologies with matching semantic func-
tions. If a plugin with the required semantic function is already
available the developer saves time for training and programming.
Even if the required function is not available, the developer ben-
efits from the framework of the OBA service and the advantages
of the client described above. The OBA framework and the open
architecture minimize the effort of extending the service to fit the
requirements of a specific project. A new plugin relays on the exist-
ing functions to access the ontology, marshal the objects for the
network transfer as well as the proxy functionality of the client.
A new plugin only has to implement knowledge about a custom
ontology or the logic to solve a new question. Due to the provided
framework the already supplied plugins are very small and easy to
implement. The developer of a new plugin needs to be familiar
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with the curation guideline of the used ontologies. Further exper-
tise about ontologies, like the different formats and ontology
internals like Frames, Description Logic are not required.

Under the umbrella of the OBO-Foundry a collection of tools
handling ontologies has evolved. There is a number of tools sup-
porting the annotation process or focusing on statistical analysis
of data based on ontologies, examples are the tool DAVID (Huang
et al., 2009) and tools for the gene set enrichment analysis (GSEA)
method (Subramanian et al., 2005). Like the functions of the
OBA service, these tools make intensive use of the GO or other
ontologies. The advantage of the OBA service is that it is easily
extendible. The server can load plugins for any ontology. The ser-
vice is designed to be embedded into applications and workflows
to minimize interaction with external tools.

The design of the OBA service has several advantages. A public
server is the central contact point and serves a growing collection
of publicly available ontologies and plugins. Developers and main-
tainers of an ontology are welcome to submit new plugins, which
enables the scientific community to profit. Alternatively, the server
can be downloaded and run locally if the required ontology is not

available in the public repositories, or if the developed plugin is
not to be published.

The new features of OBA are the seamless mapping of ontologies
to a connected object graph for object-oriented programming and
the implementation of the OBA functions.

The server side plugins can make intensive use of the ontolo-
gies loaded by the server and return the computed results back to
the client. The round-trips between client and server are reduced
to a minimum and the logic is encapsulated in a reusable plu-
gin. This new features enables computational biologists to use
the basic information from ontologies in their applications, who
would otherwise avoid ontologies.
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