
tRNA levels ANd codoN biAs Affect 
the fidelity ANd efficieNcy of 
tRANslAtioN
The two major steps of gene translation are 
transcription of the gene to mRNA mol-
ecules, and their translation to proteins 
by the ribosomes. The elongation part of 
translation includes the iterative decoding 
of the gene codons by the ribosome with 
the aid of tRNA molecules. Each codon is 
recognized by a set of tRNA molecules that 
are charged with the amino acid encoded 
by it (Alberts et al., 2002), and the transla-
tion time of a codon is usually positively 
correlated with the abundance of the tRNA 
molecules recognizing it. Thus, increasing 
expression levels of the tRNA molecules 
recognizing a codon, or replacing a codon 
with a different one recognized by tRNA 
molecules with higher expression levels, 
should usually have positive effect on its 
translation rate (Gustafsson et al., 2004; 
Tuller et al., 2010).

Missense errors in translation occur 
at a rate of 1 per 103–104 (Ogle and 
Ramakrishnan, 2005; Kramer and 
Farabaugh, 2007), i.e., assuming average 
protein length of 400 codons, around 18% 
of the proteins contain at least one mis-
sense substitution. In addition, roughly 
10–50% of random substitutions disrupt 
protein function, usually due to loss of 
folding mutations (Pakula and Sauer, 1989; 
Markiewicz et al., 1994; Guo et al., 2004; 
Bloom et al., 2006). It is known that the 
speed by which codons are translated can 
also affect the rate of missense translation 
errors, and thus the folding of the trans-
lated protein, resulting in misfolded toxic 
proteins (Akashi, 1994; Bloom et al., 2006; 
Zhou et al., 2009). Thus, the probability of 
missense translation errors of codons that 
are recognized by tRNA genes with lower 
concentrations is usually higher than in 

codons with higher concentrations, since in 
these cases with higher probability a wrong 
tRNA replaces the right one (Akashi, 1994; 
Zhou et al., 2009).

GlobAl up-ReGulAtioN of tRNA 
levels iN cANceR
It is known that in many cancerous cells 
there is an increased growth rate that is 
regulated by signals related to prolifera-
tion, metabolism, and protein synthesis 
(White, 2005; Gillies et al., 2008; Jones and 
Thompson, 2009; Mei et al., 2010b; Cairns 
et al., 2011). This phenomenon may be 
partially caused by global up-regulation 
of tRNA molecules. The trigger for these 
global signals can be the down-regulation 
of retinoblastoma proteins, p53 and ARF, 
which cause up-regulation of RNA poly-
merases I and III, and oncoproteins such 
as Myc that stimulate the transcription 
of rRNA and tRNA genes (Cabarcas and 
Schramm, 2011).

Indeed, the effect of tRNA on tumo-
rigenesis has been previously reported 
(Berns, 2008; Pavon-Eternod et al., 2009). 
For example, Pavon-Eternod et al. (2009) 
used tRNA chips for measuring the expres-
sion levels of tRNA molecules to show 
that in breast cancer there is global over-
expression of tRNA species. Specifically, 
the expression levels of nuclear-encoded 
tRNAs increase by up to threefold, and 
mitochondrial-encoded tRNAs increase 
by up to fivefold in breast cancer. It was 
also shown that in general these changes 
maintain the ranking of the expression 
levels of tRNA genes, as there is signifi-
cant correlation between the tRNA levels 
in cancerous and healthy cells (Mahlab 
et al., 2012). Similar results were obtained 
for other components of the translation 
machinery (such as aminoacyl-tRNA syn-
thetases; Vellaichamy et al., 2009).

In this subsection we emphasized the 
global changes in the expression levels of 
tRNA genes. However, it was also reported 
that specific pathways and genes relevant 
to cancer undergo increased differential 
regulation of translation in cancer due to 
point mutations in specific genes’ coding 
sequences, or genomic changes that effect 
tRNA levels. For example, it was shown 
that tRNA isoacceptor over-expression 
may increase the translational efficiency 
of genes relevant to cancer development, 
progression (Pavon-Eternod et al., 2009), 
and apoptosis (Mei et al., 2010a,b). In addi-
tion, it was demonstrated that many of the 
 gain-of-function and dominant-negative 
mutations in the tumor suppressor gene 
TP53 increase its translation efficiency also 
when considering the cancerous changes in 
the tRNA pool (Waldman et al., 2009).

tRNA GeNes, tRANslAtioN fidelity, 
ANd NeuRodeGeNeRAtioN
As mentioned above, mistranslation-
induced protein misfolding is a dominant 
constraint on coding sequence evolution 
(Drummond and Wilke, 2008).

Misfolded proteins is one of the causes of 
neurodegeneration (Dobson, 2003; Selkoe, 
2003; Ross and Poirier, 2004; Lee et al., 2006). 
For example, it was shown that low levels of 
mischarged tRNAs can lead to an intracel-
lular accumulation of misfolded proteins in 
neurons (Lee et al., 2006); similarly, muta-
tions in other components of the transla-
tion machinery, such as Aminoacyl-tRNA 
synthetases, may lead to similar problems 
(Antonellis and Green, 2008). Indeed, it was 
shown that mutations in broadly expressed 
genes involved in translation and protein 
folding produce brain-specific phenotypes 
(Zhao et al., 2005; Lee et al., 2006), suggest-
ing that neural tissues are more sensitive 
to protein misfolding; thus, this  sensitivity 
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 corresponds to lower mutation rates (or 
evolutionary rates) in animal neuronal 
genes (Zhang and Li, 2004; Lee et al., 2006; 
Wang et al., 2007; Drummond and Wilke, 
2008; Tuller et al., 2008). These results sug-
gest that the disruption of translational 
fidelity in terminally differentiated neurons 
leads to the accumulation of misfolded pro-
teins and cell death, and provides a novel 
mechanism underlying neurodegeneration.

the diAGNostic poteNtiAl of tRNA 
GeNes ANd codiNG sequeNce 
mutAtioNs ANd coRRespoNdiNG 
chAlleNGes
The results reviewed in this paper suggest that 
the expression levels of tRNA genes can be 
used as biomarkers for diseases such as can-
cer. One challenge related to this point is to 
develop robust and efficient approaches for 
measuring tRNA levels. This is not trivial due 
to two major reasons: first, tRNA molecules 
undergo many RNA modifications mak-
ing the mapping of their deep sequencing 
reads more challenging (Gustilo et al., 2008; 
Mahlab et al., 2012). Second, the strong fold-
ing of the tRNA molecules decreases their 
hybridization to DNA chips. Currently, one 
of the most reliable approaches for measur-
ing tRNA levels is by DNA chips designed 
specifically for this purpose by Prof. Tao 
Pan (Dittmar et al., 2006; Pavon-Eternod 

et al., 2009). However other methods for 
measuring tRNA levels, e.g., by using liquid 
chromatography mass spectrometry and sig-
nature digestion products (Castleberry and 
Limbach, 2010), are available.

In addition, diagnosis related to cancer 
and neurodegeneration can be performed 
based on non-synonymous, but also syn-
onymous mutations and SNPs, by predict-
ing their effect on the translation rate of a 
gene. Such a diagnostic tool should consider 
the adaptation of the mutated codon, or the 
codon with a SNP, to the human tRNA pool; 
this can be done by measuring the tRNA 
levels in the relevant tissue (as mentioned 
above) or by using a proxy such as the tRNA 
copy number (Mahlab et al., 2012). In addi-
tion, the diagnostic tool should consider 
amongst others the region of the mutation/
SNP within the coding sequence, the codons, 
and nucleotides surrounding it, and also the 
effect of the relevant codon on the folding 
of the mRNA and the charge of the protein 
it encodes (Tuller et al., 2011). To this end, 
biophysical predictors of translation effi-
ciency can be employed (Tuller et al., 2010). 
Finally, the diagnosis should be based on the 
functionality of the gene; for example, the 
effect of elevated/decreased adaptation of a 
codon to the tRNA pool is expected to be 
opposite for tumor suppressors and onco-
genes (Figure 1).
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