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MicroRNAs are small RNA sequences of 18–24 nucleotides in length, which serve as tem-
plates to drive post-transcriptional gene silencing. The canonical microRNA pathway starts
with transcription from DNA and is followed by processing via the microprocessor complex,
yielding a hairpin structure. Which is then exported into the cytosol where it is processed by
Dicer and then incorporated into the RNA-induced silencing complex. All of these biogene-
sis steps add to the overall specificity of miRNA production and effect. Unfortunately, their
modes of action are just beginning to be elucidated and therefore computational prediction
algorithms cannot model the process but are usually forced to employ machine learning
approaches. This work focuses on ab initio prediction methods throughout; and therefore
homology-based miRNA detection methods are not discussed. Current ab initio prediction
algorithms, their ties to data mining, and their prediction accuracy are detailed.
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INTRODUCTION
MicroRNAs (miRNAs) are a group of small non-coding RNAs,
discovered in the early 90s by Ambros and colleagues (Lee et al.,
1993), which convey post-transcriptional regulation. In most cases
miRNAs lead to down regulation of their target mRNAs but
translational activation has been observed (Ørom et al., 2008).
It has been estimated that 60% of all human genes are regu-
lated by miRNAs (Friedman et al., 2009). Another estimate is
that there are more than 1000 miRNAs in the human genome,
(Berezikov et al., 2005) and with currently about 1500 human
miRNAs in miRBase (Griffiths-Jones et al., 2008; including pas-
senger and guide strands), this number will likely be surpassed
soon. MiRNAs can come from introns (Morlando et al., 2008),
coding regions (Rodriguez et al., 2004), or intergenic miRNA gene
clusters (Altuvia et al., 2005). The biogenesis of miRNAs follows
largely the canonical pathway which is introduced in a different
review of this issue. For many enzymes of the miRNA pathway
either the protein complex composition modulates activity for
one particular, for families, or larger groups of miRNAs (most
notably the microprocessor complex). Other steps in the miRNA
biogenesis are also under tight control by miRNAs, protein prod-
ucts, or transcription factors. For more information in the area of
miRNA regulation see another review in this issue or refer to recent
reviews by Davis-Dusenbery and Hata (2010) as well as Newman
and Hammond (2010).

Despite the great effort that has been put into the elucidation
of the miRNA pathway, not much is known which would facilitate
computational modeling that is based on clear processing facts
instead of data mining approaches. In general hairpin structures
are modeled and the parameters are used to distinguish true from
false miRNA hairpins. This approach is complicated by the fact
that a proper negative data set is not available.

Two computational ways to determine whether a sequence
is a miRNA are currently employed. One of them is based on

homology to known closely related miRNAs (evolutionary conser-
vation). MiRscan (Lim et al., 2003), miRseeker (Lai et al., 2003),
and PalGrade (Bentwich et al., 2005) are prominent examples for
algorithms employing evolutionary conservation. This method
is, however, impeded by the claim that miRNA evolution seems
to progress at a high rate (Lu et al., 2008; Liang and Li, 2009).
Furthermore, homology modeling rarely allows the detection of
novel miRNAs but rather cements the current understanding of
miRNAs (Bentwich et al., 2005) and it may, therefore, be advisable
to focus on ab initio prediction. In the following we will there-
fore solely discuss how ab initio miRNA prediction can detect
pre-miRNAs.

MODELING THE BIOLOGICAL miRNA PROCESS
Relatively little is known about what constitutes a true miRNA
but millions of hairpins can be found in a genome which makes
the process of determining whether a hairpin is a miRNA dif-
ficult (Feng et al., 2011). A genome wide search for miRNAs
would need to fold all parts of a genome, a problem which
is computationally expensive and for which some algorithms
have recently been compared (Janssen et al., 2011). Folding is
necessary in order to generate hairpins that can then be evalu-
ated for whether they contain a pre-miRNA that fits the applied
model. As millions of putative pre-miRNAs can be generated
from a genome, such as the human genome, it is essential to
have highly accurate prediction algorithms. Current focus in
this area is mostly the computational detection of pre-miRNAs.
For the detection of pre-miRNAs, features are derived from the
folded putative pre-miRNAs which discriminate between true
and false miRNA hairpins. Machine learning algorithms are
trained on known examples to discriminate between true and false
pre-miRNAs.

In the following we will first comment on parameters that have
been derived from miRNA hairpins, followed by a discussion of
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current algorithms for detection of pre-miRNAs and their accu-
racies. Afterward we ask the question whether in addition to the
pre-miRNA detection the location of the mature miRNA sequence
can also be predicted.

WHAT CONSTITUTES A PRE-miRNA
All approaches for predicting miRNAs from genomic sequences
depend on learning from examples since the underlying biologi-
cal processes have not been completely elucidated. It is difficult to
describe what exactly constitutes a proper pre-miRNA and how it
differs from other hairpin structures. For this reason, more than
250 different parameters to describe a hairpin have been pub-
lished in 12 studies performing ab initio pre-miRNA prediction
(Lai et al., 2003; Pfeffer et al., 2005; Xue et al., 2005; Yousef et al.,
2006; Jiang et al., 2007; Ng and Mishra, 2007; Bentwich, 2008; van
der Burgt et al., 2009; Cakir and Allmer, 2010; Ding et al., 2010;
Grundhoff, 2011; Ritchie et al., 2012). These parameters aim to
describe features such as thermodynamic properties, sequence,
and/or structure based, or probabilistic properties of a hairpin.
Table 1 shows the 10 most frequently used features in ab initio
pre-miRNA prediction.

Features from the sequence based group are for instance single,
di, and tri nucleotide counts and frequencies but also compar-
ative features like the surplus of CG over AU as defined by van
Ham and colleagues (van der Burgt et al., 2009). Parameters that
describe structure include the hairpin loop length, number of
bulges, and maximum bulge size among others. Sixteen hybrid
features are introduced by Zhang and colleagues (Xue et al., 2005)
which include both sequence information and structural informa-
tion based on one central nucleotide and the bonding properties of
the surrounding two nucleotides (see Table 1, row 6). Thermody-
namic properties of a miRNA hairpin are for example its minimum
free energy, its enthalpy, and its entropy; features which were used
by for example in microPred (Batuwita and Palade, 2009) which
is not a pure ab initio prediction tool but uses some evolutionary
conservation information. Probabilistic features usually evaluate
a feature of the other groups in respect to a set number of shuffled
sequences to determine whether a pre-miRNA is a true miRNA

Table 1 | We analyzed all 12 studies which performed ab initio

prediction of hairpins and selected the 10 most used features. The
most commonly used feature is the length of the loop of the hairpin, used
in 6 out of the 12 studies.

Feature Percent used

Hairpin loop length 50

Base pairing propensity 42

Minimum free energy probability 33

Minimum free energy of hairpin 33

Hairpin length 33

Percent of triple structure U((( in hairpin 33

Percent of triple structure U(.( in hairpin 33

Percent of triple structure C(.( in hairpin 33

Percent of triple structure A... in hairpin 33

Percent of triple structure G((( in hairpin 33

hairpin. Van de Peer and colleagues introduced this analysis for
minimum free energy (Bonnet et al., 2004). Whether it is benefi-
cial to use such a transformed measure or use the minimum free
energy calculation directly in machine learning is unclear, but not
very likely.

Unfortunately, the predictive power of these features has not
been analyzed in depth. Even despite their redundant usage their
predictive quality has not been established which may be due to
problems stemming from the absence of negative data. Another
issue is the use of features which may be redundant or highly cor-
related so that they would lead to over estimation of some features,
in turn leading to lowered prediction accuracy. One example can
be the minimum free energy and the statistical transformation
of the minimum free energy which are used in tandem in some
studies (e.g., dG = mfe and zG in Ng and Mishra, 2007).

All 12 ab initio studies that attempt detection of miRNA hair-
pins have a unique combination of features. Some overlaps occur
and some studies do not add new features but use a combination
of previously described parameters. The features that are used
to describe the miRNA hairpins are then used for learning the
difference between true and false pre-miRNAs.

MACHINE LEARNING FOR THE DETECTION OF PRE-miRNAS
Given the parameters that describe a pre-miRNAs, rules can be
established from known examples that serve as training data in
supervised learning.

TRAINING DATA
For most machine learning approaches, which have been employed
in pre-miRNA detection, it is necessary to have both positive and
negative examples but in many problems in biology and especially
for the prediction of pre-miRNAs, negative examples are hard to
come by (Yousef et al., 2008; Ding et al., 2010; Wu et al., 2011;
Ritchie et al., 2012). In order to generate negative data random
sequences of similar length as the positive examples can be gener-
ated. Hairpins that occur in other RNA structures like tRNAs can
be used, but there is no guarantee that these cannot act as miRNAs.
Pseudo hairpins have been created (Ng and Mishra, 2007) and have
been widely used. Negative examples can also be generated on
the premise that a pre-miRNA does not contain another overlap-
ping miRNA hairpin (Ambros et al., 2003). Positive data is readily
available and most algorithms derive their positive examples from
miRBase (Griffiths-Jones, 2010), but recent studies uncovered
that caution is needed when deriving positive data from miR-
Base (Wang and Liu, 2011; Ritchie et al., 2012). Nonetheless, since
positive examples are available and because negative examples are
not one-class classifiers have been tried (Yousef et al., 2008).

SUPERVISED LEARNING
Classification is a classic data mining discipline and many algo-
rithms are available for supervised learning. From these algorithms
naïve Bayes induction (Yousef et al., 2006), random forest (Jiang
et al., 2007), and support vector machine (Pfeffer et al., 2005; Xue
et al., 2005; Ng and Mishra, 2007; Ding et al., 2010; Ritchie et al.,
2012) have been used. The basic strategy for supervised learning
is to define positive and negative examples and some discriminat-
ing parameters to discriminate among the examples provided (see
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above). Although the machine learning algorithms employed may
have some influence on the outcome of the prediction, we believe
that the impact of proper test and training sets and well defined
parameters are much higher. Therefore, the choice of supervised
learning method seems to be negligible.

OTHER APPROACHES
A strategy which does not employ machine learning for ab initio
prediction of miRNAs is to determine the data distribution of
selected parameters and then define a linear combination to
describe a true hairpin (Bentwich, 2008), require thresholds that
need to be passed (Cakir and Allmer, 2010), or define a likelihood
(van der Burgt et al., 2009).

PREDICTION ACCURACY
All studies which have reported new ab initio approaches to pre-
miRNA prediction have used different data sets, which makes it
impossible to compare the accuracy of these algorithms with-
out rerunning them on the same data set. In addition to that,
not all studies report prediction accuracy. Furthermore, some
of the studies have different underlying aims which complicate a
direct comparison even further. Lastly, there is no fully annotated
available genome which would allow a proper accuracy assess-
ment on real data. Therefore, the reported accuracies which will
be very briefly recounted in the following are to be viewed as
anecdotal.

Rubin and colleagues calculated their sensitivity in respect to
the number of miRNAs they found, and which had already been
described for Drosophila melanogaster. They detected 18 of 24
known miRNAs and reported a sensitivity of 75%, but did not offer
specificity or accuracy measures (Lai et al., 2003). Zhang and col-
leagues trained a support vector machine to distinguish between
real and pseudo human pre-miRNAs and achieved a sensitivity of
93% at a specificity of 88% (Xue et al., 2005). Margalit and col-
leagues (Altuvia et al., 2005) investigated viral miRNAs which can
regulate host genes, using SVM classification, and report a sensitiv-
ity of 97% at a specificity of 71%. Showe and colleagues used naïve
Bayes classification and reached a sensitivity of 97% at a specificity
of 91% for mouse (Yousef et al., 2006). Lu and colleagues (Jiang
et al., 2007) reused the same approach as Zhang and colleagues
(Xue et al., 2005). Differently, they added a P-value and minimum
free energy to the classification parameters and also used a dif-
ferent classification algorithm. They achieved a sensitivity of 95%
at a specificity of 98%. MiRenSVM an algorithm combining three
SVM classifiers achieved a sensitivity of 93% at a specificity of 97%
(Ding et al., 2010).

We have recently assessed four studies in an attempt to inde-
pendently establish the relative prediction accuracy of ab inito
pre-miRNA prediction tools and found that even the best among
these (accuracy: 0.986 on the pseudo hairpin data set from Ng
and Mishra, 2007) would not be accurate enough to extract
pre-miRNAs from the human genome with an error rate that
would be acceptable to perform experimental validation for
all predictions (Sacar and Allmer, manuscript in preparation).
Assuming 11 million hairpins in the human genome (Bentwich,
2008) and an accuracy of 98.6% the number of potential false
positive results would amount to 154000, a figure that is not

acceptable when attempting experimental validation in the light
of the fact that only a few thousand true miRNAs are expected
(Berezikov et al., 2005).

A process even more difficult than the mere selection of whether
a hairpin is a pre-miRNA is exactly locating the miRNA within the
hairpin.

WHERE IN THE HAIRPIN IS THE MATURE miRNA?
Hertel and Stadler (2006) claim that the mature miRNA may
occur anywhere within the hairpin, but that is against experi-
mental knowledge which established some rules for Drosha and
Dicer cleavage (Zeng and Cullen, 2005; Han et al., 2006; MacRae
et al., 2006; Zhang, 2010) which is likely due to their study predat-
ing many of these experimental findings. Their knowledge may
stem from an analysis of miRBase which contains an abundance
of dubious miRNAs which do not conform to some of the struc-
tural characteristics of miRNAs and are more likely other small
RNAs with the same effect like siRNAs or piwiRNAs. Due to these
problems, hand curated miRNA databases for miRNAs like Ssa
miRNAs DB are now being developed (Reyes et al., 2012).

We tried to predict the location of the miRNA in the hair-
pin post-targeting by first taking the complete possible mature
miRNA sequence and then narrowing it down based on BLAST
(Altschul et al., 1990) results against 3′UTRs (Cakir and Allmer,
2010). Clearly, this approach, which we tried for Toxoplasma
gondii, would not be scalable to the human genome and therefore
other methods need to be explored.

Many programs have been developed for the detection of pre-
miRNAs, however, only few of them are able to find the mature
miRNA sequence within the hairpin (Gkirtzou et al., 2010; Xuan
et al., 2011).

Huang and colleagues developed MaturePred which uses two-
stage sample selection to predict the mature miRNAs for plants
and animals (Xuan et al., 2011) based on a number of features
which they compared between known miRNA:miRNA* duplexes
and pseudo ones. Some of the parameters they adopted are also
used in pre-miRNA prediction algorithms and thus their method
suffers likewise from missing negative data sets.

Poirazi and colleagues developed a method for localization of
the mature miRNA within a pre-miRNA using parameterization
and Naïve Bayes classification (Gkirtzou et al., 2010). Among the
features they used, some triplets and their relative position within
the sequence turned out to be the most important qualifiers. They
compared their software, MatureBayes, with BayesMiRNAfind
(Yousef et al., 2006) and ProMiR (Nam et al., 2005), two tools with
a different purpose than MatureBayes but which could potentially
be used for the same purpose. They performed the comparisons
in order to show that a naïve adaptation of non-specialized tools
cannot outperform MatureBayes.

Tao (2007) employed thermodynamic and structural feature
conservation among species to predict the location of the mature
miRNA but in respect to the length of a mature miRNA the
deviance of the predicted start site to the actual start site is quite
large.

Ma and colleagues developed a hybrid experimental and com-
putational approach which they used to determine the location of
the mature miRNA for a small sample (Song et al., 2010).
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Some progress has been made in the field and the approxi-
mate localization of the mature sequence seems to be in reach, but
length variability and modifications to the mature miRNA are not
accounted for by any of the proposed algorithms. These modifi-
cations have however a great impact on the viability or the target
of a mature miRNA (Wang et al., 2011) and need to be considered
in the future.

CONCLUSION
Mature miRNAs are by no means independent of their processing
pathway. It is essential that the processing steps from RNA poly-
merase to RNA-induced silencing complex (RISC) incorporation
and silencing are performed to produce a mature miRNA. There-
fore, it is impossible to separate the rules for generation of mature
miRNA sequences from the underlying biological processes and
they need to be modeled entirely for prediction of miRNAs.

Recently, a large number of additional regulatory options have
become known and it has become clear that miRNAs can be reg-
ulated in many specific ways and in turn regulate in many specific
ways, for example see Guil and Cáceres (2007).

It seems difficult to model all these specifics in computer algo-
rithms as we are only beginning to understand the underlying

biological pathway and its mode of regulation (Winter et al., 2009;
Choudhuri, 2010).

Setting aside all the problems it is currently possible to
find new miRNAs with a combination of experimental and
computational research as was exemplified by Mowla and col-
leagues (Parsi et al., 2012) who used a variety of computational
tools in concert to find a new putative miRNA in an intron
of the NGFR gene which they then confirmed experimen-
tally.

The field of computational prediction of miRNAs is nowhere
near maturation yet tools are used and new ones are being devel-
oped. One of the benefits of using immature computational
analysis strategies is that they often generate testable hypotheses
and by that drive further research. This leads to concurrent syn-
ergistic increase in knowledge and in maturity of computational
analysis tools.
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