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Aging and the aggregating proteome

Della C. David*

German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany

Edited by:
Joy Alcedo, Wayne State University,
USA

For all organisms promoting protein homeostasis is a high priority in order to optimize cel-
lular functions and resources. However, there is accumulating evidence that aging leads to

a collapse in protein homeostasis and widespread non-disease protein aggregation. This
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NATURE OF PROTEIN AGGREGATION IN DISEASE

Protein aggregation is the common defining feature in neurode-
generative diseases such as Alzheimer’s and Parkinson’s disease as
well as systemic amyloidosis. In these diseases, one or several dis-
tinct aggregation-prone polypeptides become misfolded and are
packed into large insoluble hallmark structures. Disease aggre-
gation affects proteins with very different native structures. For
example, natively unfolded proteins such as tau and B-amyloid
aggregate in Alzheimer’s disease whereas globular proteins rich in
pB-sheets like transthyretin, rich in a-helices such as apolipopro-
tein Al or containing both B-sheets and a-helices such as gelsolin
aggregate in different types of systemic amyloidosis (Uversky et al.,
2006). Despite these differences, X-ray diffraction results suggest
that all these proteins adopt a very specific amyloid structure in
the aggregates where they are stacked together in cross-p-sheets
parallel to the fibril axis (Fisenberg and Jucker, 2012). Aggregates
typically contain amyloid fibrils which grow at their ends by pro-
viding a template for the addition of further monomers. Soluble
aggregation intermediates have also been identified, in particular
prefibril and fibril oligomers which are recognized by different
antibodies (Glabe, 2008). These structures are more reactive than
the long fibrils and are generally considered more toxic to the
organism. Although aggregates often contain different proteins,
amyloid fibrils and oligomers are classically composed of identical
proteins.

THE PROTEOME ON THE EDGE OF SOLUBILITY

The causes, consequences, and regulation of disease protein aggre-
gation have been extensively discussed in other reviews (Soto,
2003; Ross and Poirier, 2005; Douglas and Dillin, 2010; Eisen-
berg and Jucker, 2012). The present mini-review will focus
on recent evidence related to the disruption of protein home-
ostasis with age leading to widespread protein insolubility and
aggregation in the absence of disease. Indeed, it is predicted
that all proteins have the capacity to aggregate under specific
conditions. For example, changes in pH, heating, denaturing
conditions, or increased protein concentrations all tend to favor

review examines these findings and discusses the potential causes and consequences of
this physiological aggregation with age in particular in relation to disease protein aggre-
gation and toxicity. Importantly, recent evidence points to unexpected differences in
protein-quality-control and susceptibility to protein aggregation between neurons and other
cell types. In addition, new insight into the cell-non-autonomous coordination of protein
homeostasis by neurons will be presented.
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aggregation. Recently, Goldschmidt etal. (2010) predicted that the
majority of proteins have short self-complementary sequences,
which can initiate the formation of a steric zipper structure
thus promoting aggregation. Normally, aggregation is avoided
by burying these aggregation-prone regions inside the protein
during the folding process. However, partial unfolding could
be sufficient to uncover these regions and lead to aggregation
(Chiti and Dobson, 2009).

Computational analysis indicates that the proteome is only
marginally stable (Ghosh and Dill, 2010). Cells have likely opti-
mized protein expression levels to prevent aggregation, leaving
thereby little space for deviations in concentration (Tartaglia et al.,
2007; Tartaglia and Vendruscolo, 2009). Indeed, this delicate bal-
ance can be easily disrupted. For example, exposing cells in culture
to thermal stress prompts protein insolubility (Salomons etal.,
2009). Artificially inducing macromolecular crowding coupled
with increased ionic strength after exposure to high salt concentra-
tions leads to widespread protein insolubility and rapid irreversible
protein aggregation in the model organism Caenorhabditis elegans
(Burkewitz etal., 2011).

DECREASED PROTEIN-QUALITY-CONTROL WITH AGE

In a healthy young organism, several layers of quality-control
help proteins to remain functional and prevent aggregation (Balch
etal., 2008). This starts with the regulation of transcriptional and
translational rates as well as a tight control over the folding of
newly synthesized proteins by providing different chaperones to
assist the folding process (Hartl etal., 2011). After a damaged
protein is deemed beyond repair, it is targeted by chaperones
to the proteasomal or autophagy degradation systems (Kettern
etal.,2010). Inaddition to the cytoplasmic protein-quality-control
components, organelle-specific quality-control systems have been
identified in the nucleus, endoplasmic reticulum, and mitochon-
dria (Sidrauski etal., 1998; Haynes and Ron, 2010; Rosenbaum
and Gardner, 2011). As the organism ages, this regulation of
protein homeostasis becomes disrupted. In C. elegans, a sharp
decrease in chaperone expression is correlated with the end of
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the reproductive phase and leads to the aggregation of folding-
defective mutant proteins (Ben-Zvi et al., 2009). In mammals, the
unfolded protein response activated by ER stress is impaired with
age (Brown and Naidoo, 2012). Furthermore, aging is associated
with a decline in proteasome activity in a variety of tissues in
rats (Anselmi etal., 1998; Keller etal., 2000). Similarly, lysosomal
chaperone-mediated autophagy activity is reduced in old-aged
rat livers and senescent human fibroblasts (Cuervo and Dice,
2000). Conversely, enhancing lysosomal degradation as well as
overexpressing RPN11, one of the 19S proteasome subunits, sup-
presses disease-related protein aggregation (Tonoki etal., 2009;
Yang etal., 2011). Furthermore, aging is also associated with
increased oxidative stress, leading to irreversible oxidation and
nitration of proteins, which impairs their degradation (Squier,
2001; Poon etal., 2006). Errors during transcription and trans-
lation could provide a further challenge to the protein-quality-
control system with age (Gidalevitz etal., 2010). In addition,
molecular misreading during transcription causing dinucleotide
deletions plays a role in Alzheimer’s and Huntington’s disease (van
Leeuwen etal., 1998; Lam etal., 2000; de Pril etal., 2004). All
these changes with age could contribute to widespread protein
aggregation.

IDENTIFYING THE AGE-RELATED AGGREGATING PROTEOME
Although protein homeostasis is disrupted with age, it was unclear
to what extent this affects the stability of the proteome (Morimoto
and Cuervo, 2009). Recently, increased levels of protein hydropho-
bicity were detected in brains from aging rats which could promote
protein aggregation (Chiti and Dobson, 2006; Dasuri et al., 2010).
Consequently, a study with Drosophila revealed the accumula-
tion of aggregated proteins with age in different tissues (Demontis
and Perrimon, 2010). These aggregated structures were detergent
insoluble and appeared to be filamentous by electron microscopy,
two features associated with disease aggregation. Independently,
two groups set out to identify the age-related aggregating pro-
teome in C. elegans using mass-spectrometry (David etal., 2010;
Reis-Rodrigues etal., 2012). C. elegans is widely used to study
the aging process as these animals have a relatively short lifespan
and show many characteristic aging features observed in higher
organisms (Garigan et al., 2002; Kenyon, 2005). To isolate proteins
in a similar state to aggregated proteins in disease, both groups
adopted sequential biochemical fractionation methods based on
differential solubility, which is widely used to extract disease aggre-
gates in the field of neurodegeneration research (Lee etal., 1999).
Both groups discovered a substantial increase in the insolubility
of several hundred proteins with age confirming a widespread dis-
ruption in protein homeostasis. The significant overlap in protein
identities and functional categories between both studies shows
that aggregation does not randomly affect the whole proteome,
but rather a subset of proteins. Furthermore, computational anal-
ysis revealed that these aggregation-prone proteins have a higher
propensity to form B-sheets, a driving force behind disease protein
aggregation. In addition, in vivo analysis of several aggregation-
prone proteins with fluorescent protein tags consistently showed
the abnormal clumping of these proteins into aggregate-like
structures where the proteins are in a highly immobile state
(David etal., 2010).

Although these physiological age-related aggregates resemble
disease aggregates in several aspects, it remains to be determined
whether these aggregates are in an amyloid or amorphous state.
Interestingly, Alavez etal. (2011) showed that the prefibrillar-
oligomeric-specific antibody A11 binds specifically to structures
in the aging worm in the absence of disease. This antibody recog-
nizes a conformation characteristic of aggregation intermediates
formed by diverse disease-related aggregation-prone proteins such
as B-amyloid, a-synuclein, and polyglutamine (Kayed et al., 2003).
These intermediates are considered as precursors to larger amy-
loid fibrils (Lee etal., 2011). Evidence from bacteria also suggests
that a variety of proteins can aggregate into an amyloid structure.
Indeed, overexpression of exogenous proteins in bacteria often
leads to their aggregation and the analysis of these aggregates
revealed a partial amyloid structure (Wang etal., 2008). As the
authors propose, “there might be no amorphous state of a protein
aggregate” and one could speculate that physiological age-related
aggregates are composed of a mixture of amyloid and disordered
structures.

THE CONSEQUENCES OF AGE-RELATED PHYSIOLOGICAL
AGGREGATION IN NEURODEGENERATIVE DISEASE
AND AGING
Aging is the main known risk factor for sporadic neurodegen-
erative diseases. Henceforth, an important question is whether
non-disease protein aggregation may put the brain at risk for
aggregation of disease proteins. Proteomic analyses of disease
aggregates reveal a large number of proteins that are associ-
ated with the main hallmark disease-aggregating protein (Liao
etal., 2004; Wang etal., 2005; Xia etal., 2008). Comparison with
physiological age-aggregating proteins tells us that a significant
proportion of these proteins can aggregate themselves without
the presence of disease aggregates. Non-disease protein aggre-
gation could initiate or accelerate disease aggregation by several
mechanisms. First, physiological aggregation could titrate anti-
aggregation factors away from disease-aggregating proteins. In
C. elegans body-wall muscles, Gidalevitz et al. (2006) showed that
expressing either aggregation-prone polyglutamine or mutated
proteins sensitive to misfolding reduces the folding capacity in
these cells leading to enhanced protein aggregation. Similarly,
widespread protein insolubility caused by heat shock impaired the
ubiquitin-dependent proteasomal degradation (Salomons etal.,
2009). Second, the aggregation of non-disease-associated proteins
could directly induce the aggregation of disease-specific proteins
by a cross-seeding mechanism. Exposure of hydrophobic stretches
plays an important role in promoting protein aggregation (Munch
and Bertolotti, 2010). Recently, Olzscha etal. (2011) found that
artificially aggregating proteins preferentially forming oligomers
with exposed hydrophobic surfaces caused the most damage to
the cell. These artificial aggregating proteins efficiently sequestered
cellular proteins into aggregates. Similarly, the misfolding and
aggregation of non-disease proteins with age could reveal pre-
viously hidden hydrophobic stretches which may promote disease
protein aggregation.

It is tempting to speculate on the consequences of physiolog-
ical protein aggregation in the context of aging. During aging,
aggregation affects a large number of proteins, which play a role in
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regulating protein homeostasis as well as preventing disease pro-
tein aggregation (David etal., 2010; Reis-Rodrigues etal., 2012).
Sequestration of these proteins into aggregates could lead to a
decrease in functional protein available for the cell. In addition,
proteins which play a role in determining adult lifespan are over-
represented in the pool of aggregation-prone proteins (David et al.,
2010). Reis-Rodrigues etal. (2012) showed that reducing the lev-
els of aggregation-prone proteins by RNA interference extends
lifespan for nearly half of the candidates tested. Two different pos-
sibilities could explain these results. First, protein aggregates or the
reactive misfolded proteins during aggregation are toxic for the
organism, and by down-regulating expression of the aggregation-
prone proteins, the protein homeostasis is restored, which leads to
the lifespan extension. Second, the cellular function carried out by
aggregation-prone proteins is detrimental during aging and their
aggregation may be a protective mechanism. It is impossible to
distinguish between these possibilities based on RNA interference
experiments alone.

Finally, it remains possible that at least a proportion of phys-
iological aggregation has no negative consequences. Numerous
examples of functional aggregation have been discovered (Fowler
etal.,2007). To date, 25 proteins have been identified in yeast which
can switch to a prion conformation. These proteins tend to be
important regulators of gene expression as well as signaling trans-
ducers. The targeted loss-of-function caused by their aggregation
allows the evolution of new traits in response to environmental
changes (Halfmann etal., 2012). Functional aggregation is also
found in mammals. For example, peptide hormones are stored
in an amyloid aggregate and are released when needed (Maji
etal., 2009). Therefore certain physiological aggregation could be
a mechanism to store these proteins or rapidly inhibit their func-
tion. This type of aggregation could increase with age in response
to decreased demand for the active protein or be enhanced by
deregulation of the mechanisms responsible for resolubilizing the
aggregated proteins.

Opverall, it will be important to determine whether physiological
protein aggregation contributes to tissue degeneration with age or
is merely a consequence of aging. In particular, the dynamics of
aggregation may determine whether the net outcome is positive or
negative for the organism. Combined with the decline in protein-
quality-control with age, aggregation-prone proteins which tend
to remain in a misfolded and soluble state would be predicted to
be more harmful than those which are rapidly sequestered into
compact insoluble aggregates.

CELLULAR MECHANISMS AVAILABLE TO MANAGE
AGE-DEPENDENT PROTEIN AGGREGATES

An intricate protein-quality-control system normally ensures that
proteins are properly folded and damaged proteins are quickly
removed (Hartl etal., 2011). However, in cases of extreme stress
such as proteasome failure or heat stress, a large pool of mis-
folded proteins rapidly accumulates in the cell and assemblies into
aggregates. Throughout evolution, the cell has developed different
mechanisms to deal with this aberrant protein aggregation and
either resolubilize the proteins or sequester aggregates away from
vital functions. In bacteria, inclusions are formed preferentially
at the poles upon heat stress and are resolubilized by the AAA+

chaperone ClpB, in collaboration with heat shock protein DnaK
(Winkler etal., 2010). In yeast, stress-induced misfolded proteins
and amyloidogenic proteins are actively collected in different cen-
ters in the cell (Kaganovich etal., 2008). Dependent on the state
of misfolding or aggregation propensity, the damaged protein is
either ubiquitinated and targeted to a juxtanuclear quality control
compartment (JUNQ) or directed into peripheral insoluble pro-
tein deposits (IPODs) by Hsp42 (Kaganovich etal., 2008; Specht
etal., 2011). Hsp104, the yeast homolog of the prokaryote ClpB, is
targeted to stress-induced aggregates by Hsp70 and promotes their
disaggregation (Winkler etal., 2012). In animal cells, aggregat-
ing proteins induced by stress as well as some disease-aggregating
proteins are preferentially sequestered into a structure called the
aggresome (Johnston etal., 1998). Here, ubiquitinated aggregates
are actively targeted to the aggresome localized at the microtubule-
organizing center through the concerted action of dynein and
the histone deacetylase HDAC6 (Johnston etal., 2002; Kawaguchi
etal.,2003). Of note, non-ubiquitinated aggregates have also been
identified in the aggresome (Garcia-Mata et al., 1999; Ben-Gedalya
etal., 2011). In addition, JUNQ and IPOD structures have been
observed in mammalian cells (Kaganovich etal., 2008; Weisberg
etal.,2012). Metazoanslack a directhomolog of Hsp104. However,
recent studies demonstrate that Hsp110 in concert with Hsp70-
Hsp40 and small Hsps actively resolubilize both heat-induced and
disease aggregates in metazoans (Duennwald etal., 2012; Rampelt
etal., 2012).

It remains to be shown whether any of these mechanisms are
involved in managing age-dependent protein aggregation. Inter-
estingly, physiological protein aggregation has been identified in
different locations in the cell including the nucleus and does
not necessarily co-localize with disease-protein aggregates (David
etal., 2010).

DIFFERENCES BETWEEN NEURONAL AND NON-NEURONAL
REGULATION OF PROTEIN HOMEOSTASIS

In the context of disease, different tissues and cell-types are sus-
ceptible to protein aggregation. For example in patients with
sporadic inclusion-body myositis, amyloid-f and tau protein
aggregate exclusively in muscles together with several other pro-
teins (Askanas etal., 2009). Conversely, in Alzheimer’s disease,
amyloid-B and tau aggregates are restricted to brain tissue. The
reasons for this specific vulnerability remain unclear. Physiological
age-related aggregates have been identified in all tissues examined
including neurons. Tissue susceptibility to age-related aggregation
will probably be further refined by examining more individual
aggregation-prone proteins. Interestingly, results from C. elegans
and Drosophila would suggest that neurons are to some extent
more resistant to age-dependent protein insolubility and aggre-
gation than muscles (David etal., 2010; Demontis and Perrimon,
2010). How could this be? Recent results show that neurons and
muscles have developed different strategies to deal with protein
misfolding, which change with age. Using luciferase aggregation
and the subsequent recovery of luciferase activity after heat shock,
Kern etal. (2010) searched for differences in chaperone capacity in
neurons and muscle cells of young and aged C. elegans. They found
that young muscles efficiently prevented protein aggregation but
lost this activity with age. On the other hand, young neurons have
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a delayed chaperone response but compensate by increasing disag-
gregation and refolding activity. With age, neurons switched to the
strategy used by young muscle cells in that they actively prevent
aggregation but no longer promote refolding. In contrast, old mus-
cle cells become highly susceptible to protein misfolding and aggre-
gation. Similarly, Hamer etal. (2010) observed that the proteaso-
mal degradation capacity differs between muscles and neurons.
Using a photoconvertible fluorescent reporter marked for degra-
dation by ubiquitin, the authors show that young neurons rapidly
removed ubiquitinated proteins through the proteasome, whereas
muscles only slowly degraded proteins. Higher protein turn-over
in young neurons is achieved by improving substrate recognition
using the ubiquitin-binding proteasome subunit RPN10. Inter-
estingly, the degradation rate varies greatly between neuronal cell
types which may help explain differences in neuronal suscepti-
bility to protein homeostasis disruption. With age, the rate of
protein degradation decreased solely in neurons while still remain-
ing higher than in muscles. Overall, these different strategies used
by neuronal and non-neuronal cells to control protein home-
ostasis and how they are modified to compensate during aging
may render them more or less susceptible to physiological protein
aggregation.

NON-AUTONOMOUS CONTROL OF PROTEIN AGGREGATION

Neurons play an important role in coordinating protein home-
ostasis regulation throughout the organism in response to changes
in the environment. How does this affect physiological protein
aggregation in different tissues? In C. elegans, thermosensory
AFD neurons initiate activation of the transcription factor HSF-
1, driving the transcription of chaperones, in non-neuronal
tissues in response to acute heat stress (Prahlad etal., 2008).
However, in the absence of heat stress, these same neurons pre-
vent the up-regulation of chaperones in non-neuronal tissues in
response to chronic protein damage and aggregation (Prahlad
and Morimoto, 2011). Therefore under normal conditions, C.
elegans blunts its protein folding machinery and cannot appro-
priately respond to protein aggregation. Neurons potentially also
play a role in coordinating the mitochondrial unfolded pro-
tein response in non-neuronal tissues. Indeed, Durieux etal.
(2011) found that mitochondrial impairment only in neurons
induces the mitochondrial unfolded protein response in the
intestine. Furthermore, excessive neuronal signaling through
cholinergic motor neurons leads to increased misfolding of

folding-defective proteins and aggregation of polyglutamine in
muscle cells (Garcia etal., 2007). Therefore, depending on
the circumstances, neurons can modulate protein homeostasis
in both directions, either by promoting or inhibiting protein
aggregation.

On the other hand, the state of protein homeostasis in non-
neuronal tissue can influence neuronal protein health. Indeed,
up-regulating Pten/FOXO signaling specifically in fly muscles
reduces the release of insulin-like peptides from the brain, which
prevented age-dependent protein aggregation in the brain and
other tissues (Demontis and Perrimon, 2010).

OUTLOOK

The extensive identification of proteins aggregating during aging
provides us with a starting point to understand the collapse in
protein homeostasis with age. It will be essential to integrate
our vast knowledge on protein homeostasis regulation to iden-
tify the key factors controlling physiological protein aggregation
during the aging process. Delaying aging by dietary restriction or
reducing insulin/IGF-1 signaling has been shown to mitigate the
proteotoxicity of disease-protein aggregation in invertebrates and
mammals (Morley et al., 2002; Cohen et al., 2006, 2009; Steinkraus
etal., 2008; Freude et al., 2009; Killick et al., 2009; Teixeira-Castro
etal,, 2011; Zhang etal., 2011). Similarly, reducing insulin/IGF-1-
like signaling (David etal., 2010; Demontis and Perrimon, 2010)
or using chemical compounds such as thioflavin (Alavez etal,
2011) tell us that it is also possible to modulate physiological age-
related protein aggregation (also see review Alavez and Lithgow,
2011). In both C. elegans and Drosophila, age-dependent protein
aggregation occurs without additional stresses or overexpression
of exogenous proteins. Compared to expressing human disease-
aggregating proteins in these models, examining age-dependent
aggregation gives us an unparalleled opportunity to discover new
physiological pathways that control aggregation. Particularly, it
will be important to investigate the interplay between physio-
logical and disease protein aggregation. A major goal will be
to translate these findings into a mammalian system and use
this knowledge to develop therapies to promote healthy aging in
humans.
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