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Igh GENES AND THEIR DNA REARRANGEMENTS

AND MUTATION

The immunoglobulin heavy chain gene locus (Igh) undergoes
an amazing array of DNA rearrangements and mutagenic events
during B cell differentiation (reviewed in Max, 2008). A general
question is how these DNA modifications are normally achieved
during B cell development without mistakes that result in malig-
nant transformation. Our studies have focused on a regulatory
region that acts at long distances on target Igh sequences essential
for these DNA rearrangement and mutagenic events (reviewed in

Pinaud etal., 2011).

The Igh locus extends for ~3 Mb and contains coding seg-
ments for constructing a diverse repertoire of variable region
genes, through recombination of Vy (variable), Dy (diversity),
and Jy (joining) segments, as well as for constant region (Cg)
genes that, when translated, confer different functional capabilities
on antibody molecules. During bone marrow B cell develop-
ment, the locus undergoes sequential DNA rearrangement and
mutational events that generate an enormous range of antibody
heavy chain genes, each specifying individual antigen binding sites
associated with specific constant regions. The initial event, i.e.,

The immunoglobulin heavy chain locus undergoes a series of DNA rearrangements and
modifications to achieve the construction and expression of individual antibody heavy chain
genes in B cells. These events affect variable regions, through VDJ joining and subsequent
somatic hypermutation, and constant regions through class switch recombination (CSR).
Levels of IgH expression are also regulated during B cell development, resulting in high
levels of secreted antibodies from fully differentiated plasma cells. Regulation of these
events has been attributed primarily to two cis-elements that work from long distances
on their target sequences, i.e., an ~1 kb intronic enhancer, Ep, located between the V
region segments and the most 5’ constant region gene, Cu; and an ~40 kb 3’ regulatory
region (3’ RR) that is located downstream of the most 3’ Cy gene, Ca. The 3’ RR is a
candidate for an “end” of B cell-specific regulation of the /gh locus. The 3’ RR contains sev-
eral B cell-specific enhancers associated with DNase | hypersensitive sites (hs1-4), which
are essential for CSR and for high levels of IgH expression in plasma cells. Downstream
of this enhancercontaining region is a region of high-density CTCF binding sites, which
extends through hsb, 6, and 7 and further downstream. CTCF, with its enhancerblocking
activities, has been associated with all mammalian insulators and implicated in multiple
chromosomal interactions. Here we address the 3’ RR CTCFbinding region as a potential
insulator of the Igh locus, an independent regulatory element and a predicted modulator
of the activity of 3" RR enhancers. Using chromosome conformation capture technology,
chromatin immunoprecipitation, and genetic approaches, we have found that the 3’ RR
with its CTCF-binding region interacts with target sequences in the Vg, Ep, and Cy regions
through DNA looping as regulated by protein binding. This region impacts on B cell-specific
Igh processes at different stages of B cell development.

Keywords: immunoglobulin heavy chain gene locus, enhancers, insulators, CTCF, class switch recombination,
Pax5, chromosome conformation capture (3C) assay

recombinase-activator genes (RAG)-mediated V(D)J joining,
involves first, a DJ join, and then V to DJ joining, both accompa-
nied by deletions of intervening sequences; these lead to expression
of a IgM heavy chain bearing a single variable region. Successful
expression of one allele halts rearrangements on the other allele
(allelic exclusion) and prompts V] joining on the light chain allele.
Upon leaving the bone marrow, the B cell with its H, L, surface IgM
is poised to receive signals through antigen and other receptors for
T cell surface proteins and secreted cytokines that trigger further
DNA targeted events, such as class switch recombination (CSR)
and somatic hypermutation. CSR is initiated by germline tran-
scription (GT) of the non-IgM Cy gene to which subsequent DNA
rearrangement will occur. The DNA rearrangement event results
in a shift of the VD] gene segment from its position upstream of
I to upstream of y, € or o genes; as in VDJ joining, intervening
DNA is deleted as a circle. Vi-hypermutation results, upon anti-
gen selection, in B cells with higher affinity antigen-binding sites.
Both CSR and somatic hypermutation depend on the activity of
activation-dependent cytidine deaminase (AID). In fully differ-
entiated plasma cells, heavy chain gene expression occurs at high
levels. These multiple processes of VDJ joining, GT and CSR, and
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increased Igh expression levels require tight regulation to con-
tain these potentially mutagenic events within the confines of the
Ighlocus.

THE 3' RR CONTAINS AN ENHANCER MODULE AND A
HIGH-DENSITY CTCF-BINDING REGION

Two major long distance Igh control elements have been identified.
Our focus here is on a large (~50 kb) 3 regulatory region (3’ RR),
located downstream of the Cyy genes (reviewed in Pinaud etal.,
2011) and schematized in Figure 1. A second well-characterized
control element is an ~1 kb intronic enhancer, Ep, positioned
between the V, D, and ] segments and the Cy genes, which is critical
for VD] joining (reviewed in Max, 2008).The murine 3’ RR con-
tains a 5’ 28 kb segment, which has four enhancers that collectively
support GT, CSR, and high levels of IgH expression in plasma cells.
An ~10 kb 3’ segment contains a region of high-density CTCEF-
and Pax5-binding sites with insulator activity. Pax5, a transcrip-
tion factor essential for B cell identity (reviewed in Cobaleda et al.,
2007), is associated with 3’ RR enhancers as well. Our studies have
shown that the 3’ RR interacts at long distances with a number
of Igh target sites, as part of its influence on CSR and regulation
of Igh expression. This entire region is a candidate for a down-
stream “end” of B cell-specific regulation of the Igh locus. At the
upstream V region end, the Igh locus begins in the general vicinity
of telomeric sequences (mouse chr. 12, human chr. 14), suggestive
of a natural boundary. At the 3’ Cy-end, beyond the terminus
of the 3’ RR, hole (Timem121), Crip1/2, and mtal are the nearest

non-Igh downstream genes (all in the same inverted transcrip-
tional orientation compared to the Igh locus) followed by the rest
of the chromosome (Zhou et al., 2002a). There are multiple kinds
of regulatory elements in this 3’ RR. Three of the four enhancers
located in the 5" segment of the murine 3’ RR form an ~25 kb
palindrome, in which the central hs1.2 enhancer is flanked by
virtually identical terminal enhancers hs3A and hs3B (Saleque
etal,, 1997). A fourth enhancer, hs4, lies 3’ of hs3B in a sepa-
rate 3 kb structural and functional unit (Michaelson etal., 1995;
Saleque etal., 1997). Hs4 and the palindromic region vary in their
acquisition of DNase I hypersensitivity during B cell maturation
(Giannini etal., 1993); hs4 becomes hypersensitive early in B cell
development and remains so throughout, while the palindromic
enhancers become hypersensitive only later in B cell maturation.
A similar 3’ RR (hs3, hs1.2, hs4) is located downstream of each
of the two Co genes in the human Igh locus (Chen and Bir-
shtein, 1996, 1997; Mills etal., 1997; Sepulveda etal., 2004a,b;
Frezza etal., 2009).

As a potential “end” of B cell-specific regulation of the Ighlocus,
how might the 3’ RR help to focus DNA rearrangement events on
the Igh locus and prevent inherently mutagenic events like DNA
rearrangements and mutations from encroaching into neighbor-
ing downstream genes? We predicted that the 3’ RR might house
an insulator region with CTCF as a major functional contribu-
tor, similar to insulator regions found in other loci (Phillips and
Corces, 2009; Amouyal, 2010; Yang and Corces, 2011). In fact,
(and before the era of high-throughput genomic analyses), EMSA
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FIGURE 1 | Schematic of 3’ RR. The top line shows relative positions of V, D,
and J segments, the intronic enhancer, Ep, and the Cy genes. The 3’ RR
region is located downstream of the Ca gene of the /gh locus and has two
major modules: an ~28 kb region containing four enhancers, that, collectively,
are essential for GT and CSR and for high levels of /gh expression in plasma
cells. The 5" 3 enhancers, hs3A, hs1.2, and hs3B, occupy a palindromic region
(blue box), with hs3A and hs3B in inverted orientation at the ends of the

region. A fourth enhancer hs4 occupies a separate structural and functional
unit (red oval). In the 10 kb downstream, there is a high-density of CTCF
binding sites associated with DNase | hypersensitive sites hsb, hs6, and hs7,
and with a segment 4 kb further downstream, termed “38" because it is
located ~38 kb from the beginning of the 3’ RR (with BAC199 M11 as a
reference, Genbank AF450245; purple rectangle). This region also contains
interspersed Paxb sites.
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with recombinant CTCF on 50 consecutive overlapping DNA frag-
ments identified multiple CTCF sites (Garrett etal., 2005). These
were associated with additional DNase I hs sites, hs5, 6, and 7, and
with a segment 4 kb downstream of hs7, which because it is located
38 kb from the beginning of the 3 RR has been termed “38.”
Hs5 and hs7 were shown to confer insulator activity in a cell line
assay (Garrett etal., 2005). Analysis of EMSA with nuclear extracts
from B cell lines using supershift studies with specific antibodies
for CTCF and Pax5 showed that this entire hs5-7-“38” region
contained interspersed CTCF- and Pax5-binding sites (Chatterjee
etal,, 2011). Because Pax5 is a regulator of 3’ RR enhancers, these
data suggested that Pax5 might help coordinate the actions of the
enhancer-containing region with the insulator region. Here we
describe studies of the contribution of the 3’ RR to Igh regulation
throughout B cell development; in levels of H chain expression in

plasma cells, in GT and CSR in B cells, and in use of Vi genes
in VDJ joining in pro- and pre-B cells. For the most part, these
involve the formation of loops associating components of the 3’
RR with target Igh sequences, as described in the following sections
and as schematized in Figure 2.

THE 3’ RR AFFECTS H CHAIN EXPRESSION IN PLASMA CELLS
THROUGH CONTACTS WITH /gh TARGET SEQUENCES

A role for the 3’ RR in high levels of Igh expression in plasma
cells was inferred when we established that the entire 3’ RR was
deleted in a mouse plasma cell line that had lost 90% of its Igh
expression levels (Gregor and Morrison, 1986; Michaelson etal.,
1995). That the 3’ RR could loop to engage target Igh sequences
was predicted from studies of another mouse plasma cell line,
in which we detected an inversion of a segment extending from
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FIGURE 2 | The 3’ RR interacts via looping with many different target
Igh sequences during B cell development. During VDJ joining in pro-
and pre-B cells, the 3’ RR interacts with two CTCF sites upstream of Dy
(red arrow). Also in pre-B cells, the 3’ RR is involved in allelic regulation
(brown arrow). In B cells, interaction of the 3’ RR with I/switch regions is
associated with GT and subsequent CSR (purple arrows). In plasma cells
(lower right), the 3’ RR interacts with the expressed VDJ region and the
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intronic enhancer. Also in malignant plasma cells, the translocated c-myc
oncogene interacts in cis by looping with the 3’ RR (Ju etal., 2007).
Studies show some evidence that CTCF binding sites in the 3’ RR have
some insulation activity (gray box) that is detected to impact as far as
the “hole” gene. However, CTCF sites associated with downstream
genes appear to provide an over-riding local influence (as discussed in
the text).
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expressed Vi gene sequences to the 3’ RR palindromic region
(Calvo etal., 1991; Ju etal., 2007). Resolution of a loop formed
by interactions between the Vi gene and the 3’ RR is the sim-
plest intermediate to account for this inversion. Documentation
of such a loop structure came upon implementation of the chro-
mosome conformation capture (3C) method in a plasma cell line:
here we showed physical interactions involving 3’ RR enhancers
and its CTCF-binding region with the Jy sequence that was part
of the expressed Vi gene. The adjacent Ep sequences were not
essential for this interaction (Ju etal., 2007). The contacts asso-
ciated with chromatin loop formation were severely disrupted in
a different MPC11 variant, whose expressed Igh gene had been
rendered non-functional by substitution of the hs1.2 enhancer by
the NeoR gene (Ju etal., 2007). These data implied that an intact
3’ RR was essential for H chain expression in plasma cells and
that H chain expression depended on intact physical interaction
in cis of the 3’ RR with the expressed Vi gene. An extension of
these observations from cell lines to mice has derived from tar-
geted deletion of the entire enhancer-containing region of the 3’
RR in mice, which has confirmed a critical role of the 3" RR in
promoting high levels of Igh expression in plasma cells (Vincent-
Fabert etal., 2010).

Efforts to identify proteins that support loop formation
and concomitant Igh expression used a loss-of-function strat-
egy employing lentiviral-mediated shRNA directed against CTCFE,
Oct-2, and OBF-1/OCA-B (Ju etal., 2011) in the MPCI11 plasma
cell line. In no case did we see effects on Igh expression. We con-
clude that proteins other than those targeted were required to
support H chain expression, or that residual levels of CTCF, Oct-
2, and/or OBF-1/OCA-B remaining after the knock-down were
sufficient, or that these factors act in a redundant fashion and
that simultaneous knock down of multiple factors is required for
a decrease of Igh chain expression.

TARGETED DELETIONS OF 3' RR ENHANCERS REVEAL THEIR
INVOLVEMENT IN GT AND CSR
The impact of targeted deletions of 3’ RR enhancers in mouse by
a number of investigators has revealed their importance for two
successive steps of the CSR process, i.e., transcription through
Cy switch regions, followed by CSR. Deletion of the hs3B and
hs4 region of the 3’ RR reduced switching to all isotypes except
IgG1 (Cogne etal., 1994; Manis etal., 1998). The contribution to
GT and CSR of the I/switch regions and of the 3’ RR enhancers
has been fully demonstrated (reviewed in (Cogne and Birshtein,
2004). 3C studies on mature B cells undergoing CSR revealed
interactions between the 3’ RR and switch regions through which
transcription occurs prior to CSR (Wuerffel etal., 2007). These
interactions were severely reduced in B cells from mice in which 3’
RR enhancers hs3B and hs4 were deleted. These data supported the
importance of loop interactions between the 3’ RR and its target
switch sequences for CSR. The distances involved range from ~15
to ~150 kb.

3C experiments also revealed cytokine-responsive chromo-
somal conformation involving the 3’ RR during GT and CSR
(Wuerffel etal., 2007; Yan etal., 2011). Cytokine treatments that
fostered switching to a particular isotype not only stimulate tran-
scription of switch sequences of that isotype by activating the I

region promoter upstream of switch sequences, but also result
in specific increased 3C interactions between the 3’ RR and the
isotype-specific switch region. Interestingly, a double deletion of
hs3A and hs3B generated by the Eckhardt laboratory had no effect
on either transcription or CSR (Yan etal., 2011). However, we
found that in this doubly deleted mouse, isotype-specific interac-
tions between switch regions and the 3’ RR ordinarily enhanced by
cytokines were already at a high level in resting B cells, and there
was a concomitant increase in interactions between the remaining
3’ RR enhancers, hs1.2 and hs4. These observations suggested that
hs3A and hs3B modulate a functional hs1.2-hs4 3’ RR enhancer
unit (Yan etal., 2011).

In fact, GT and CSR are generally unaffected after individual
deletions of each of the four 3’ RR enhancers, including hs1.2
and hs4 (Manis etal., 1998; Vincent-Fabert etal., 2009; Bebin
etal., 2010; Dunnick etal., 2011). Interestingly, a distinctive (but
similarly functional) enhancer unit remains after each individual
enhancer deletion, e.g., hs1.2, hs3B, hs4 (when hs3A is deleted);
hs3A, hs3B, hs4 (when hsl.2 is deleted) and so on. This implies
considerable flexibility in the structure and function of the 3’ RR
enhancer unit, a point that is addressed further below. In all, the
essential role of 3 RR enhancers in GT and CSR can be met by
their multiple alternative functional interactions with each other
and with target switch sequences; these influence isotype-specific
switching in response to cytokine signaling.

TARGETED DELETION OF 3’ RR CTCF BINDING SITES HS5-7

Our studies have shown that during GT and CSR, the multi-
ple modules of the 3" RR, i.e., enhancers and the CTCF-binding
region hs5-7, interact with I/switch regions and with the Pax5
transcription factor. Pax5 (reviewed in (Cobaleda etal., 2007)
is essential for B cell identity and, through reporter assays, was
shown to play an important role in regulating murine 3’ RR
enhancers (Singh and Birshtein, 1993, 1996). To determine the
function of the CTCF-binding region, we generated hs5-7 KO
mice (Volpi etal.,, 2012). B cells from hs5-7 KO mice showed
essentially normal GT and CSR except for a modest increase in
IgG1™T cells upon switching in culture. One possibility to account
for these observations is that interactions of Igh sequences with
the CTCF/Pax5-binding site-rich hs5-7 region are secondary to
the role of the 3’ RR enhancers and are not essential during
CSR. Another possibility is that the deletion did not eliminate
all candidate CTCF-binding sites. In fact, ChIP/Seq data (Deg-
ner etal., 2009) showed that the hs5-7 KO left behind a limited
number of CTCF sites in the 3’ RR region, and other CTCF
sites associated with each non-Igh downstream gene (R. Casellas,
personal communication). Potentially, even a fraction of CTCF
sites in this region or other CTCF-interacting sites are sufficient
for appropriate biological activity. Similarly, we had anticipated
that a reduction in insulator activity resulting from deletion of
a large group of CTCF sites from the 3' RR would enable the
upstream unaffected 3’ RR enhancers to promote expression of
downstream, non-Igh genes. However, our studies revealed only
a modest increase in expression of the nearest downstream gene,
Tmem121, while further downstream genes were unaffected (Volpi
etal., 2012). It appears that local regulation of downstream genes
by their own CTCEF sites provides a back-up mechanism to restrain
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inappropriately regulated activity of the Igh locus from inflicting
damage on non-Igh genes.

INFLUENCE OF 3' RR CTCF-BINDING REGION

ON VDJ JOINING

CTCF has been described as a “master weaver of the genome”
(Phillips and Corces, 2009). Thousands of genomic CTCF sites
have been mapped, including those within the Igh locus (Garrett
etal.,, 2005; Degner etal., 2009, 2011). Moving upstream (3’ to 5')
of the high-density CTCF-binding region in the hs5-7 region of
the 3’ RR past the Cyy and Jy regions that are devoid of CTCF
sites, the CTCF sites that are closest to the 3" RR are two sites
located 5’ of the most 5" Dy gene; by 3C, these have been shown
to interact with the 3’ RR. Functional inactivation of the two D-
associated CTCF sites abrogated normal VDJ joining (Guo etal.,
2011); as a result, they have been named intergenic control region
1 (IGCR1). These studies imply a role of CTCF in VDJ joining.
In fact, functional inactivation of CTCF in pro-B cells by shRNA
(Degner etal., 2011) resulted in an increased distance between the
interacting 3’ RR and Dyy/CTCF sequences, i.e., a reduction in V-
locus contraction, and an increase in anti-sense transcription in
Dy and Vi regions. To determine, therefore, whether 3’ RR CTCF
sites that bind to Dy/CTCF are critical for the role of Dy/CTCF
in VD] joining, we assessed a mouse with a targeted deletion of
CTCF binding sites in the hs5-7 region of the 3’ RR (Volpi etal.,
2012). Here, we were surprised to find essentially normal levels
of VDJ joining in hs5-7 KO pro- and pre-B cells, except for a
detectable increase in DQ52-J1;3 usage at multiple stages of B cell
development. In addition, there was a modest, albeit statistically
significant reduction in Igh locus contraction, and an increase by
twofold over wild-type in the use of proximal V117183 genes while
distal Vi1J558 usage was unaffected. Notably, allelic exclusion was
correctly maintained. Although these data uncover an effect of the
3’ RR-CTCF-binding region on the Igh locus when VD] joining is
occurring presumptively through interactions of this region with
Dy/CTCE, they also imply the presence of considerable backups
for proper Igh regulation.

Pax5 AND CTCF AS REGULATORS OF THE 3’ RR

DURING CSR

Pax5

As a step toward further understanding mechanisms that control
the 3’ RR, we have identified transcription factors that regulate
3’ RR enhancer activity. Experiments showed that the four 3’ RR
enhancers are regulated by a common set of transcription factors,
namely Oct-binding proteins, NFkB, and Pax5 (Michaelson et al.,
1996), which could synergize for concerted repression (Singh and
Birshtein, 1996) or for concerted activation of 3’ RR enhancers
(Michaelson etal., 1996). YY1 has also been implicated (Gordon
etal.,, 2003). Importantly, Pax5 appears to regulate each of the 3’
RR enhancers as well as the CTCF-binding region. Using chro-
matin immunoprecipitation (ChIP), we found that as B cells are
induced to switch by culture with LPS +/- IL4, Pax5 shifts in its
association with modules of the 3’ RR (Chatterjee etal., 2011). In
resting B cells, Pax5 binds predominantly to hs4. At 48 h when
GT and switch region-3’ RR interactions are at a peak, Pax5 has
shifted away from hs4 to bind to upstream enhancer (hs1.2) and

downstream insulator (hs7) flanking sites. At 96 h, when CSR has
been completed, Pax5 regains hs4 binding as seen in resting B cells.
Regardless of whether switching to y3 or y2b occurred by stimu-
lation with LPS, or to y1 through stimulation by LPS + IL4, the
Pax5 pattern of binding to the 3 RR was similar.

When we compared B cells that successfully undergo sequen-
tial steps in switch recombination with those that are deficient in
GT and/or CSR (Chatterjee etal., 2011), we found that the Pax5-
binding pattern to the 3’ RR is mechanistically associated with
CSR. For example, stimulation of NFiB p50~/~ cells for 48 h with
LPS + IL4 shows deficiency in normal GT; accordingly, the Pax5
profile is different from normal B cells. Pax5 continues to bind to
hs4 although acquiring binding to hs1.2. In cells stimulated with
anti-IgM + IL4, which undergo normal GT but fail to switch, the
Pax5-binding pattern at 48 h is like that of cells stimulated by
LPS + /-IL4, but at 96 h, the pattern is disrupted. Collectively,
these data suggest that dynamic changes in Pax5 binding to the
3’ RR are supported by an isotype-independent scaffold on which
GT and CSR occur.

CTCF

To determine whether changes in CTCF binding to the 3’ RR were
similarly associated with CSR, we analyzed binding of CTCF and
its cofactor cohesin, this latter consisting of multiple subunits,
including Rad21 (Chatterjee etal., 2011). In contrast to changes in
Pax5 binding, we found relatively stable interactions of CTCF with
the high-density CTCF-binding region in hs5-7 and “38” through-
out the steps in GT and CSR that occurred in cells cultured with
LPS + /-IL4. Also as expected, together with CTCF, Rad21 bound
preferentially to hs7 upon stimulation with either LPS + /-IL4 or
with anti-IgM + IL4. However, in resting B cells and independent
of CTCF, Rad21 additionally bound to hs1.2 at low levels, and then
at substantially increased levels at 48 h of stimulation before bind-
ing at reduced levels again to hs1.2 at 96 h. A similar pattern of
CTCF-independent Rad21 binding to hs1.2 was detected in cells
stimulated with anti-IgM + IL4.

Collectively, these data showed that CTCF and cohesin bind-
ing to the 3’ RR, both to cognate CTCF sites and independent
of known CTCF sites, appear to contribute to a framework for
the 3’ RR, while Pax5 has dynamic interactions with its binding
sites. We have proposed (Chatterjee etal., 2011) that the multiple
Pax5-binding sites in 3" RR enhancers could support a scaffold
structure: various enhancer deletions or shifts in enhancer occu-
pancy could take place, leaving behind varying constellations of
functional Pax5 sites.

REGULATION OF 3' RR BY DNA METHYLATION

We predicted that the 3’ RR is subject to epigenetic regulation as
it acquires its functional capability. The 3’ RR essentially can be
divided into two regions under separate epigenetic control, the 5’
palindromic enhancers and the more 3’ hs4-“38” region. Begin-
ning in pro-B cells, the hs4-“38” region is associated with marks
of active chromatin (Garrett etal., 2005) and with DNA demethy-
lation (Giambra etal., 2008), which appear to be set in place by
expression of Pax5 and linker histone H1. The upstream palin-
dromic enhancers — hs3A-hs1.2-hs3B — acquire both epigenetic
marks in B and plasma cells (Giambra et al., 2008).
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BOX 1| Regulation of methylation and chromatin modifications
of 3’ RR during B cell development

1. In pro-B cells, the hs4 enhancer and the CTCFbinding region
hs5-“38" are demethylated and show marks of active chromatin.
These marks are retained during B cell development. In B and
plasma cells, the palindromic enhancers hs3A-1.2-3B acquire
both epigenetic marks.

2. A polymorphic region between hs4 and hsb reveals demethyla-
tion specific for the expressed allele in pre-B cells.

3.The 3’ RR in resting B cells is mostly methylated. In B cells
stimulated to undergo class switching, the 3’ RR becomes pro-
gressively demethylated with limited accompanying changes in
chromatin marks.

The two Igh alleles in the mouse 70Z/3 pre-B cell line (C57Bl/6-
derived and DBA/J-derived) can be distinguished by their stage
during VD] joining, their association with a polymorphic DNA
segment that is subject to DNA demethylation (Giambra etal,
2008), and by the formation of loops involving the 3’ RR
(Ju etal., 2011). The expressed VDJ-joined, C57Bl/6-derived,
allele is associated in cis with a 3’ RR containing a deletion of
hs3A-hs1.2 (with no apparent impact on Igh expression; Saleque
etal, 1999). The polymorphic region located between hs4 and
hs5 on this allele is demethylated. In contrast, the unexpressed
DJ-joined allele (DBA/J-derived) fails to undergo looping in cis
with its intact 3’ RR, and the hs4-hs5 sequence remains methy-
lated. These data reinforce the role of the 3’ RR in cis-regulation
of the Igh locus and imply that DNA demethylation in the 3’
RR, looping and Igh VD] rearrangement and expression may be
associated.

Interestingly, B cells stimulated for GT and CSR do not reveal
any significant changes in chromatin marks of the 3’ RR (Garrett
etal.,2005). Instead, we have identified progressive DNA demethy-
lation of the 3’ RR (Giambra etal., 2008) and (Giambra, V., in
preparation). These observations suggest that in resting B cells
prior to stimulation for CSR, the 3’ RR is poised in its chromatin
profile. We predict that DNA demethylation is associated with
architectural changes by which the 3’ RR influences GT, CSR, and
high levels of Igh expression in plasma cells. These epigenetic alter-
ations of the 3’ RR during B cell development are summarized in
Box 1.

DO /gh DNA REPLICATION PATTERNS SPECIFY ANOTHER
TERMINUS OF THE /gh LOCUS?

Various landmarks might demarcate functional termini for the
Igh locus; (1) the distinctive cluster of CTCF sites in hs5-7
that is located downstream of the Cy part of the locus and (2)
~20 kb further downstream, the nearest non-Igh downstream
gene, Tmeml21, i.e., hole. In collaborative studies (Michaelson
etal., 1997; Ermakova etal., 1999; Zhou et al., 2002a,b, 2005), we
identified a replication origin downstream of TmemI21 that is
also a candidate for a functional B cell-specific terminus of Igh
regulation. These studies showed that the Igh locus had differ-
ent temporal patterns of DNA replication in non-B cells and at
various stages of B cell development. In non-B cells, an origin
of replication was identified ~11 kb downstream of Tmem121,

which is ~30 kb downstream of the hs5-7 region and ~76-79 kb
downstream of the Co gene. DNA sequences downstream of this
landmark all replicated early in S. Beginning at this origin and
moving upstream, i.e., 3’ to 5', the 500 kb region within which Cy,
Ju, Du, and V7183 sequences were located replicated progres-
sively later in S. This was consistent with the absence of activated
origins of replication in this region. Sequences further upstream
of the 500 kb transition region all replicated late in S. However, in
pro-B and pre-B cells, the temporal transition region was elimi-
nated as the entire Igh locus replicated early in S, indicative of the
firing of multiple origins that were otherwise latent in non-B cells.
Hence, this origin-containing region downstream of Tmem121
appeared to demarcate upstream sequences that are under B cell-
specific Igh regulation from downstream sequences under non- Igh
control. Notably, in mature B cells and plasma cells, the temporal
transition region was again evident and the replication pattern was
similar to that seen in non-B cells. The change in replication was
paralleled by a change in location of the Igh locus from a position
at the nuclear periphery in non-B cells to away from the nuclear
periphery in pro- and pre-B cells, with resumption of a nuclear
periphery location in B and plasma cells. Analysis of replication
dynamics in a cell line in which the 3’ RR enhancer region had
been deleted, leaving behind the CTCF/Pax5-binding region and
further downstream sequences, showed no difference compared
to wild-type plasma cells (Michaelson etal., 1997). While these
findings showed that the 3’ RR enhancer region is not essential for
the timing of replication of the Ighlocus in plasma cells, inferences
about the role of the CTCF/Pax5-binding region in this process are
not possible.

SUMMARY

Here we have discussed two major modules of the 3’ RR, which
extends ~40 kb beginning downstream of Ca. The 5" 28 kb seg-
ment contains four enhancers, which, collectively, support GT,
CSR, and high levels of IgH expression in plasma cells. The
~10 kb 3’ segment contains a region of high-density CTCF- and
Pax5-binding sites with insulator activity. During B cell devel-
opment, the 3’ RR-its enhancers and CTCF-binding region — is
involved, via loop formation, with various target Igh sequences.
These include: (1) CTCF sites upstream of Dy that are essen-
tial for normal VD] joining and allelic Igh expression in pre-B
cells; (2) I/switch sequences required for GT and CSR in B cells,
and ¢) Jy and Ep, which support Igh expression in plasma cells.
While 3’ RR enhancers are essential for GT and CSR, as demon-
strated by targeted deletions, independent deletion of at least seven
of an estimated nine CTCF sites in the 3’ RR resulted in only a
mild phenotype (Volpi etal., 2012). We found essentially normal
VDJ joining but with a slight decrease in Vy-locus contraction, a
twofold increase in usage of proximal V117183 genes and an appar-
ent increase in DQ52-Jy33 usage. Steps in GT and CSR appeared
generally indistinguishable from wild-type, as was the chromoso-
mal architecture of the 3’ RR assessed by 3C. In all, we conclude
that the CTCF-binding region is a nidus for physical interactions
with Igh targets of important biological consequence. However,
there must be many back-ups that provide functional compensa-
tion to CTCE. These back-ups may include local regulators, such
as CTCF sites associated with other neighboring genes, or proteins
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other than CTCF and/or epigenetic regulators that terminate B
cell-specific regulation of the Igh locus.

ONGOING KEY QUESTIONS

Which proteins/nucleic acids/other molecules are essential for
loop formation? Are there different kinds of structural and func-
tional loops? What do loops do? Do they engage the Igh locus in
particular subnuclear domains for DNA rearrangements, muta-
tion, etc. during different stages of B cell development? How
does the 3’ RR function? What mediates architectural interactions
among the 3’ RR enhancers themselves and between the enhancer
and CTCF-binding modules? How does loop formation in the Igh
locus relate to loops in other loci? What specifically does CTCF
contribute to the structure and function of the Igh locus?

ACKNOWLEDGMENTS

This review focuses predominantly on work carried out in my lab-
oratory, which was supported by NIH RO1AI13509 and reflects
the efforts of multiple contributors from my laboratory. I thank

Charles Calvo, Sandra Giannini, Jennifer Michaelson, Nancy Mar-
tinez, Nasrin Ashouian, Alexis Price-Whelan, Chaoqun Chen,
Francine Garrett-Bakelman, Alejandro Sepulveda, Rabih Has-
san, Vincenzo Giambra, Steven Gordon, Alexander Emelyanov,
Zhongliang Ju, Sanjukta Chatterjee, and Sabrina Volpi. These indi-
viduals built on the efforts of students and research associates
who preceded them. I also thank our collaborators at Einstein,
Matthew Scharff, Sergio Roa, Carl Schildkraut, Randall Little, Olga
Ermakova, Jie Zhou, Qiaoxin Yang, Winfried Edelmann, Harry
Hou and Uwe Werling, Britta Will and Ulrich Steidl; laboratories
elsewhere, headed by Laurel Eckhardt, Victor Lobanenkov, Roy
Riblet, Domenico Frezza, and Ann Feeney; other colleagues who
have studied the 3 regulatory region, especially Michel Cogne,
John Manis, Amy Kenter, Fred Alt, and Wesley Dunnick; and
Richard Chahwan, Xiaohua Wang and Howard Steinman for
critique of this paper. I regret that I can not acknowledge all
those whose efforts have led to an increased understanding of
the intriguing processes by which immunoglobulin heavy chain
genes are regulated.

REFERENCES

Amouyal, M. (2010). Gene insula-
tion. Part II: natural strategies in
vertebrates. Biochem. Cell. Biol. 88,
885-898.

Bebin, A. G., Carrion, C., Marquet, M.,
Cogne, N., Lecardeur, S., Cogne, M.,
etal. (2010). In vivo redundant func-
tion of the 3’ IgH regulatory element
HS3b in the mouse. J. Immunol. 184,
3710-3717.

Calvo, C.-F, Giannini, S. L., Martinez,
N., and Birshtein, B. K. (1991). DNA
sequences 3’ of the IgH chain clus-
ter rearrange in mouse B cell lines. J.
Immunol. 146, 1353-1360.

Chatterjee, S., Ju, Z., Hassan, R., Volpi, S.
A., Emelyanov, A. V., and Birshtein, B.
K. (2011). Dynamic changes in bind-
ing of immunoglobulin heavy chain
3’ regulatory region to protein factors
during class switching. J. Biol. Chem.
286, 29303-29312.

Chen, C., and Birshtein, B. K. (1996).
A region of 20 bp repeats lies 3’ of
human Ig Cy1 and Cy2 genes. Int.
Immunol. 8, 115-122.

Chen, C., and Birshtein, B. K. (1997).
Virtually identical enhancers con-
taining a segment of homology to
murine 3'IgH-E(hs1,2) lie down-
stream of human Ig C alpha 1 and
C alpha 2 genes. J. Immunol. 159,
1310-1318.

Cobaleda, C., Schebesta, A., Delogu,
A., and Busslinger, M. (2007). Pax5:
the guardian of B cell identity and
function. Nat. Immunol. 8, 463—470.

Cogne, M., and Birshtein, B. K. (2004).
“Regulation of class switch recom-
bination,” in Molecular Biology of B
Cells, eds. T. Honjo, F. W. Alt and M.
Neuberger (San Diego, CA: Elsevier
Academic Press), 289-305.

Cogne, M., Lansford, R., Bottaro, A.,
Zhang, J., Gorman, J., Young, E,, et al.
(1994). A class switch control region
at the 3’ end of the immunoglobulin
heavy chain locus. Cell 77, 737-747.

Degner, S. C., Verma-Gaur, J., Wong,
T. P, Bossen, C., Iverson, G. M.,
Torkamani, A, etal. (2011). CCCTC-
binding factor (CTCF) and cohesin
influence the genomic architecture of
the Igh locus and antisense transcrip-
tion in pro-B cells. Proc. Natl. Acad.
Sci. U.S.A. 108, 9566-9571.

Degner, S. C., Wong, T. P., Jankevicius,
G., and Feeney, A. J. (2009). Cutting
edge: developmental stage-specific
recruitment of cohesin to CTCF
sites throughout immunoglobulin
loci during B lymphocyte develop-
ment. J. Immunol. 182, 44—48.

Dunnick, W. A., Shi, J., Zerbato, J.
M., Fontaine, C. A., and Collins,
J. T. (2011). Enhancement of anti-
body class-switch recombination by
the cumulative activity of four sep-
arate elements. J. Immunol. 187,
4733-4743.

Ermakova, O. V., Nguyen, L. H., Lit-
tle, R. D., Chevillard, C., Riblet, R.,
Ashouian, N., etal. (1999). Evidence
that a single replication fork proceeds
from early to late replicating domains
in the IgH locus in a non-B cell line.
Mol. Cell 3,321-330.

Frezza, D., Giambra, V., Mattioli, C.,
Piccoli, K., Massoud, R., Siracu-
sano, A., etal. (2009). Allelic fre-
quencies of 3’ Ig heavy chain locus
enhancer HS1,2-A associated with Ig
levels in patients with schizophrenia.
Int. J. Immunopathol. Pharmacol. 22,
115-123.

Garrett, F. E., Emelyanov, A. V., Sepul-
veda, M. A,, Flanagan, P,, Volpi, S., Li,

E, etal. (2005). Chromatin architec-
ture near a potential 3" end of the igh
locus involves modular regulation of
histone modifications during B-Cell
development and in vivo occupancy
at CTCF sites. Mol. Cell. Biol. 25,
1511-1525.

Giambra, V., Volpi, S., Emelyanov, A. V.,
Pflugh, D., Bothwell, A. L., Norio, P.,
etal. (2008). Pax5 and linker histone
H1 coordinate DNA methylation and
histone modifications in the 3’ regu-
latory region of the immunoglobulin
heavy chain locus. Mol. Cell. Biol. 28,
6123-6133.

Giannini, S. L., Singh, M., Calvo, C.-
E, Ding, G., and Birshtein, B. K.
(1993). DNA regions flanking the
mouse Ig 3’a enhancer are differen-
tially methylated and DNAse I hyper-
sensitive during B cell differentiation.
J. Immunol. 150, 1772—-1780.

Gordon, S. J., Saleque, S., and Bir-
shtein, B. K. (2003). Yin Yang 1 is
a lipopolysaccharide-inducible acti-
vator of the murine 3’ Igh enhancer,
hs3. J. Immunol. 170, 5549-5557.

Gregor, P. D., and Morrison, S. L.
(1986). Myeloma mutant with a novel
3’ flanking region: loss of normal
sequence and insertion of repetitive
elements leads to decreased tran-
scription but normal processing of
the alpha heavy-chain gene products.
Mol. Cell. Biol. 6, 1903-1916.

Guo, C., Yoon, H. S., Franklin, A,
Jain, S., Ebert, A., Cheng, H. L.,
etal. (2011). CTCF-binding elements
mediate control of V(D)] recombina-
tion. Nature 477, 424—-430.

Ju, Z., Chatterjee, S., and Birshtein,
B. K. (2011). Interaction between
the immunoglobulin heavy chain
3’ regulatory region and the IgH

transcription unit during B cell dif-
ferentiation. Mol. Immunol. 49,
297-303.

Ju, Z., Volpi, S. A., Hassan, R., Martinez,
N., Giannini, S. L., Gold, T., etal.
(2007). Evidence for physical inter-
action between the immunoglobulin
heavy chain variable region and the 3’
regulatory region. J. Biol. Chem. 282,
35169-35178.

Manis, J. P,, Van Der Stoep, N., Tian,
M., Ferrini, R., Davidson, L., Bot-
taro, A., etal. (1998). Class switching
in B cells lacking 3’ immunoglobulin
heavy chain enhancers. J. Exp. Med.
188, 1421-1431.

Max, E. E. (2008). “Immunoglobu-
lins: molecular genetics,” in Fun-
damental Immunology, Chap. 6.
(ed.) W. E. Paul (Philadelphia:
Wolters Kluwer/Lippincott Williams
& Wilkins), 192-236.

Michaelson, J. S., Ermakova, O., Bir-
shtein, B. K., Ashouian, N., Chevil-
lard, C., Riblet, R., etal. (1997).
Regulation of the replication of the
murine immunoglobulin heavy chain
gene locus: evaluation of the role of
the 3" regulatory region. Mol. Cell.
Biol. 17, 6167-6174.

Michaelson, J. S., Giannini, S. L., and
Birshtein, B. K. (1995). Identifica-
tion of 3’ alpha-hs4, a novel Ig
heavy chain enhancer element reg-
ulated at multiple stages of B cell
differentiation. Nucleic Acids Res. 23,
975-981.

Michaelson, J. S., Singh, M., Snapper, C.
M., Sha, W. C., Baltimore, D., and
Birshtein, B. K. (1996). Regulation
of 3’ IgH enhancers by a common
set of factors, including kappa B-
binding proteins. J. Immunol. 156,
2828-2839.

www.frontiersin.org

November 2012 | Volume 3 | Article 251 | 7


http://www.frontiersin.org/
http://www.frontiersin.org/Epigenomics_and_Epigenetics/archive

Birshtein

Igh 3’ RR CTCF-binding region

Mills, E. C., Harindranath, N., Mitchell,
M., and Max, E. E. (1997). Enhancer
complexes located downstream of
both human immunoglobulin C
alpha genes. J. Exp. Med. 186,
845-858.

Phillips, J. E., and Corces, V. G. (2009).
CTCF: master weaver of the genome.
Cell 137,1194-1211.

Pinaud, E., Marquet, M., Fiancette, R.,
Peron, S., Vincent-Fabert, C., Deni-
zot, Y., etal. (2011). The IgH locus 3’
regulatory region: pulling the strings
from behind. Adv. Immunol. 110,
27-70.

Saleque, S., Singh, M., and Birshtein, B.
K. (1999). Ig heavy chain expression
and class switching in vitro from an
allele lacking the 3’ enhancers DNase
I-hypersensitive hs3A and hs1,2. J.
Immunol. 162,2791-2803.

Saleque, S., Singh, M., Little, R. D,
Giannini, S. L., Michaelson, J. S., and
Birshtein, B. K. (1997). Dyad sym-
metry within the mouse 3’ IgH reg-
ulatory region includes two virtually
identical enhancers (C alpha3’E and
hs3). J. Immunol. 158, 4780-4787.

Sepulveda, M. A., Emelyanov, A. V., and
Birshtein, B. K. (2004a). NF-kappaB
and Oct-2 synergize to activate the
human 3’ Igh hs4 enhancer in B cells.
J. Immunol. 172, 1054-1064.

Sepulveda, M. A., Garrett, E. E., Price-
Whelan, A., and Birshtein, B. K.
(2004b). Comparative analysis of

human and mouse 3’ Igh regulatory
regions identifies distinctive struc-
tural features. Mol. Immunol. 42,
605-615.

Singh, M., and Birshtein, B. K. (1993).
NF-HB (BSAP) is a repressor of
the murine immunoglobulin heavy-
chain 3 alpha enhancer at early stages
of B-cell differentiation. Mol. Cell.
Biol. 13,3611-3622.

Singh, M., and Birshtein, B. K.
(1996). Concerted repression of
an immunoglobulin heavy-chain
enhancer, 3’ alpha E(hsl,2). Proc.
Natl. Acad. Sci. U.S.A. 93,4392-4397.

Vincent-Fabert, C., Fiancette, R., Pin-
aud, E., Truffinet, V., Cogne, N.,
Cogne, M., etal. (2010). Genomic
deletion of the whole IgH 3’ reg-
ulatory region (hs3a, hsl,2, hs3b,
hs4) dramatically affects class switch
recombination and Ig secretion to all
isotypes. Blood 116, 1895-1898.

Vincent-Fabert, C., Truffinet, V.,
Fiancette, R., Cogne, N., Cogne, M.,
and Denizot, Y. (2009). Ig synthesis
and class switching do not require the
presence of the hs4 enhancer in the
3" IgH regulatory region. J. Immunol.
182, 6926-6932.

Volpi, S. A., Verma-Gaur, J., Hassan, R.,
Ju, Z., Roa, S., Chatterjee, S., etal.
(2012). Germline deletion of Igh 3’
regulatory region elements hs 5, 6, 7
(hs5-7) affects B cell-specific regula-
tion, rearrangement, and insulation

of the Igh locus. J. Immunol. 188,
2556-2566.

Wuerffel, R, Wang, L., Grigera, E,
Manis, J., Selsing, E., Perlot, T.,
etal. (2007). S-S synapsis during class
switch recombination is promoted by
distantly located transcriptional ele-
ments and activation-induced deam-
inase. Immunity 22, 711-722.

Yan, Y., Pieretti, J., Ju, Z., Wei, S.,
Christin, J. R., Bah, E, etal. (2011).
Homologous elements hs3a and hs3b
in the 3’ regulatory region of the
murine immunoglobulin heavy chain
(Igh) locus are both dispensable for
class-switch recombination. J. Biol.
Chem. 286,27123-27131.

Yang, J., and Corces, V. G. (2011). Chro-
matin insulators: a role in nuclear
organization and gene expression.
Adv. Cancer Res. 110, 43-76.

Zhou, J., Ashouian, N., Delepine, M.,
Matsuda, E, Chevillard, C., Riblet,
R., etal. (2002a). The origin of a
developmentally regulated Igh repli-
con is located near the border of
regulatory domains for Igh replica-
tion and expression. Proc. Natl. Acad.
Sci. U.S.A. 99, 13693-13698.

Zhou, J., Ermakova, O. V., Riblet,
R., Birshtein, B. K., and Schild-
kraut, C. L. (2002b). Replication and
subnuclear location dynamics of the
immunoglobulin heavy-chain locus
in B-lineage cells. Mol. Cell. Biol. 22,
4876-4889.

Zhou, J., Saleque, S., Ermakova, O.,
Sepulveda, M. A., Yang, Q., Eckhardt,
L. A, etal. (2005). Changes in repli-
cation, nuclear location, and expres-
sion of the Igh locus after fusion of
a pre-B cell line with a T cell line. J.
Immunol. 175, 2317-2320.

Conflict of Interest Statement: The
author declares that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 02 July 2012; paper pending
published: 27 August 2012; accepted:
26 October 2012; published online: 16
November 2012.

Citation: Birshtein BK (2012) The
role of CTCF binding sites in the 3
immunoglobulin heavy chain regulatory
region. Front. Gene. 3:251. doi: 10.3389/
fgene.2012.00251

This article was submitted to Frontiers in
Epigenomics and Epigenetics, a specialty
of Frontiers in Genetics.

Copyright © 2012 Birshtein. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors and
source are credited and subject to any
copyright notices concerning any third-
party graphics etc.

Frontiers in Genetics | Epigenomics and Epigenetics

November 2012 | Volume 3 | Article 251 | 8


http://dx.doi.org/10.3389/fgene.2012.00251
http://dx.doi.org/10.3389/fgene.2012.00251
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Epigenomics_and_Epigenetics/
http://www.frontiersin.org/Epigenomics_and_Epigenetics/archive

	The role of CTCF binding sites in the 3' immunoglobulin heavy chain regulatory region
	Igh genes and their DNA rearrangements and mutation
	The 3' RR contains an enhancer module and a high-density CTCF-binding region
	The 3' RR affects H chain expression in plasma cells through contacts with Igh target sequences
	Targeted deletions of 3' RR enhancers reveal their involvement in GT and CSR
	Targeted deletion of 3' RR CTCF binding sites HS5–7
	Influence of 3 RR CTCF-binding region on VDJ joining
	Pax5 and CTCF as regulators of the 3' RR during CSR
	Pax5
	CTCF

	Regulation of 3' RR by DNA methylation
	Do Igh DNA replication patterns specify another terminus of the Igh locus?
	Summary
	Ongoing key questions
	Acknowledgments
	References


