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It is an important subject to research the functional mechanism of cancer-related genes
make in formation and development of cancers.The modern methodology of data analysis
plays a very important role for deducing the relationship between cancers and cancer-
related genes and analyzing functional mechanism of genome. In this research, we con-
struct mutual information networks using gene expression profiles of glioblast and renal in
normal condition and cancer conditions. We investigate the relationship between structure
and robustness in gene networks of the two tissues using a cascading failure model based
on betweenness centrality. Define some important parameters such as the percentage of
failure nodes of the network, the average size-ratio of cascading failure, and the cumulative
probability of size-ratio of cascading failure to measure the robustness of the networks.
By comparing control group and experiment groups, we find that the networks of exper-
iment groups are more robust than that of control group. The gene that can cause large
scale failure is called structural key gene. Some of them have been confirmed to be closely
related to the formation and development of glioma and renal cancer respectively. Most of
them are predicted to play important roles during the formation of glioma and renal cancer,
maybe the oncogenes, suppressor genes, and other cancer candidate genes in the glioma
and renal cancer cells. However, these studies provide little information about the detailed
roles of identified cancer genes.

Keywords: systems biology, gene network, cascading failure, betweenness centrality, structural key gene

INTRODUCTION
As the development of molecular biology and the application
of some biological technologies, it has become a hot spot issue
in studying different cancers (Hanash, 2004; Rhodes and Chin-
naiyan, 2005; Segal et al., 2005) in the view of gene, to reveal the
mechanism of formation and development of cancer and look for
efficient treatments. The canceration of tissue cells experiences
three stages, initiation, development, and diffusion of cancer cells,
each of which involves activation of oncogenes and inactivation
of suppressor genes. Hence, finding the key genes related with dis-
ease characteristics is of great significance to the diagnosis and
cure of the cancer and drug design. It is an important project
in the research of bioinformatics (Lander and Weinberg, 2000).
Now most of the methods researching the immanent mechanism
of genome are based on biochemical experiments and only fit for
some specific genes. As the fast accumulation of cancer genome
data, it becomes possible to make models with a large scale of data.
In systems biology, some efficient methods have been explored,
such as integrally studying the changing pattern of genome model
in the experiment of tumor, through analyzing the interaction net-
work of genes (Alm and Arkin, 2003; Barabasi and Oltvai, 2004)
to reveal the biological way of gene function. These methods have
widely promoted the study of molecular mechanism in a large
extent. For example, as for model organisms yeast, nematode, and
fruit fly,computational biologists have used these methods to make
a lot of predictions for the function of gene (Jansen et al., 2002;
Mateos et al., 2002; Pavlidis et al., 2002; Lee et al., 2004; Zhang
et al., 2004; Nabieva et al., 2005; Vidal, 2005; Barutcuoglu et al.,
2006).

Cascading failure of complex network is defined as one or a few
nodes or links failure which will lead other nodes failure through
the coupling relations, and it will cause the chain effect and lots
of nodes failure, ever the collapse of the whole network, also
vividly called “avalanche.” As human society networking increas-
ingly, people become stricter and stricter with the security and
reliability of complex network. People make a lot of effort, but
still large scale cascading failures have occurred from time to time.
The reliability of complex networks has increasingly become an
important issue in internet networks (Cohen et al., 2000; Pastor–
Satorras et al., 2001; Goh et al., 2002; Willinger et al., 2002), power
grid (Albert et al., 2004; Kinney et al., 2005), and traffic networks
(Wu and Sun, 2007). Cohen et al. (2000) studied the internet
networks which follow a scale-free power-law distribution with
respect to random crashes. Kinney et al. (2005; Cohen et al., 2000)
modeled the power grid using its actual topology and plausible
assumptions about the load and overload of transmission substa-
tions. Wu et al. (2007) studied different removal strategies affect
the damage of cascading failures based on the user-equilibrium
assignment,which ensures the balance of flp on the traffic network.
Smart et al. (2008) investigated the relationship between struc-
ture and robustness in the metabolic network of Escherichia coli,
Methanosarcina barkeri, Staphylococcus aureus, and Saccharomyces
cerevisiae, using a cascading failure model based on a topological
flux balance criterion.

In this research, we construct mutual information networks
using gene expression profiles of glioblast and renal in normal
condition and cancer conditions. The method of cascading failure
is firstly applied in gene networks to explore the relationship of
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structure and robustness. The sources of raw gene expression data
and the manipulations of the data are presented in Section “Data
Source and Processing.” Section “Construct Mutual Information
Networks” shows the mutual information gene networks con-
structed from the processed data sets. Section “Cascading Failure
Model” shows the cascading failure model and our main results. A
conclusion and discussion section comes to the end of the paper
with some open problems.

DATA SOURCE AND PROCESSING
DATA SOURCE
The sample data of glioma are chosen from GPL570 in NCBI. They
are all from GSE4290. The group with cancer called experiment
group I, stages II, III, IV include 45, 31, 81 samples respectively.
The group without cancer called control group I has 23 samples.
The sample data of renal cancer are chosen from GPL570 in NCBI
too. The group with cancer called experiment group II, stages I,
II, III include 30, 22, 30 samples, and they are all from GSE2109.
The group without cancer called control group II has 30 samples
which come from GSE11024, GSE12606, GSE3526, GSE7307, and
GSE7392 (The detail can be seen in)1. Control group I and control
group II are called control group. Experiment group I and experi-
ment group II are called experiment group. The detail is shown in
Table 1. Each of these data sets includes p-values and P-M-A (P, A,
and M respectively stand for presence, absence, and margin) for
20,827 genes, corresponding to 54,676 probes.

SELECTION OF CANCER-RELATED GENES
Begin with the 54,676 probes above, we first delete probes that cor-
responding to no gene or more than one gene. There were 20,827
probes left. Next, if more than one probe corresponding to a gene,
the expression profile of this gene is determined by the mean value
of the profiles of corresponding probes, thus, there were 19,802
genes left. It is too complex to construct and analyze the mutual
information networks for all genes in the data sets. So, it is neces-
sary to delete a part of genes and reserve the most important genes.
We use Wilcoxon rank sum test to select genes that have obvious
differences between control group and experiment groups. Taking
glioma for example. Firstly, the control group I and stage II of
experiment group I are used with Wilcoxon rank sum test, and we
obtain a group of genes charged GI_II. And then the control group
I and stage III of experiment group I, the control group I and stage
IV of experiment group I is used with Wilcoxon rank sum test, and
obtain genes set GI_III and GI_IV respectively. The significance
level of Wilcoxon rank sum test is 2.5× 10−7. The intersection of
GI_II, GI_III, and GI_IV, that is G1=GI_II∩GI_III∩GI_IV. The
obtained data set G1 is the working data set. We deal with the
renal cancer data with the same method in the significance level of
wilcoxon rank sum test 1.5× 10−8, and obtain the working data
set G2. The rank sum test results are shown in Table 2.

CONSTRUCT MUTUAL INFORMATION NETWORKS
To build a network model for a biological system and make biolog-
ically relevant predictions on the function of the system, it is nec-
essary to identify the system’s structure. In this work, we study the

1http://cise.sdust.edu.cn/institute/isbbc/data/cascading/dataset1.rar

Table 1 |The data source.

Data set Sample size

Control group I GSE4290 23

Experiment group I Stage II GSE4290 45

Stage III GSE4290 31

Stage IV GSE4290 81

Control group II GSE11024, GSE12606,

GSE3526, GSE7307,

GSE7392

30

Experiment group II Stage I GSE2109 30

Stage II GSE2109 22

Stage III GSE2109 30

Table 2 |The rank sum test results of glioma and renal cancer.

Glioma Renal cancer

Gene set GI_II GI_III GI_IV G1 GII_I GII_II GII_III G2

Gene num 182 237 2109 91 953 138 759 106

structure characteristics of networks consisting of cancer-related
genes. A gene expression profile is a vector whose components
are its expressions in different experiments. For convenience, we
denote gene expression profiles by their corresponding genes.
For example, the mutual information of genes A and B means
the mutual information of their expression profiles. The idea of
mutual information stems from information theory. It measures
dependence degree of two stochastic variables. Let A and B be two
genes (regarded as two stochastic variables). Their mutual infor-
mation I (A, B) is given by I (A, B)=H (A)+H (B)−H (A, B),
where H (x) = −

∑
x∈X

p(x)log2p(x) is the Shannon entropy of vec-

tor X. H (X, Y ) is the joint entropy of genes A and B. Larger values
of I (A, B) imply closer interrelation between genes’ expressions.
In the case of I (A, B)= 0, genes’ expressions are irrelevant.

To calculate relevance of mutual information between genes,
we discretize the p-values in each data set as follows. (1) Select the
range (Min, Max) for p-values and divide it into 20 portions such
that each portion contains almost the same number of p-values.
Order the portions in the number order and denote them by 1st,
2nd, . . ., 20th interval, respectively. (2) Replace the p-values in
an interval by its labeling value. Obviously, the granularity of our
discretization is finer than that of 0–1 discretization. Comparing
with the 0–1 discretization, the fine granularity discretization loses
less information contained in the original p-values. Therefore, it is
reasonable to believe that the mutual information networks based
on our finer discretization better reflect the nature of the gene
regulatory system.

In this article, we construct networks of mutual information
using gene expression data in normal tissues and tissues with can-
cer in every stage. The genes are treated as the nodes and the
links between genes as the edges in the networks. The link of two
genes can be measured by mutual information value. The greater
the mutual information value between two nodes is, the closer
the link and the lesser the edge-length is; the lesser the mutual
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information value is, the more distant the link and the greater
the edge-length is. We treated the mutual information network as
weighted network (the weighted value is the mutual information
value). The distance between two nodes is negatively related to the
weighted value. So, we translate the mutual information network
into distance network as follow:

wij =

{
1

mij
if mij 6= 0

∞ if mij = 0

Where mij is the mutual information of node i, j in mutual
information network, wij is the distance of node i, j in distance
network. So, let G= (V, E, W ) be a complex gene network with
node-set V= {1, 2, . . ., N }, edge-set E and weight-set W.

CASCADING FAILURE MODEL
BETWEENNESS CENTRALITY
Betweenness was firstly proposed by Freeman in 1979. It is a mea-
sure of a node’s centrality in a network equal to the number of
shortest paths from all vertices to all others that pass through that
node. The betweenness centrality of a node v is given by the expres-
sion: g (v) =

∑
s 6=v 6=t

σst (v)/σst where σst total number of shortest

paths from node s to node t and σst(v) s the number of those paths
that pass through v.

Betweenness centrality is a more useful measure of the load
placed on the given node in the network as well as the node’s
importance to the network than just connectivity. High between-
ness centrality scores indicate that a vertex lies on consider-
able fractions of shortest paths connecting others and plays an
important role in the network.

THE CASCADING FAILURE MODEL
For a given network, suppose that at each time step one unit of
the relevant quantity, the information is exchanged between every
pair of nodes and transmitted along the shortest path connecting
them. The load at a node is then the total number of shortest paths
passing through the node (Goh et al., 2001; Newman, 2001; Holme
and Kim, 2002). The capacity of a node is the maximum load that
the node can handle. The capacity Cj of node j is proportional to
its initial load Lj, Cj= (1+ α) Lj, j= 1, 2, . . ., N, where the constant
α≥ 0 is the tolerance parameter, and N is the initial number of
nodes. In our research, we define α= 0. When all the nodes are on,
the network operates in a free-flow state. But, the removal of nodes
in general changes the distribution of shortest paths. The load at
a particular node can then change. If it increases and becomes
larger than the capacity, the corresponding node fails. Any failure
leads to a new redistribution of loads, and, as a result, subsequent
failures can occur.

THE ALGORITHM OF CASCADING FAILURE MODEL
Based on the above mentioned definitions and symbols, we present
the algorithm of cascading failure model as follows:

(1) Input the weight matrix of complex gene network G= (V,
E, W ).

(2) Calculate initial load L0
j of node j and its capacity Cj =

(1+ α) L0
j , j = 1, 2, . . . , N , i = 1.

(3) Delete node i and its incident edges in the network, i= 1, 2,
. . ., N.

(4) Calculate the load of every node in the present network and
compare the capacity with the load of every node. If the load is
lesser than the capacity for every node in the present network,
then go to (5), otherwise, delete every node and its incident
edges whose load is greater than its capacity, go to (4).

(5) If the size-ratio of cascading failure after deleting node i is
greater than or equal to the threshold tcf of network failure,
then the network breaks down.

(6) i= i+ 1 If i < N, then go to (3).

THE JUDGMENT OF CASCADING FAILURE
(1) The criteria of a node’s failure.

(i) If the load of a node is greater than its capacity, then it is
called a failure node.

(ii) If a node becomes an isolated node, then it is called a
failure node.

(2) The criteria of a network’s cascading failure.

If the size-ratio of cascading failure ≥t cf , the network has cas-
cading failure, where t cf is the threshold of network failure, and it is
a criterion of network failure. In our research, we define t cf = 0.5.

SOME IMPORTANT PARAMETERS
(1) After deleting node i, and causing si failure nodes (including

node i), then si is defined as the size of cascading failure of
node i and d i= si/N as the size-ratio of cascading failure.

(2) Let sign1(i) =

{
1, di ≥ tcf

0, di < tcf

}
, then the percentage of failure

nodes of the network p = ΣN
i=1sign1(i)/N .

(3) The average size-ratio of cascading failure R = ΣN
i=1di/N .

(4) Let sign2(i) =

{
1, di ≥ d
0, di < d

(d is a variable parameter).

Then the cumulative probability of size-ratio of cascading
failure P(d ′ ≥ d) = ΣN

i=1sign2(i)/N , which indicates the
probability of size-ratio di of cascading failure greater than d.

Obviously, P, R, and P(d ′≥ d) are the important parame-
ters measuring the cascading failure scale and the robustness or
fragility of network.

In order to highlight the structural characteristics of the net-
works so that valuable biological conclusions can be drawn, it is
necessary to choose a threshold value to carry out coarse graining
on normalized mutual information. Here, we choose 18 thresholds
that are (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,
0.65, 0.7, 0.8, 0.9, 0.99) and then obtain 18 networks correspond to
the cases of the normal state and experiment group of every state
respectively. The percentage of failure nodes of the network P is
plotted versus the threshold values used to construct mutual infor-
mation networks T in Figure 1A (glioma) and Figure 1B (renal
cancer). The average size-ratio of cascading failure R is plotted
versus the threshold values used to construct mutual information
networks T in Figure 2A (glioma) and Figure 2B (renal cancer).
In Figures 1 and 2, the control group (red curve) is on the top of
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Sun et al. Analysis of cascading failure in gene networks

FIGURE 1 | Plots of the percentage of failure nodes of the network P versus threshold values used to construct mutual information networks. The red,
black, blue, and green curves correspond to the cases of the normal state, stage II, stage III, stage IV respectively. (A) and (B) correspond to glioma and renal
cancer.

FIGURE 2 | Plots of the average size-ratio of cascading failure R versus threshold values used to construct mutual information networks.The red, black,
blue, and green curves correspond to the cases of the normal state, stage II, stage III, stage IV respectively. (A) and (B) correspond to glioma and renal cancer.

every stage of experiment group (black, blue, and green curves) in
all values of threshold. The cumulative probability of size-ratio of
cascading failure P(d ′≥ d) is plotted versus the size of cascading
failure of node d in Figure 3 (glioma) and Figure 4 (renal cancer).
In Figure 3, by comparing the networks corresponding to control
group I and the stages of experiment group I, one can see that the
networks of control group I can be distinguished from the experi-
mental group I clearly in a broad range of the threshold variation
that is (0, 0.65). In Figure 4, the networks for control group II
can be distinguished from the experimental group II clearly in a
broad range of the threshold variation that is (0, 0.55). In addition,
the red curve is on the top of the other three color curves. The

distinction shows that the differences in the cumulative probabil-
ity of size-ratio of cascading failure P(d ′≥ d) for control group
and different stages of experiment group are pretty clear. So, we
can see from Figures 1–4, the network of control group trends to
fail more easily than networks of different disease stages. P, R, and
P(d ′≥ d) can measure the robustness of the networks, and they
are positively correlated with the robustness of the networks.

THE SELECTION OF THE STRUCTURAL KEY GENES
In the control network and experimental networks, the size of cas-
cading failure of some genes are quite different, and these genes are
called structural key genes (SKGs). The situation is very complex,
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Sun et al. Analysis of cascading failure in gene networks

FIGURE 3 | Damage distributions for cascading events in glioma networks. Plots of the cumulative probability of size-ratio of cascading failure P (d ′ ≥d )
versus the size of cascading failure of node d in 18 threshold values. The red, black, blue, and green curves correspond to the cases of the normal state, stage
II, stage III, stage IV respectively.

FIGURE 4 | Damage distributions for cascading events in renal cancer networks. Plots of the cumulative probability of size-ratio of cascading failure
P (d ′ ≥d ) versus the size of cascading failure of node d in 18 threshold values. The red, black, blue, and green curves correspond to the cases of the normal
state, stage I, stage II, stage III respectively.
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Table 3 | List representative genes of glioma which have big difference

in the size of cascading failure in different networks.

State T MELK AMH BAT1 ID3

N 0.05 0.05 0.60 0.60 0.60

0.30 0.19 0.88 0.76 0.80

0.60 0.57 0.88 0.86 0.80

0.90 0.98 0.98 0.98 0.98

II 0.05 0.47 0.47 0.02 0.02

0.30 0.57 0.66 0.09 0.10

0.60 0.57 0.82 0.38 0.40

0.90 0.87 0.88 0.87 0.87

III 0.05 0.59 0.58 0.05 0.05

0.30 0.71 0.71 0.21 0.22

0.60 0.88 0.85 0.47 0.47

0.90 0.93 0.92 0.91 0.91

IV 0.05 0.42 0.43 0.02 0.45

0.30 0.67 0.67 0.12 0.45

0.60 0.87 0.87 0.45 0.45

0.90 0.92 0.92 0.91 0.91

Table 4 | List representative genes of renal cancer which have big

difference in the size of cascading failure in different networks.

State T AFM TREH MELK

N 0.05 0.62 0.62 0.08

0.30 0.62 0.78 0.25

0.60 0.63 0.84 0.64

0.90 0.97 0.97 0.97

I 0.05 0.50 0.07 0.55

0.30 0.63 0.16 0.55

0.60 0.72 0.38 0.55

0.90 0.93 0.93 0.93

II 0.05 0.07 0.07 0.57

0.30 0.13 0.13 0.64

0.60 0.49 0.48 0.64

0.90 0.91 0.91 0.91

III 0.05 0.55 0.05 0.55

0.30 0.58 0.13 0.74

0.60 0.58 0.42 0.84

0.90 0.93 0.93 0.94

for example gene AMH in Table 3, the values of the size of cascad-
ing failure are very great in all networks. Gene MELK in Table 3,
the values of the size of cascading failure are very great in all net-
works except control group and there are some other genes which
have the same characteristic. Tables 3 and 4 list some representa-
tive genes which have big difference in the size of cascading failure
in different networks of corresponding to glioma and renal cancer
(The detail can be seen in)2. Tables 5 and 6 list all the type of SKGs
and all genes of every type. For example, T_II_III in Table 5 means
the genes of this type’s size of cascading failure are very great in

2http://cise.sdust.edu.cn/institute/isbbc/data/cascading/dataset2.rar

Table 5 | List SKGs of glioma.

Type Genes

T_II_III ADAMTS6, KIF4A, NDC80

T_C_II_III_IV AMH

T_II ANKFN1, CAMK2B, EZH2, SLC30A3, TSPAN11

T_III_IV ANKRD43, SST, SYNGR3

T_C APOC1, BAT1, BCL6, DPYSL3, EIF2C1, FCHO1, FLJ37464,

IFI16, ILF3, IRX3, MTHFD2, NBN, NRXN3, PPFIA1,

PPP1R16B, PRRX1, SGEF, SMARCC1, UHRF1

T_C_IV ATP8A2, EIF4EBP1, ID3, MAML2, POPDC3

T_IV C14orf94, DHRSX

T_C_III_IV C16orf48

T_III CCDC80

T_II_IV HS3ST4, KIAA1045

T_II_III_IV CRHBP, KIRREL3, LGI3, MELK

Table 6 | List SKGs of renal cancer.

Type Genes

T_C_I_III AFM

T_C ALDOB, NFKB1, SLC12A3, SLC22A8, SLC22A7, TREH, RGL3,

C12orf44, SLC13A3, C18orf45, TTC36, LOC283027vLOC727770

T_I_II_III CENPE, TYRP1, MELK, PVRL3, C12orf59

T_C_III COL4A1, ELF5

T_III CYP17A1, MT1H, NEK2, SERPINA5, SPAG4, ENPP6vC7orf41

T_I_III DACH1

T_I GPC5, TCEAL2, LOC100130278

T_II TXNDC3, MGC12488, GGT6, FAM151A

T_II_III MIOX, TUBB2B

T_I_II ACSF2

T_C_I_II IYD

networks of state II and state III of experiment group I and little
in other networks.

In Table 5, genes in T_II_III, T_II, T_III_IV, T_IV, T_III,
T_II_IV, T_III_IV, the size-ratio of cascading failure is great in
some experiment group I networks, and very little in control group
I. And these genes have great degree and betweenness centrality.
That is to say, they are very active in cancer cells but relatively
silent in normal cells, and deleting them will cause the collapse
of the whole diseased networks. Hence, they are probably glioma
oncogenes genes. Genes in T_C are very active in normal cells but
relatively silent in cancer cells and, hence, they are probably glioma
suppressor genes. Genes in T_C_II_III_IV are the key nodes in
both control group I and every states of experiment group I. They
are very important during the whole life, not only the normal
cells but also the cancer cells. So, we infer these genes are house-
keeping genes. Housekeeping genes are constitutively expressed in
all tissues to maintain cellular functions. They are presumed to
produce the minimally essential transcripts necessary for normal
cellular physiology. Genes in T_C_IV, T_C_III_IV, they are the key
nodes of control group I, but are not the key nodes in all states
of experiment group I, and we have not a clear classification. We
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can through consulting related data to conform the mechanism in
normal and cancer cells. The similar with the Table 5, in Table 6,
genes in T_I_II_III. T_III, T_I_III, T_I, T_II, T_II_III, T_I_II are
probably renal oncogenes genes. Genes in T_C are probably renal
suppressor genes. Genes in T_C_I_III, T_C_III, T_C_I_II need
further confirmation.

CONCLUSIONS AND DISCUSSIONS
In these research,we construct mutual information networks using
gene expression profiles of glioblast and renal in normal condition
and cancer conditions. Translate the mutual information networks
into load weighted networks. Investigate the relationship between
structure and robustness in the gene networks of the two tissues
using a cascading failure model based on betweenness centrality.
Calculate the percentage of failure nodes of the network P, the
average size-ratio of cascading failure R, and the cumulative prob-
ability of size-ratio of cascading failure P(d ′≥ d) for the networks
corresponding to the control group and experiment groups. As for
the percentage of failure nodes of the network P and the average
size-ratio of cascading failure R, the value of P and R increase
with the threshold of the network increasing. On the other hand,
they can distinguish the control group network and experiment
group networks in all the threshold value. And the value of P
and R of control group network is great than that of experiment
group networks. As for the cumulative probability of size-ratio of
cascading failure P(d ′≥ d), the network for control group can be
distinguished from the experimental group clearly in a broad range
of the threshold variation. And the value of P(d ′≥ d) of control
group network is great than that of experiment group networks.
Both the percentage of failure nodes of the network P, the average
size-ratio of cascading failure R and the cumulative probability of
size-ratio of cascading failure P(d ′≥ d) can measure the robust-
ness of the networks, and the value is positively correlated with
the robustness of the networks. In terms of structure, the network
of control group trends to fail more easily than networks of dif-
ferent disease stages. So we infer the networks of different disease
stages are more robust than that of control group to some extent.
Kitano (2004) presented a perspective on cancer as a robust sys-
tem to provide a framework from which the complexity of tumors
can be approached to yield novel therapies. The reason why many
approaches to anticancer treatment had been limited success was
because the tumor was “robustness.” With the growth of thresh-
old, there are some isolated nodes, and links among are no so

connected. It is obvious that the scale of cascading failure is more
and more great. And the networks are not so robust.

According to the differences of the size of cascading failure of
some genes in the control network and experimental networks, we
get some SKGs. And we group them into different types. In Table 6,
we infer genes in T_C are suppressor genes of glioma, genes in
T_II_III, T_II, T_III_IV, T_IV, T_III, and T_II_IV are oncogenes of
glioma. Overexpression of the polycomb group protein enhancer
of zeste homolog 2 (EZH2) occurs in diverse malignancies, includ-
ing prostate cancer, breast cancer, and glioma (Bachmann et al.,
2006; Yu et al., 2007; Simon and Lange, 2008). It is believed to play
a crucial role in tissue-specific stem cell maintenance and tumor
development. EZH2 is strongly expressed in glioma samples and its
pharmacologic inhibition impairs glioma cells self-renewal in vitro
and delays tumor initiation in vivo (Suvà et al., 2009). In Table 6,
most of the genes have not been proved to have direct relation-
ship with glioma, but some of them have significant relationship
with other cancers. Riemann et al. (2006) research the association
of the NFKB1 insertion/deletion promoter polymorphism with
survival in colorectal and renal cell carcinoma as well as disease
progression in B-cell chronic lymphocytic leukemia, and proved
that the NFKB1 promoter polymorphism has no effect on risk and
course of disease in the three cancer entities that were analyzed.
Okamoto et al. (2011) identified GPC5 as a new susceptibility gene
for nephrotic syndrome and implicated GPC5 as a promising ther-
apeutic target for reducing podocyte vulnerability in glomerular
disease. This research provides a large amount of SKGs, which are
key roles in normal tissues and cancer tissues of glioblast and renal.
However, this study provides little information about the detailed
roles of identified cancer genes. Most of the genes have not been
studied the relationship with glioma and renal cancer. The results
can predict more detailed and interpretable roles of oncogenes and
other cancer candidate genes in glioma and renal cancer.
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