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MicroRNA: a bridge from H. pylori infection to gastritis
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INTRODUCTION

Helicobacter pylori (H. pylori) infection is a recognized risk factor for gastric cancer. The
disease is one of the most common in the world and explains for a significant number of
cancer cases and cancer-associated deaths worldwide. H. pylori infection induces huge
array of responses at the gastric epithelial cells and the immune system, inducing both
pro- and anti-inflammatory molecules that are intended to either perpetuate or control the
infection. Despite the strong immune response, the infection is not cleared and can persist
mostly without causing major significant discomfort in the human host. Among the medi-
ators induced in response to the infection, microRNA (miRNA) have the potential to play
a major impact on the outcome of the bacteria-host interaction. These miRNA are small
18-24 nucleotide long nucleotide molecules that can interact with mRNA molecules and
block their translation into proteins or induce their degradation. Many efforts have been put
into the generation of MiRNA profiles and their role in gastric cancer. This has led to the
identification of miRNA associated with promoting the inflammatory response initiated by
the H. pylori infection, increasing the malignant progression of the gastric epithelium, and
enhancing the invasiveness and migratory capacity of cancer cells. However, at the same
time, several mMiRNA have been associated with events that are totally opposite, leading
to reduced inflammation, inhibition of malignancy and increased apoptosis of transformed
cells. In summary, as it is in many other examples, the role played by miRNA in gastric
cancer is the results of a delicate balance between pro- and anti-cancer miRNA, and this
balance is modified by the interaction of many players, many of which are still waiting to
be discovered.
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incidence and mortality rates are observed by geographic region

According to the American Cancer Society (ACS), cancer is the sec-
ond most common death cause in the United States'. Even though
the survival rate (up to 5-years) has improved tremendously over
the last decades, it is expected that more that 1.5 million Americans
will die to cancer in 2012 (Siegel et al., 2012). The incidence and
mortality of gastric cancer has followed that of most cancers but
still more than 10,000 deaths are expected to happened in 2012
(1.3% of all cancer cases and 7.5% of digestive system cancers;
Siegel et al., 2012). According to the Surveillance Epidemiology
and End Results (SEER)?, gastric cancer is a disease of dispari-
ties, in terms of incidence and mortality, with African American
men and women having the highest incidence and mortality rates
of gastric cancer when compared to other races/ethnic groups.
In addition, males from all ethnicities have higher incidence and
mortality rates than females (see text footnote 2). There are several
theories to explain these differences and based on several facts, it
seems that estrogens are important modulators of gastric cancer
risk (Camargo et al., 2012). Additional disparities in gastric cancer

Uhttp://www.cancer.org
Zhttp://seer.cancer.gov/statfacts/html/stomach.html

with Japan and China having more than 20 cases of gastric can-
cer and North America presenting less than 10 cases per 100,000
individuals (Parkin, 2004; Parkin et al., 2005). All these observa-
tions led to the idea that environmental factors, including diet,
play a major role in gastric cancer risk. However, recent findings
have suggested a significant role of the genetic background in gas-
tric cancer susceptibility. There have been plenty of publications
showing association of single nucleotide polymorphisms (SNP)
and risk of gastric cancer. We have shown also that these SNPs
may serve as biomarkers of risk even at earlier stages, during the
progression of inflammatory to malignant gastric stages (Zabaleta
etal., 2006,2008; Zabaleta, 2012). Identifying early markers of risk
of GC is crucial because the disease has one of the highest rates of
mortality worldwide. However, this task has been complicated by
several factors, including difficulties for tissue collection (which
is generally obtained by gastric biopsies); the presence of millions
of SNPs in the genome and the lack of studies determining the
degree of interactions among them; the time-dependent expres-
sion of genes which leads to misinterpretation of gene profiles;
and very especially, the lack of studies validating genomic profiles
generated from tissue samples in more easily obtained samples,
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like blood or urine, making replication of results less invasive and
less hazardous and stressful for the patient.

microRNA

Since its discovery, microRNA (miRNA) added a new chapter in
the study of gene regulation. It was initially observed that the
expression of the heterochronic protein, those that control tem-
poral development, Lin-14 during the development of Caenorhab-
ditis elegans (C. elegans) lead to a temporal expression of several
cell lineages (Ruvkun and Giusto, 1989). This temporal expres-
sion of Lin-14 protein leading to different genotypes suggested a
strong regulation in the gene encoding its expression, Lin-14. It was
later discovered that the expression of Lin-14 protein was down-
regulated at the post-transcriptional level by two products of the
gene Lin-4, another heterochronic gene, whose products bind to
the untranslated (UTR) 3’ region of the Lin-14 gene (Wightman
et al.,, 1993). In an interesting series of papers published in the
same issue of Science Magazine, three back-to-back papers showed
that these small RNA molecules were present in organisms other
than C. elegans, and the authors coined the term miRNA for them
(Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros,
2001). These miRNA result from the activity of two RNase III,
Drosha, and Dicer, that process the primary miRNA into mature
miRNA of 18-24 nucleotides that mediate inhibition of transla-
tion or degradation of messenger RNA (mRNA; Bartel, 2004) by
base mispairing with mRNA (RNAi; Olsen and Ambros, 1999),
giving the miRNAs a broad potential to regulate gene expression
(Bartel and Chen, 2004). However, the degree of specificity for the
binding of the miRNA with its target mRNA seems to be given
by the first nine 5’ nucleotides (seed nucleotides) of the miRNA
and their complementary 3’ untranslated regions (3'UTR) in their
targets (Moss et al., 1997; Reinhart et al., 2000; Kiriakidou et al.,
2004; Vella et al., 2004).

miRNA NOMENCLATURE

The criteria for the identification of nucleotide sequences as
miRNA were consented by a group of experts on the topic (Ambros
et al., 2003). These researchers delineated certain characteristics
that, except for some specific conditions, should be met by the
sequence to be considered a miRNA, including the detection of a
~22 nt RNA molecule, identification of that molecule on a pool of
cDNA made from RNA with specified sizes, the presence of a hair-
pin, phylogenetic conservation of the molecule and its precursor,
and increased expression of the precursor RNA molecules in the
absence of Dicer (Ambros et al., 2003). miRNAs are named based
on several criteria, including: three or four letters to designate
species (e.g., hsa for Homo sapiens); mature miRNAs are given
the designation of “miR” while precursor sequences are named
“mir”; sequential numbers; miRNAs that differ in only one or
two nucleotides are given letter suffixes, i.e., mmu-miR-10a and
mmu-miR-10b; if two different miRNAs are generated from the
opposite arms of the hairpin are named with an additional suffix
indicating the 5" or the 3’ where the miRNA is generated from,
i.e., hsa-miR-140-5p and hsa-miR-140-3p; in addition, when two
miRNAs originate from opposite arms of the hairpin, the one with
reduced expression is annotated with an asterisk (*; Ambros et al.,
2003; Griffiths-Jones, 2005; Griffiths-Jones et al., 2006, 2008).

miRNA AND HELICOBACTER PYLORI INFECTION

Among several factors, infection with Helicobacter pylori (H.
pylori) pylori is considered to be a crucial event associated with
risk of gastric cancer. Such is the importance of the infection in
the inflammation that leads to gastric cancer that H. pylori has
been classified as a Type I carcinogen by the International Agency
for Research in Cancer (IARC; IARC, 1994). After infection to
the gastric mucosa, H. pylori injects the product of the cytotoxin-
associated gene (cag; CagA) into the gastric epithelial cells by a
type IV secretion system (Backert et al., 2000; Odenbreit et al.,
2000). Once there, CagA is phosphorylated (Stein et al., 2002)
and induces a cascade of kinases activation leading to cellular
changes (Higashi et al., 2002) and production of inflammatory
cytokines (Orsini et al., 2000; Lai et al., 2011). Interestingly, using
an in vitro system, it was shown that CagA induces hsa-miR-584
and hsa-miR-1290 in a NF«f and Erk 1/2 dependent manner,
respectively (Zhu et al., 2012). Another set of experiments has
shown that after H. pylori infection there is a strong induction
of hsa-miR-155 which inhibits the production of the potent pro-
inflammatory cytokine IL8, through the inhibition of the NFkf
pathway by interacting with the 3’-UTR of the Ikf kinase (Xiao
et al., 2009; reviewed in Ma et al., 2011). Interestingly, in addition
to hsa-miR-155, H. pylori infection also induced hsa-miR-146a
(Xiao et al., 2009). This miRNA, in addition to hsa-miR-155 and
hsa-miR-132, is produced in response to inflammatory stimulus
like LPS (Taganov et al., 2006). Interestingly, similar to hsa-miR-
155, miR-146 also regulates the NFkp pathway by targeting TRAF6
and IRAKI (Taganov et al., 2006; Liu et al., 2010). Through the
regulation of TRAF6 and IRAKI, hsa-miR-146a modulates the
inflammatory response induced by H. pylori by reducing the lev-
els of IL8, MIP-3a, and GRO-a (Liu et al., 2010), suggesting that
this miRNA plays an essential role in the control of the inflamma-
tory response to H. pylori and possibly in the limitation of tissue
damage observed in patients with gastritis and gastric cancer. In
addition, hsa-miR-146a also regulates the expression of the PTGS2
gene (Liu et al., 2012b), which produces prostaglandin E2 that has
been associated with H. pylori infection and concomitant infiltra-
tion of inflammatory cells to the gastric mucosa (Fu et al., 1999;
McCarthyetal., 1999). As a quick reference, the association of sev-
eral miRNA with H. pylori infection, gastritis, and gastric cancer
is shown in a summarized way in Table 1.

miRNA AND GASTRIC INFLAMMATORY STAGES

Helicobacter pylori infection may last many years without induc-
ing any type of gastric discomfort to its human host. Even though
between 1 and 3% of infected people develop gastric cancer
(Uemura et al., 2001; Suerbaum and Michetti, 2002; Wroblewski
et al., 2010), the majority of infected individuals develop a con-
tinuous and progressive chronic inflammatory process initiated
by non-atrophic gastritis and followed by multifocal atrophic gas-
tritis, intestinal metaplasia, and dysplasia; the latter is considered
the truly precancerous stage of the cascade (Correa et al., 1975;
Zabaleta et al., 2006; reviewed in Zabaleta, 2012). The rate of
change to more advanced gastric lesions is higher than the rate of
regression (Correa et al., 1990). Even though pathological features
clearly distinguish between each inflammatory stage, the molecu-
lar signatures of these transitions have not being explored and the
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Table 1 | Association of several miRNA with gastric lesions, from H. pylori infection to gastric cancer.

hsa-miR-# Observation

Reference

9, 1464, 165, 650, 96, 204
21,223,218, 25
155, 146a

Chronic active gastritis (NAG)
H. pylori infection, gastric cancer

103, 200b, 200c, 375, 532 H. pylori-induced gastric inflammation

let-7 Induced by CagA, accumulation of Ras
17,20 21 223

eradication
17,204 Increased after H. pylori eradication
155, 584, 1290
150

the expression of EGR2

Modulation of IL8, MIP3a, GRO-a, Reduced PTGS2 in H. pylori infection

Reduced in metaplastic and non-metaplastic cancerous glands after H. pylori

Effect on severity of gastritis and presence of more advanced gastric lesions
Increased in gastric cancer tissues; induces cell migration and invasion by reducing

Lario et al. (2012)

Lietal. (2012a)

Liu et al. (2010), Liu et al. (2012b),
Xiao et al. (2009)

Isomoto et al. (2012)

Hayashi et al. (2012)

Shiotani et al. (2012)

Shiotani et al. (2012)
Qertli et al. (2011), Zhu et al. (2012)
Wu et al. (2010)

underlying mechanisms are unknown. It has been shown that the
level of the pro-inflammatory cytokines IL1§, IL6, IL8, and TNFa
were positively correlated with the level of chronic gastritis but that
correlation disappear in the presence of gastric atrophy and was
inverse, for IL6 and IL8, in intestinal metaplasia (Isomoto et al.,
2012). Interestingly, the levels of these cytokines were, in general,
inversely correlated with the levels of several miRNA in the gastric
mucosa. For example, the levels of miRNA let-7b were inversely
correlated (—0.59) with IL1Blevels (p < 0.005) while hsa-miRNA-
103 correlated with IL6 (—0.612, p < 0.005), hsa-miR-375 with
IL8 (—0.469; p < 0.05), and hsa-miR-200a with TNFA (—0.606;
p < 0.005; Isomoto et al., 2012). A profile of several miRNA was
associated with reduction of all inflammatory cytokines, suggest-
ing a common mechanism for the control of the expression of
these inflammatory mediators (Isomoto etal., 2012). Interestingly,
hsa-miR-155 deficient mice present reduced gastritis when com-
pared to wild type mice (Oertli et al., 2011). These responses are
associated with increased numbers of H. pylori CFU in the stom-
achs of infected hsa-miR-155 deficient mice and reduced CD4+
T-cell response evidenced by low production of IFNy and IL17
(Oertli et al., 2011). After a long follow-up, mice over expressing
hsa-miR-584 and hsa-miR-1290 showed changes associated with
gastric intestinal metaplasia including the appearance of colonic
epithelium and colonic markers (Muc-2; Zhu et al., 2012), sug-
gesting a role of these two miRNA in the development of more
advanced gastric lesions. However, the role played by H. pylori, if
any, was not determined in this in vivo follow-up. It is possible
that the presence of H. pylori infection may shorten the time for
the appearance of the epithelial abnormalities. However, even after
eradication of H. pylori with a triple antibiotic treatment (amox-
icillin, clarithromycin, and pump inhibitors) for a 7-day period,
the levels of known oncogenic miRNA, including hsa-miR-21, hsa-
miR-25, and hsa-miR-93, did not change (Shiotani et al., 2012).
In contrast, the levels of tumor-suppressor miRNA, including let-
7 and hsa-miR-204, increased after eradication (Shiotani et al.,
2012). These results suggest that after infection and eradication of
H. pylori, some underlying processes may continue that promote
tissue damage and lead to gastric malignancy. In addition, it is also
suggested that more than a single isolated response, the articulated
and balanced reaction to the infection and to the inflammatory

process dictates the outcome of the cascade initiated by the H.
pylori infection. In addition to the inflammatory cascade asso-
ciated with the development of gastric adenocarcinoma, several
miRNA have been linked to H. pylori-induced mucosal associ-
ated lymphoid tissue (MALT) lymphomas. Using an array of 376
miRNA Thorns et al. (2012) found 41 miRNA associated with
changes from normal gastric mucosa to gastritis and to MALT.
Interestingly, the levels of some of these miRNA seem to change in
response to the infiltration of lymphocytes or the presence of H.
pyloriwhile only a few (hsa-miR-150, hsa-miR-550, hsa-miR-124a,
hsa-miR-518b, and hsa-miR-539) were associated with lymphoma
and presented a steady increase from gastritis to MALT (Thorns
etal., 2012). Taken together these results suggest that miRNA may
be modulating pathways associated with differential outcomes in
response to a common trigger, infection with H. pylori. This sup-
ports the concept about universality of the miRNA responses and
opens up the possibility of more efficacious and global treatments
for illnesses with common origins.

miRNA AND GASTRIC CANCER

It has been shown that the distribution of miRNAs on the human
genome is non-random but rather, a significant fraction of them
are located on chromosomal regions known as “fragile sites” and
on genomic regions associated with cancer (Calin et al., 2004).
In fact, according to the same report, the incidence of miRNA
in these fragile sites is more than ninefold higher than in “non-
fragile” regions (Calin et al., 2004). Due to their ability to interact
with mRNA, a single miRNA can act as either tumor-suppressors
or oncogenes, meaning that a miRNA can be classified as tumor-
suppressor- or onco-miRNA, depending on the context of their
expression, as has been shown for the miRNA cluster miR-17-
92 (He et al., 2005; O’Donnell et al., 2005). Over expression of
onco-miRNAs may target certain tumor-suppressor genes and
allow the activity of oncogenes and their targets. On the con-
trary, over expression of tumor-suppressor miRNA would limit the
transcription of genes associated with tumorigenesis, cell division,
migration and invasion, and metastasis. In this sense, for exam-
ple, it has been shown that hsa-miR-135a promotes metastasis in
breast cancer cell lines by direct interaction with HOXA10 gene,
which acts as a metastasis suppressor in this cancer model (Chu
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et al., 2004; Chen et al., 2012). Due to the dual role of miRNA in
cancer and to the dynamic nature of these gastric lesions, it would
be recommended to establish the association with disease using
several miRNA, or miRNA profiles, rather than doing it with indi-
vidual miRNA. An early miRNA profile in gastric cancer showed
that stomach tissues have a specific miRNA signature that is sim-
ilar to that of pancreas, colon, and prostate cancers but different
from that of breast and lung cancer (Volinia et al., 2006).

The association of specific miRNA or miRNA signatures with
gastric cancer is at several levels. One very frequent feature found
is that miRNA modify the capacity of gastric cancer cells to pro-
liferate, migrate, and invade. Using in vitro and in vivo systems
several authors have shown that miRNAs act as inductors of cell
proliferation and inhibitors of apoptosis by interacting with and
inhibiting the expression of known tumor-suppressor genes. Wu
etal. (2010) showed that overexpression of hsa-miR-150 increases
the proliferation of gastric cell lines, as compared to non-treated
cells or cells treated with hsa-miR-150 antagonists. hsa-miR-150
transfected cell lines were also able to induce tumor formation
in nude mice. Interestingly, hsa-miR-150 was increased in gastric
cancer cell lines as well as in gastric cancer tissues, while its expres-
sion was reduced in normal adjacent and distant tissues (Wu et al.,
2010). Later analysis showed that the effect of hsa-miR-150 was
associated with reduced expression of the gene EGR2 (Wu et al,,
2010), which has been described as a tumor-suppressor (Unoki
and Nakamura, 2001). The EGR2 gene seems to be one of the
mediators of the antitumor effects of PTEN (Matsushima-Nishiu
etal.,2001; Unokiand Nakamura, 2001), which in turns, is reduced
by the interaction with another miRNA, hsa-miR-21 (Zhang et al.,
2012a). On the other hand, Zhang et al. (2012b) have described an
increased expression of hsa-miR-181a in gastric tumors, as com-
pared to normal tissues. This miRNA interacts with the 3’-UTR
of the tumor-suppressor gene KLF, which is reduced in the same
gastric tissues where miR-181a was measured, and is able to inhibit
apoptosis of gastric cell lines (Zhang et al., 2012b). A recent pub-
lication (Zhu et al., 2010) shows that miRNA let-7a expression is
significantly reduced in gastric epithelial cancer cells when com-
pared to normal cells, especially in samples from patients with
lymph node metastasis.

After being able to maintain certain level of cellular prolif-
eration, cancer cells must gain the capacity to cross the basal
cellular layers of the epithelia and get into the blood stream to
metastasize to local lymph nodes and farther tissues. In two dif-
ferent approaches researchers have shown an important role for
the gene inhibitor of growth (ING4) which is targeted by hsa-
miR-650 and hsa-miR-622 and this in turn, seems to be associated
with increased invasion/migration of gastric cell lines in vitro and
promote metastasis in nude mice (Zhang et al., 2010; Guo et al,,
2011). In synthesis, the success of a gastric cancer cell to invade
and become metastatic depends on the ability of that cell to pro-
mote or down-regulate the expression of proteins involved in cell
cycle, adhesion, cell-to-cell contact, among other things. The bal-
ance between miRNA with activities pro- and anti-tumorigenesis
may in part determine the final outcome and define the fate of
the tumor. So, there are miRNA profiles that promote tumor
growth including hsa-miR-622, hsa-miR-650, hsa-miR-223, hsa-
miR-21, and hsa-miR-181a, among others (Zhang et al., 2010,

2012a,b; Guo et al., 2011; Li et al., 2011b); while hsa-miR-107,
-145, -495, -551a, let-7f, -218, and -610, among others, inhibit cell
invasion and metastasis (Tie et al., 2010; Li et al., 2011a, 2012b;
Liang et al., 2011; Feng et al., 2012; Gao et al., 2012; Wang et al.,
2012).

miRNA AND ITS ROLE AS BIOMARKERS AND PREDICTORS
OF GASTRIC CANCER

Compared with the much higher number of mRNA, about 1,000
miRNA have been validated in humans, making feasible the gen-
eration of genetic profiles, with microarrays and high throughput
sequencing, to associate with disease and disease outcome, or to
identify possible biomarkers. In addition, due to its size, miRNA
are very stable in biological fluids facilitating the profiling with
non-invasive methods. After creating miRNA profiles in gastric
cancer, colorectal cancer, and healthy controls, 7 miRNA were
identified as specific for gastric cancer (Liu et al., 2012a). How-
ever, after validating these 7 miRNA in an independent set of
samples, miR-187*, miR-371-5p, and miR-378 remained signif-
icantly associated with gastric cancer serum samples (Liu et al,,
2012a). Further analysis revealed that hsa-miR-378 had a bet-
ter biomarker potential and this was corroborated by showing
that the level of hsa-miR-378 started to increase very early dur-
ing the cancer development making it a possible early detection
marker for gastric cancer (Liu et al., 2012a). Additional studies
have identified several other miRNA that could serve as biomark-
ers and predictors of gastric cancer (Liu et al., 2011; Li et al,
2012a; Song et al., 2012). The differences observed in the profiles
may be related to several things, including ancestry, density of the
platform used for the profiling (i.e., microarray, TagMan arrays),
which may allow for lower or higher input of sequences and there-
fore, limit the probability of identifying specific miRNA. Whatever
the technology used, it is clear that miRNA profiling is a potent
tool that can be used to improve both diagnosis and prognosis in
gastric cancer. The current knowledge of the miRNA role in the
pathogenesis of gastric cancer make these as potential targets to
either improve therapeutic options currently in use, or to devise
new strategies for the treatment of the disease. These treatments
have to be directed to at least two things, to reduce the malignant
process that lead to hyper-proliferation of gastric cells and are
associated to malignant transformation, and to reduce the inflam-
matory response that promote the influx of immune cells into
the gastric mucosa. In addition, it is very possible that H. pylori
has its own set of miRNA that can affect the immune response
of the host in order to increase the chances of perpetuating its
infection.

CONCLUSION

microRNA profiles have been established, and most probably will
be used as molecular targets to modify the interaction of H.
pylori with gastric cells and to reduce the inflammation and cel-
lular malignancy that may lead to gastric cancer. Among profiles
of mRNA, methylation (cpG), genome wide association studies
(GWAS), miRNA profiles have the highest potential to successfully
become widely used to reach the goal of “personalized medicine”
by which, a patient is to be medically treated according to his/her
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genetic profile. These profiles, it is expected, would classify and pre-
dict the outcome of a disease better than traditional techniques,
as well as dictate the steps to follow in order to better treat that

specific patient.
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